Generalised geometry, consistent truncations and the Kaluza-Klein spectrum of string compactifications

Emanuel Malek

Geometry and Swampland 25th January 2022

with Bobey, Galli, Giambrone, Guarino, Josse, Nicolai, Petrini, Robinson, Samtleben, Sterckx, Trigiante, Vall Camell, van Muiden, Waldram

Consistent truncations

Lower-dimensional theory for compactifications without scale separation?

Most (all? [Lüst, Palti, Vafa '19]) AdS vacua of string theory

FIG. 2. Mass spectrum of scalars.

Consistent truncation:

All solutions of lower-dim. theory ightarrow solutions of 10-d/11-d SUGRA

Connection to Swampland

If no AdS vacua have scale separation, only theories with AdS that arise from consistent truncations have higher-dim origin

FIG. 2. Mass spectrum of scalars.

Consistent truncation

Non-linear embedding of lower-dimensional theory into 10-/11-d supergravity

- ▶ All solutions of lower-d SUGRA \rightarrow solutions of 10-/11-d SUGRA
- Non-linearity: highly non-trivial!
- Symmetry arguments crucial

Consistent truncation on group manifold

Consistent truncation on group manifold

Consistent truncations beyond group manifolds

[de Wit, Nicolai '82]

Generalised geometry and consistent truncations

Consistent truncations with less SUSY

Generalised $G \subset E_{d(d)}$ structure "Singlet intrinsic torsion"

[EM '17], [Cassani, Josse, Petrini, Waldram '19] Set of well-defined tensors (stabilised by *G*):

$$\left\{ \mathcal{J}_{u}{}^{M},\,\ldots
ight\}$$

Closed under derivative:

$$\mathcal{L}_{\mathcal{J}_{u}}\mathcal{J}_{v}{}^{M}=f_{uv}{}^{w}\mathcal{J}_{w}{}^{M}$$

Constraints on matter multiplets, gaugings!

Swampland of gSUGRA?

Swampland vs Landscape & consistent truncations

General features of theories from consistent truncations

• Scalar manifold \rightarrow symmetric space

$$\blacktriangleright M_{\text{scalar}} = \frac{\text{Com}(G, E_{d(d)})}{\text{Com}(G, K_{d(d)})}$$

• Compact gauging \longleftrightarrow Killing vectors on compactification

Swampland vs Landscape & consistent truncations

General features of theories from consistent truncations

• Scalar manifold \rightarrow symmetric space

$$\blacktriangleright M_{\text{scalar}} = \frac{\text{Com}(G, E_{d(d)})}{\text{Com}(G, K_{d(d)})}$$

▶ Compact gauging ↔→ Killing vectors on compactification

Example

▶ $\frac{1}{2}$ -max theories in $D \ge 4$ dimensions, G = Spin(10 - D - N) $\implies N \le 10 - D$ vector multiplets possible [EM '17], [Cassani, Josse, Petrini, Waldram '19]

Swampland vs Landscape & consistent truncations

General features of theories from consistent truncations

• Scalar manifold \rightarrow symmetric space

$$\blacktriangleright M_{\text{scalar}} = \frac{\text{Com}(G, E_{d(d)})}{\text{Com}(G, K_{d(d)})}$$

 $\blacktriangleright \text{ Compact gauging} \longleftrightarrow \text{ Killing vectors on compactification}$

Example

▶
$$\frac{1}{2}$$
-max theories in $D \ge 4$ dimensions, $G = \text{Spin}(10 - D - N)$
 $\implies N \le 10 - D$ vector multiplets possible
[EM '17], [Cassani, Josse, Petrini, Waldram '19]

▶
$$D = 5 \ \mathcal{N} = 2 \ \text{SUGRA}, \ G \subset \text{USp}(6)$$

 $\implies n_{\text{VT}} \leq 14 \text{ vector-tensor multiplets}, \ n_{\text{H}} \leq 2 \text{ hypermultiplets}$
[Josse, EM, Petrini, Waldram '21]

Swampland of AdS gSUGRA

More constraints for gSUGRA with max SUSY AdS, e.g.

