Tumbling and Spinning of Anisotropic Flat Particles

Theresa B Oehmke, PhD UNH Postdoctoral Associate

BIRS Microplastic Workshop February 21, 2022

Berkeley 🛄 Engineering

Outline

Particle transport in turbulence is an open question

Turbulence is chaotic flow with universal properties

Turbulence is rarely homogeneous (translation invariant) or isotropic (rotation invariant)

The multiscale chaos of turbulence is superimposed on the geometry of the original flow and instability

Special laboratory equipment can make homogeneous, isotropic turbulence

Special laboratory equipment can make homogeneous, isotropic turbulence

1. Integral scale

• Largest eddy

1. Integral scale

- Largest eddy
- 2. Small scale
 - Passive tracers

- 1. Integral scale
 - Largest eddy
- 2. Small scale
 - Passive tracers
- 3. Taylor microscale
 - Difficult to model particles numerically

Turbulence makes these projects interesting and difficult

Particle Rotation

Neutrally buoyant flat particles in five different shapes and sizes were tested in the flow

Shape	Small d=5mm	Medium d=10mm	Large d=20mm
Triangle	\checkmark	\checkmark	\checkmark
Square		\checkmark	
Hexagon		\checkmark	

Twitter: @t_oehmke

Neutrally buoyant flat particles in five different shapes and sizes were tested in the flow

Shape	Small d=5mm	Medium d=10mm	Large d=20mm
Triangle	\checkmark	\checkmark	\checkmark
Square		\checkmark	
Hexagon		\checkmark	

3 cameras were used to capture orthogonal images while motors were rotated in alternating directions

3 cameras were used to capture orthogonal images while motors were rotated in alternating directions

3 cameras were used to capture orthogonal images while motors were rotated in alternating directions

After 3D reconstruction, we can project the particles back onto a 2D plane to test our results

Nearest neighbor figure adapted from A quantitative study of three-dimensional Lagrangian particle tracking algorithms by Ouellette, Xu, and Bodenschatz (2006) Twitter: @t_oehmke

Nearest neighbor figure adapted from A quantitative study of three-dimensional Lagrangian particle tracking algorithms by Ouellette, Xu, and Bodenschatz (2006) Twitter: @t_oehmke

Nearest neighbor figure adapted from A quantitative study of three-dimensional Lagrangian particle tracking algorithms by Ouellette, Xu, and Bodenschatz (2006) Twitter: @t_oehmke

Nearest neighbor figure adapted from A quantitative study of three-dimensional Lagrangian particle tracking algorithms by Ouellette, Xu, and Bodenschatz (2006)

reference particle, known location and orientation

Twitter: @t_oehmke

reference particle, known location and orientation

reference particle, known location and orientation

Twitter: @t_oehmke

reference particle, known location and orientation

reference particle, known location and orientation

particle of interest

$$R = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$R = R_T R_S$$

Where R is the rotation matrix And R_T is the tumbling matrix And R_S is the spinning matrix

Twitter: @t_oehmke

Trajectories were filtered to remove measurement and experimental noise

Trajectories were filtered to remove measurement and experimental noise

Trajectories were filtered to remove measurement and experimental noise

Particles do not show a preferential orientation

Particles do not show a preferential orientation

Particles do not show a preferential orientation

Perspectives: size matters more than shape

- The particles do not show a preferential orientation
- Particles follow a -4/3 power law scaling, meaning these particles are rotated and aligned by eddies of their size
 - This means that size matters more than shape
- These findings agree with results for solid, 3D particles as well

Questions to answer

Twitter: @t_oehmke

Particle transport in turbulence impacts many aspects of science

- Particle transport prediction
 - Where and how do transported particles eventually settle out of the flow?

Particle transport in turbulence impacts many aspects of science

- Particle transport prediction
 - Where and how do transported particles eventually settle out of the flow?
- Intermittency
 - What is the role of turbulence intermittency on particle kinematics?

Acknowledgements

Professor Evan Variano

Dr Gautier Verhille

Chateaubriand

Fellowship Program

Science, Technology, Engineering, Math & Health

Questions?

Parsa and Voth 2014

rotation rate for tracers : $\langle \dot{p}_i \dot{p}_i \rangle \sim \tau_k^{-2}$

rotation rate for scale $l:\langle \dot{p}_i\dot{p}_i\rangle \sim \tau_l^{-2}$

define τ_l in the inertial range : $\tau_l = l/u_l = l/(l\langle\epsilon\rangle)^{1/3}$

rotation rate for scale $l:\langle \dot{p}_i\dot{p}_i\rangle \sim l^{-4/3}$