A rigorous approach to the dynamics of self-propelled swarms via a novel central manifold approximation technique

Irina Popovici Kostya Medynets Carl Kolon

Mathematics Department, United States Naval Academy Research sponsored by ONR grant

We're hiring (4 tenure-tracks).

 Our system has *n* agents (oscillators); their position vectors *r*₁,...*r_n* (in ℝ²) satisfy

$$\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - \frac{1}{n}\sum_j (r_k - r_j)$$

$$\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - (r_k - R(t))$$

 $R = \frac{1}{n}(r_1 + \cdots + r_n)$ is the center of mass.

 Turing 1952, Smale 1976: cellular biology; the linear coupling represents the diffusion of enzymes past the membranes of neighboring cells • Ebeling-Schweitzer (1998-2003): active agents $r_k \in \mathbb{R}^2$.

$$\ddot{r}_k = -f(\dot{r}_k)\dot{r}_k -
abla U(r) + \xi$$

- f(r_k) is a non-linear dissipation function; or the self-propelling term; converts energy into motion.
- ∇U(r) describes the influences of the environment, say, the positions of other agents.

2. Paradoxical dynamics $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - \frac{1}{n}\sum(r_k - r_j)$

When viewed in isolation, i.e. if $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k$, an agent's motion is rectilinear, moving in the direction of $\dot{r}_k(0)$ at speed limiting one. In isolation, agents diverge.

The coupling fundamentally alters the dynamics:

2. Paradoxical dynamics $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - \frac{1}{n}\sum(r_k - r_j)$

When viewed in isolation, i.e. if $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k$, an agent's motion is rectilinear, moving in the direction of $\dot{r}_k(0)$ at speed limiting one. In isolation, agents diverge.

The coupling fundamentally alters the dynamics:

1. Regardless of the initial conditions, the agents remain in a spatially cohesive configuration around the center of mass.

2. Paradoxical dynamics $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - \frac{1}{n}\sum(r_k - r_j)$

When viewed in isolation, i.e. if $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k$, an agent's motion is rectilinear, moving in the direction of $\dot{r}_k(0)$ at speed limiting one. In isolation, agents diverge.

The coupling fundamentally alters the dynamics:

- 1. Regardless of the initial conditions, the agents remain in a spatially cohesive configuration around the center of mass.
- 2. If the center of mass escapes to infinity, then all agents *synchronize* their directions of motion.

When viewed in isolation, i.e. if $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k$, an agent's motion is rectilinear, moving in the direction of $\dot{r}_k(0)$ at speed limiting one. In isolation, agents diverge.

The coupling fundamentally alters the dynamics:

- 1. Regardless of the initial conditions, the agents remain in a spatially cohesive configuration around the center of mass.
- 2. If the center of mass escapes to infinity, then all agents *synchronize* their directions of motion.
- 3. If the center of mass remains bounded, then the agents exhibit *oscillatory* patterns.

3. Simulation Results: $\ddot{r}_{k} = (1 - |\dot{r}_{k}|^{2})\dot{r}_{k} - (r_{k} - R)$

Left: particles with initial conditions uniformly distributed in $[-2,2] \times [-2,2]$, starting from rest. The frame is centered at the center of mass (eventually stationary).

Right: particles with initial velocities uniformly distributed in $[0,1] \times [0,1]$, starting in $[-1,1] \times [-1,1]$. The frame moves with the center of mass (speed approaches one).

4. $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - (r_k - R)$ vs other synchronizing systems

1. Van der Pol oscillators: if $r_k \in \mathbb{R}$; let by $v_k = \dot{r}_k$. We get

$$\ddot{v}_k = (1 - 3v_k^2)\dot{v}_k - \frac{1}{n}\sum_j (v_k - v_j)$$

Superimpose rectilinear oscillators in the plane: a pulsating star, periodic, unstable, made out of 1-dimensional Van der Pol oscillators, with stationary center of mass, R(t) = R(0).