▶ 5-d $\mathcal{N} = 4$ theories: $\leq 10 - D = 5$ vector multiplets

Swampland of AdS gSUGRA

More constraints for gSUGRA with max SUSY AdS, e.g.

► 5-d N = 4 theories: ≤ 3 vector multiplets, handful of gaugings No "exotic" RG flows [Bobev, Cassani, Triendl '18]

[EM, Vall Camell '20]

Swampland of AdS gSUGRA

More constraints for gSUGRA with max SUSY AdS, e.g.

 5-d N = 4 theories: < 3 vector multiplets, handful of gaugings No "exotic" RG flows [Bobev, Cassani, Triendl '18]

[EM, Vall Camell '20]

▶ 3-d $\mathcal{N} = 16$ theories: compact gauging \subset SO(9) c.f. gaugings $E_{8(8)}$, SO(8) × SO(8), ...

[Galli, EM - to appear]

Relation to Swampland conjectures?

FIG. 2. Mass spectrum of scalars.

Consistent truncation:

- Lower-dimensional theory
- Compute <u>subset</u> of masses for any vacuum!

-02

Consistent truncation:

- Lower-dimensional theory
- Compute <u>subset</u> of masses for any vacuum!

FIG. 2. Mass spectrum of scalars.

Consistent truncation:

- Lower-dimensional theory
- Compute <u>subset</u> of masses for any vacuum!

Traditional Kaluza-Klein spectroscopy

Traditionally:

- Spin-2 fields [Bachas, Estes '11]
- $M_{int} = \frac{G}{H}$ [Salam, Strathdee '81] \checkmark

[EM, Samtleben '20]:

- Full spectrum for vacua of maximal gSUGRA
- Compactifications with few or no remaining (super-)symmetries!

KK spectroscopy strategy

Traditional KK Ansatz: $\phi(x, y) = \phi^{\Sigma}(x) \underbrace{\mathcal{Y}_{\Sigma}(y)}_{\text{harmonics}}$

KK spectroscopy strategy

Traditional KK Ansatz: $\phi(x, y) = \phi^{\Sigma}(x) \underbrace{\mathcal{Y}_{\Sigma}(y)}_{\text{harmonics}}$

First at max symmetric point:

KK spectroscopy strategy

Traditional KK Ansatz: $\phi(x, y) = \phi^{\Sigma}(x) \underbrace{\mathcal{Y}_{\Sigma}(y)}_{\text{harmonics}}$

GG KK Ansatz: Consistent truncation \otimes harmonics non-linear linear

Then at less symmetric point:

" $\mathcal{N}=8$ supermultiplet contains all SUGRA fields"

 $U_A{}^M \in E_{d(d)}$ give basis for all fields

Only need scalar harmonics: \mathcal{Y}_Σ

 $\mathcal{M}_{MN}(x, Y) \in E_{7(7)}/\mathrm{SU}(8)$

Only need scalar harmonics: \mathcal{Y}_Σ

 $\mathcal{M}_{MN}(x,Y) = (\delta_{AB} + j_{AB}(x))(U^{-1})_M{}^A(Y)(U^{-1})_N{}^B(Y)$ $j_{AB} \in \mathfrak{e}_{7(7)} \ominus \mathfrak{su}(8)$

 $U_A^M \in E_{d(d)}$ give basis for all fields

Only need scalar harmonics: \mathcal{Y}_Σ

 $\mathcal{M}_{MN}(x,Y) = (\delta_{AB} + j_{AB}{}^{\Sigma}(x)\mathcal{Y}_{\Sigma})(U^{-1})_{M}{}^{A}(Y)(U^{-1})_{N}{}^{B}(Y)$ $j_{AB}{}^{\Sigma} \in \mathfrak{e}_{7(7)} \ominus \mathfrak{su}(8)$

Only need scalar harmonics: \mathcal{Y}_Σ

$$\mathcal{M}_{MN}(x,Y) = (\delta_{AB} + j_{AB}{}^{\Sigma}(x)\mathcal{Y}_{\Sigma})(U^{-1})_{M}{}^{A}(Y)(U^{-1})_{N}{}^{B}(Y)$$
$$j_{AB}{}^{\Sigma} \in \mathfrak{e}_{7(7)} \ominus \mathfrak{su}(8)$$

KK Ansatz = consistent truncation \otimes scalar harmonics

 $U_A{}^M \in E_{d(d)}$ give basis for all fields Only need scalar harmonics: \mathcal{Y}_{Σ} $\mathcal{M}_{MN}(x,Y) = (\delta_{AB} + j_{AB}{}^{\Sigma}(x)\mathcal{Y}_{\Sigma})(U^{-1})_{M}{}^{A}(Y)(U^{-1})_{N}{}^{B}(Y)$ $j_{AB}{}^{\Sigma} \in \mathfrak{e}_{7(7)} \ominus \mathfrak{su}(8)$

Immediate mass diagonalisation for any vacuum!

 Lower-dim info: *L*_{U_A}U_B = X_{AB}^CU_C,

 Higher-dim info: *L*_{U_A}Y_Σ = L_{K_A}Y_Σ = T_{AΣ}^ΩY_Ω.

Mass matrix:

$$\mathbb{M}^{(\mathrm{scalar})}_{I\Sigma,J\Omega} = \mathbb{M}^{(0)}_{IJ}\,\delta_{\Sigma\Omega} + \delta_{IJ}\,\mathbb{M}^{(\mathrm{spin}-2)}_{\Sigma\Omega} + \mathcal{N}_{IJ}{}^{\mathcal{C}}\mathcal{T}_{\mathcal{C},\Omega\Sigma}$$

Mass matrix:

$$\mathbb{M}^{(\mathrm{scalar})}_{I\Sigma,J\Omega} = \mathbb{M}^{(0)}_{IJ}\,\delta_{\Sigma\Omega} + \delta_{IJ}\,\mathbb{M}^{(\mathrm{spin}-2)}_{\Sigma\Omega} + \mathcal{N}_{IJ}{}^{\mathcal{C}}\mathcal{T}_{\mathcal{C},\Omega\Sigma}$$

• Lower-dim SUGRA mass matrix $\mathbb{M}^{(0)}_{IJ} \sim X^2$

Mass matrix:

$$\mathbb{M}^{(\mathrm{scalar})}_{I\Sigma,J\Omega} = \mathbb{M}^{(0)}_{IJ}\,\delta_{\Sigma\Omega} + \delta_{IJ}\,\mathbb{M}^{(\mathrm{spin}-2)}_{\Sigma\Omega} + \mathcal{N}_{IJ}{}^{\mathcal{C}}\mathcal{T}_{\mathcal{C},\Omega\Sigma}$$

Lower-dim SUGRA mass matrix M⁽⁰⁾_{IJ} ~ X²
 Spin-2 mass matrix M^(spin-2)_{ΣΩ} = T_{A,ΣΛ}T_{A,ΛΩ}

Mass matrix:

$$\mathbb{M}^{(\mathrm{scalar})}_{I\Sigma,J\Omega} = \mathbb{M}^{(0)}_{IJ}\,\delta_{\Sigma\Omega} + \delta_{IJ}\,\mathbb{M}^{(\mathrm{spin}-2)}_{\Sigma\Omega} + \mathcal{N}_{IJ}{}^{\mathcal{C}}\mathcal{T}_{\mathcal{C},\Omega\Sigma}$$

Lower-dim SUGRA mass matrix M⁽⁰⁾_{IJ} ~ X²
 Spin-2 mass matrix M^(spin-2)_{ΣΩ} = T_{A,ΣΛ}T_{A,ΛΩ}

Lower-dim info: $\mathcal{L}_{U_A} U_B = X_{AB}{}^C U_C,$ Higher-dim info: $\mathcal{L}_{U_{A}}\mathcal{Y}_{\Sigma} = \mathcal{L}_{K_{A}}\mathcal{Y}_{\Sigma} = \mathcal{T}_{A\Sigma}{}^{\Omega}\mathcal{Y}_{\Omega}.$

Mass matrix:

$$\mathbb{M}^{(\mathrm{scalar})}_{I\Sigma,J\Omega} = \mathbb{M}^{(0)}_{IJ}\,\delta_{\Sigma\Omega} + \delta_{IJ}\,\mathbb{M}^{(\mathrm{spin}-2)}_{\Sigma\Omega} + \mathcal{N}_{IJ}{}^{\mathcal{C}}\mathcal{T}_{\mathcal{C},\Omega\Sigma}$$