4. $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - (r_k - R)$ vs other synchronizing systems

1. Van der Pol oscillators: if $r_k \in \mathbb{R}$; let by $v_k = \dot{r}_k$. We get

$$\ddot{v}_k = (1 - 3v_k^2)\dot{v}_k - \frac{1}{n}\sum_j (v_k - v_j)$$

Superimpose rectilinear oscillators in the plane: a pulsating star, periodic, unstable, made out of 1-dimensional Van der Pol oscillators, with stationary center of mass, R(t) = R(0).

2. Kuramoto oscillators: $\dot{\theta}_k = \omega_k - \frac{\kappa}{n} \sum_j \sin(\theta_k - \theta_j)$. Converting our r_k to polar coordinates leads to a *swarmalator*. the phase angles θ_k (and the angles for the velocity vectors) are influenced by each other and also by *spatial factors*.

4. $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - (r_k - R)$ vs other synchronizing systems

1. Van der Pol oscillators: if $r_k \in \mathbb{R}$; let by $v_k = \dot{r}_k$. We get

$$\ddot{v}_k = (1 - 3v_k^2)\dot{v}_k - \frac{1}{n}\sum_j (v_k - v_j)$$

Superimpose rectilinear oscillators in the plane: a pulsating star, periodic, unstable, made out of 1-dimensional Van der Pol oscillators, with stationary center of mass, R(t) = R(0).

- 2. Kuramoto oscillators: $\dot{\theta}_k = \omega_k \frac{\kappa}{n} \sum_j \sin(\theta_k \theta_j)$. Converting our r_k to polar coordinates leads to a *swarmalator*. the phase angles θ_k (and the angles for the velocity vectors) are influenced by each other and also by *spatial factors*.
- 3. Bertozzi & all: $\ddot{r}_k = (1 |\dot{r}_k|^2)\dot{r}_k \sum_j \nabla U(r_k r_j)$, with U =the Morse potential.

Heuristics and numerical simulations have been the driving factors in the study of swarms. The main challenge: reducing dimensions.

If the agents control their speeds, $|\dot{r}_k| = 1$:

If the agents control their speeds, $|\dot{r}_k| = 1$:

1. $\ddot{r}_k = -(r_k - R)$, a linear system. Averaging we get $\ddot{R} = 0$.

If the agents control their speeds, $|\dot{r}_k| = 1$:

1. $\ddot{r}_k = -(r_k - R)$, a linear system. Averaging we get $\ddot{R} = 0$.

The center of mass moves at constant velocity (or it is stationary).

If the agents control their speeds, $|\dot{r}_k| = 1$:

- 1. $\ddot{r}_k = -(r_k R)$, a linear system. Averaging we get $\ddot{R} = 0$.
- The center of mass moves at constant velocity (or it is stationary).
- 3. If the center of mass is stationary, the system must approach a rotating state (unless it is 1D van der Pol motion).

If the agents control their speeds, $|\dot{r}_k| = 1$:

- 1. $\ddot{r}_k = -(r_k R)$, a linear system. Averaging we get $\ddot{R} = 0$.
- The center of mass moves at constant velocity (or it is stationary).
- 3. If the center of mass is stationary, the system must approach a rotating state (unless it is 1D van der Pol motion).
- 4. If the center of mass moves with constant velocity, the system must approach a translating state.

6. New Patterns: $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - (r_k - R)$

7. Limit Patterns, Absent Symmetries or Uniform Distribution

Rotating State Translating State Mixed State

We work with *general* configurations of agents (no assumption of symmetry, or of uniform distribution), meaning that converting to a continuous PDE model is impossible.

Invariance under *rigid* translations and rotations: if $(r_1, \ldots r_n)$ is a solution, given any translation vector R_0 in \mathbb{R}^2 and any rotation angle θ_0 in $[0, 2\pi]$ then $(R_0 + e^{i\theta_0}r_1, R_0 + e^{i\theta_0}r_2, \ldots R_0 + e^{i\theta_0}r_n)$ is also a solution.