- Lower-dim SUGRA mass matrix M⁽⁰⁾_{IJ} ~ X²
 Spin-2 mass matrix M^(spin-2)_{ΣΩ} = T_{A,ΣΛ}T_{A,ΛΩ}

Key object:

$$\mathcal{N}_{IJ}{}^C \sim X$$

KK spectroscopy at less symmetric point

KK spectroscopy at less symmetric point

Use same harmonics as for max. symmetric point

$\mathcal{N}=2~\text{AdS}_4~\text{family}$

 $[\mathsf{SO}(6) \times \mathsf{SO}(1,1)] \ltimes \mathbb{R}^{12}$ supergravity

2 moduli $(\varphi, \delta) \in \mathbb{R}^2_{\geq 0}$ in 4-d theory $\Leftrightarrow \mathcal{N} = 2$ conformal manifold [Guarino, Sterck, Trigiante '2020]

Expected to be compact e.g. [Perlmutter, Rasteli, Vafa, Valenzuela, '20]

Global properties of the $\mathcal{N} = 2$ conformal manifold AdS₄ × S^5 × S^1 KK spectrum along φ direction

[Giambrone, EM, Samtleben, Trigiante '21]

$$arphi \sim arphi + rac{2\pi}{T}$$
, ${\cal T}$ radius of S^1

Space invaders

Higher KK modes become massless when $\varphi = \frac{p\pi}{T}$, $p \in \mathbb{Z}$ [Giambrone, EM, Samtleben, Trigiante '21]

Spectrum identical for $\varphi = \frac{2 p \pi}{T}$, $p \in \mathbb{Z}$ Spectrum differs for $\varphi = \frac{(2 p+1) \pi}{T}$, $p \in \mathbb{Z}$ Compactness of $\mathcal{N} = 2$ moduli space

[Giambrone, EM, Samtleben, Trigiante '21]

 $arphi \in \mathbb{R}^+$ is a 4-d artefact $arphi \in [0, rac{2\pi}{T})$ in 10 dimensions

 $\varphi \to \mathbb{C}$ -structure modulus on $S^5 \times S^1$ $\varphi \to$ locally coordinate transformation

- Only one non-SUSY vacuum that is stable in 4-d! [Fischbacher, Pilch, Warner '10], [Comsa, Firsching, Fischbacher '19]
- Non-SUSY SO(3) \times SO(3) AdS₄ vacuum [Warner '83]

- Only one non-SUSY vacuum that is stable in 4-d! [Fischbacher, Pilch, Warner '10], [Comsa, Firsching, Fischbacher '19]
- Non-SUSY SO(3) \times SO(3) AdS₄ vacuum [Warner '83]

Perturbative stability?

4-d "zero-mode" stability enough for 11-d perturbative stability?

FIG. 2. Mass spectrum of scalars.

Modes $\ell \leq 1$: still stable!

[EM, Nicolai, Samtleben '20]

Modes $\ell \leq 2$: tachyons!

[EM, Nicolai, Samtleben '20]

Kaluza-Klein instability

Higher KK modes are tachyonic! [EM, Nicolai, Samtleben '20]

- ▶ Non-SUSY SO(3) × SO(3) AdS₄ [Warner '83] is perturbatively unstable
- "Zero-mode" stability does not guarantee perturbative stability in higher dimensions
- Related to brane-jet instability [Bena, Pilch, Warner '20]?
- Examples of perturbatively stable non-SUSY AdS₄ vacua in 10-d [Guarino, EM, Samtleben '20]
 [Giambrone, Guarino, EM, Samtleben, Sterckx, Trigiante '21]

Conclusions

GG: construct consistent truncations & compute full KK spectrum

- Scale separation: Many gSUGRA in "Swampland"?
- ▶ Higher KK modes crucial for physics, e.g. compactness, stability
- ► AdS/CFT: KK spectrum ⇔ Anomalous dimensions [Bobev, EM, Robinson, Samtleben, van Muiden '20]

Thank you!