8. Dynamics Near Rotating States: $\ddot{r}_k = (1 - |\dot{r}_k|^2)\dot{r}_k - (r_k - R)$

• Rotating State to start from:

$$r_k = e^{i\theta_{k,0}}e^{it}$$

$$R_0 = \frac{1}{n} \sum_{k=1}^n e^{i\theta_{k,0}} = 0.$$

- Perturb.
- Use a rotating frame.

• Substitution (nearby):

$$r_k = e^{it} e^{i\theta_{k,0}} \big[a_k(t) + ib_k(t) \big]$$

- 4*n* unknowns: $a_k, b_k, \dot{a}_k, \dot{b}_k$.
- Rotating state/ fixed point:

$$a_k = 1, b_k = 0, \dot{a}_k = 0, \dot{b}_k = 0$$

$$J = \begin{cases} \frac{\partial a}{\partial b} & \frac{\partial q}{\partial q} & \frac{\partial p}{\partial p} \\ & O_n & O_n & I_n & O_n \\ & O_n & O_n & O_n & I_n \\ & C & -S & O_n & 2I_n \\ & \partial c & S - 2I & C & -2I_n & -2I_n \end{cases}$$
$$S = \left\{ \frac{1}{n} \sin(\theta_{m,0} - \theta_{k,0}) \right\}_{k,m=1}^n, \quad C = \left\{ \frac{1}{n} \cos(\theta_{m,0} - \theta_{k,0}) \right\}_{k,m=1}^n.$$
Two major issues:

- n (or n+1) directions are neutral directions; the other 3n are stable.
- the rotating states are not isolated (most theoretical tools require they be detangled).

Т

10. Dimension-Reduction: Study the Flow on the Cental Manifolds

Consider the system

$$egin{aligned} & x' = A_c x + f(x,y) \ & y' = B_s y + g(x,y), \ & ext{with} \ & (x,y) \in \mathbf{R}^c imes \mathbf{R}^s \end{aligned}$$

where all the eigenvalues of the matrix A_c have zero real parts and all the eigenvalues of the matrix B_s have negative real parts.

There exists a locally invariant manifold y = h(x) tangent to the neutral directions, such that the stability of the original system is equivalent to that of

$$x' = A_c x + f(x, h(x)).$$

Taylor approximations for h can be computed using:

$$\nabla h(x)[A_c x + f(x, h(x))] = B_s h(x) + g(x, h(x))$$

A 3-dimensional system with a with a 1-dimensional set of equilibrium points within a 2-dimensional center manifold:

$$\begin{aligned} \dot{x} &= xy - x^2 \sin x \\ \dot{y} &= -y^3 + y^2 z \\ \dot{z} &= -z + x(y - x \sin x)(\sin x + x \cos x) + x \sin x. \end{aligned}$$

Rewrite the last equation: $\frac{d(z - x \sin x)}{dt} = (-1)(z - x \sin x)$

- Fixed points: $\{(x, x \sin x, x \sin x), x \in \mathbb{R}\}.$
- The origin has Jacobian matrix $\operatorname{diag}\{0,0,-1\}.$
- The surface $\{(x, y, x \sin x)\}$ is the center manifold.
- The stable manifold is the z-axis.

Substitute the central manifold equation $z = x \sin x$ to reduce the system to two dimensions:

$$\dot{x} = x(y - x \sin x)$$

$$\dot{y} = -y^2(y - x \sin x)$$

- The origin is stable (but not asymptotically stable).
- The ω limit points are precisely the equilibrium points $(x, x \sin x)$.
- The only points in the upper half plane whose limit point is the origin are the points on the *y* axis.

13. Taylor Approximations Failing in the Presence of Non-Isolated Fixed Points; An Example, cont

In black: the fixed points of the system, i.e the curve $y = x \sin x$.

In red: the trajectories near the origin, converging to the fixed points of the system.

The origin is stable, but not asymptotically stable.

14. Taylor Approximations Failing in the Presence of Non-Isolated Fixed Points; An Example, cont

Approximate the central manifold flow using Taylor polynomials:

$$\dot{x} = x(y - x \sin x)$$

 $\dot{y} = -y^2(y - xT_{2k-1}(x))$

where $T_{2k-1}(x) =$ the Taylor polynomial of degree 2k - 1 for sin x. When k is even $xT_{2k-1}(x) \le x \sin x$, and the truncated flow is:

15. Taylor Approximations Failing: Splitting the Isoclines

Left: the true flow. Right: the truncated (Taylor) flow.

The coincidence between the isoclines $\dot{x} = 0$ and $\dot{y} = 0$ is lost.

The flow breaches the isocline $y = x \sin x$; there is transport across what was supposed to be a set of fixed points.

Once a trajectory enters the region between the isoclines y = xT(x) and $y = x \sin x$, it is trapped there, and it approaches (0, 0).

16. Challenges of having non-isolated fixed points: degeneracy

17. A New Approximation for the Central Manifold y = h(x)

Assume that the system is in standard form $\begin{aligned} x' &= A_c x + f(x,y) \\ y' &= B_s y + g(x,y), \end{aligned}$ where A_c has only eigenvalues $\lambda = 0$; B_s has Re $\lambda < 0$.

Assume the set *E* of equilibrium points is known and that there exists some curve $\gamma_E \subset E$.

Goal: approximate h(x) with arbitrary precision near the fixed points, so that the reduced-dimension flow $\dot{x} = A_c x + f(x, h(x))$ is consistent with the scales of the original problem.

Use traditional Taylor approximation in sectors away from E.

Use a contraction operator on the space of slow-growing functions to approximate h(x) and the vector field f(x, h(x)).

If it is possible to explicitly find $h_0(x)$ such that $B_sh_0(x) + g(x, h_0(x)) = 0$, start there. Otherwise begin with an approximate solution: a function h_0 such that $B_sh_0(x) + g(x, h_0(x)) = O(|x|dist(x, E)).$

Iterate, and keep track of the errors. After one step

$$|f(x, h(x)) - f(x, h_{approx}(x))| = \mathcal{O}(|x|^2 dist(x, E)).$$

Using $h_{approx} = \mathbf{x} \sin x + x(y - x \sin x)(\sin x + x \cos x)$ with error $|y - x \sin x|\mathcal{O}(|(x, y)|^2)$ we get a system with an equivalent flow:

$$\dot{y} = -y^2(y - x \sin x)[1 + \mathcal{O}(||(x, y)||)]$$

Theorem: Every rotating state solution is stable. Furthermore, every solution that starts near a rotating state converges to a nearby rotating state.

- Left/Right Group Dispersions
- Collapsing particles: very slow convergence (rate $\frac{1}{\sqrt{t}}$).

20. Rotating State Are Stable, but Very Slow Convergence Rate: $1/\sqrt{t}$

- If *n* is odd, the rate of convergence is exponential.
- If *n* is even, the rate of convergence is much slower: $\frac{1}{\sqrt{t}}$.

Theorem: (1) Dissipative in the (\dot{r}_k, \ddot{r}_k) -coordinates. (2) $r_k - R$ is ultimately bounded.

Theorem: (1) Dissipative in the (\dot{r}_k, \ddot{r}_k) -coordinates. (2) $r_k - R$ is ultimately bounded.

Consider

$$\ddot{r}_k = -p_k(|\dot{r}_k|)\dot{r}_k - \sum_m a_{k,m}r_m,$$

 $r_k \in \mathbb{R}^d$, where $A = \{a_{k,m}\}$ is a symmetric positive-semidefinite matrix, and $p_k(z)z \to \infty$ as $z \to \infty$.

For the parabolic potential system, $A = I - \frac{1}{n}\mathbb{I}$.

Theorem: (1) Dissipative in the (\dot{r}_k, \ddot{r}_k) -coordinates. (2) $r_k - R$ is ultimately bounded.

Consider

$$\ddot{r}_k = -p_k(|\dot{r}_k|)\dot{r}_k - \sum_m a_{k,m}r_m,$$

 $r_k \in \mathbb{R}^d$, where $A = \{a_{k,m}\}$ is a symmetric positive-semidefinite matrix, and $p_k(z)z \to \infty$ as $z \to \infty$.

For the parabolic potential system, $A = I - \frac{1}{n}\mathbb{I}$.

Theorem. Dissipative in the (\dot{r}_k, \ddot{r}_k) -coordinates.

22. Ultimate Boundedness

Theorem.

• Consider the system

$$\ddot{r}_k = -p_k(|\dot{r}_k|)\dot{r}_k - \sum_{m=1}^n a_{k,m}r_m,$$

where $A = \{a_{k,m}\}$ is symmetric and and positive semidefinite, $r_k \in \mathbb{R}^d$, and $p_k(r)r \to \infty$ as $r \to \infty$. $\exists C_1$ and C_2 such that for any solution r(t) we have that

$$|\dot{r}_k(t)| \leq C_1, \ |\ddot{r}_k(t)| \leq C_2$$

for all *t* large enough.

- If A is invertible, then ∃ C₃ such that |r_k(t) ≤ C₃| for all t large enough.
- If A is non-invertible and Q is the projection onto its kernel, then $|r_k(t) - \sum_{j=1}^n q_{k,j}r_j(t)| \le C_3$ for all t large enough.

C. Kolon, C. Medynets and I. Popovici, *On the stability of a multi-agent system satisfying a generalized Lienard equation*, arXiv:2105.11419

C. Medynets and I. P., *On Spatial Cohesiveness of Second Order* Self-Propelled Swarming Systems, arXiv:2110.06344v2

K. P. O'Keeffe, H. Hong, and S. Strogatz, *Oscillators that sync and swarm*, Nature Communications, 2017

M. Dorsogna, Y. Chuang, A. Bertozzi, and L. Chayes, Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse, Physical review letters, 2006

A. Haraux and M. A. Jendoubi *The convergence problem for dissipative autonomous systems*, Springer Briefs, 2015

J. Hale, Diffusive coupling, dissipation, and synchronization, 1997

Swarming Dynamics on Riemannian Manifolds, MIDN Cami Herman, 2022.

Dynamical Systems with Delayed Response, MIDN Rachel Manhertz, 2022.

Synchronization of Coupled Nonlinear Oscillators: The Asymmetry of East-West Jet Lag, MIDN Hunter McGavran, 2020.

Stability of Nonlinear Swarms on Surfaces, MIDN Carl Kolon, 2018

Stationary R: $\ddot{r} = (1 - |\dot{r}|^2)\dot{r} - r$. Stable Rotating State.

Substitution: $u = r \cdot r$, $v = \dot{r} \cdot \dot{r}$, $w = r \cdot \dot{r}$.

$$\begin{cases} \dot{u} = 2w \\ \dot{v} = 2v(1-v) - 2w \\ \dot{w} = w(1-v) - u + v \end{cases}$$

Rotating state corresponds to (u = 1, v = 1, w = 0)

• Eigenvalues:

 $\{-0.35 \pm 1.72i, -1.2956\}.$

- Invariant Surface: $uv - w^2 = 0$ (1-dim, $\dot{r}(0) \| \ddot{r}(0)$)
- Lyapunov Function: $V = u + v - \log(uv - w^2)$
- Full Derivative $\frac{dV}{dt} = -2(1-v)^2.$
- LaSalle's Invariance Principle: (u, v, w) converges to the rotating state).