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Quick Trip through Group Actions and Cohomology

We begin by recalling basic notions about group actions and coho-
mology of groups. Unless stated otherwise our groups G will be
assumed to be finite.

Recall that there exists a principal G-bundle EG → BG where EG is
a contractible space with a free action of G , which we can assume
to be a G–CW complex. The orbit space BG = EG/G is called the
classifying space of G given its role in the classification of principal
G–bundles; from the point of view of homotopy theory it is a K (G , 1)
i.e. a connected space whose only non trivial homotopy group is
π1(BG ) = G . Using the fact that C∗(EG ) is a free resolution of Z
over ZG we can see that for any ZG–module M,

H∗(BG ,M) ∼= Ext∗ZG (Z,M) = H∗(G ,M),

the cohomology of G with coefficients in M.
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One of the nicer properties of finite group cohomology is that it
can be determined locally. Let Sp(G ) denote the lattice of all p–
subgroups of G , which admits a natural action of G by conjugation.
Then we have a classical computation:

Theorem (Cartan-Eilenberg)

The restriction maps H∗(G ,Fp)→ H∗(P,Fp) where P is a
p–subgroup of G , induce an isomorphism

H∗(G ,Fp) ∼= limP∈Sp(G) H
∗(P,Fp)

This limit term can be described as sequences of cohomology classes
compatible with respect to maps induced by inclusion and conjuga-
tion. More explicitly, we have that H∗(G ,Fp)→ H∗(Sylp(G ),Fp) is
injective, with image determined by the stability conditions arising
from conjugation and inclusion.
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Given a G–CW complex X we can construct the homotopy orbit
space (also known as the Borel construction)

EG ×G X = EG × X/G

where G acts diagonally on EG × X . We can then define the equi-
variant or Borel cohomology of X as

H∗G (X ) = H∗(EG ×G X ,Z) = Ext∗ZG (Z,C ∗(X ))

where C ∗(X ) denotes the cellular G–cochain complex of X . For an
algebraist this is the G–hypercohomology of C ∗(X ). We will assume
that X is a finite dimensional G–CW complex, with finitely generated
homology.

Example: If G acts smoothly on a compact manifold M, then this
space has a compatible finite G–CW complex structure.
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The first projection gives rise to a fibration

X → EG ×G X → BG

yielding a Serre spectral sequence converging to H∗G (X ) with E2-
term Ep,q

2 = Hp(G ,Hq(X ,Z)). The second projection map

EG ×G X → X/G

gives rise to a Leray spectral sequence with Ep,q
1 = Hq(G ,Cp(X ))

also converging to H∗G (X ) (this is related to Bredon cohomology).
Note that if G acts freely on X , then EG×GX ' X/G . Algebraically
this corresponds to C ∗(X ) being a free ZG chain complex, and
the equivariant cohomology will be isomorphic to the cohomology
of the invariants C ∗(X )G . More generally, C ∗(X ) is a complex of
permutation modules, so the E1–term can be computed using the
cohomology of the isotropy subgroups.
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Using the fact that the homology of X is finitely generated, the
first spectral sequence shows that H∗G (X ) is a finitely generated
module over H∗(BG ). Using a unitary representation of G we obtain
a fibration with compact fibre

U((n)/G → BG → BU(n)

which can be used to show that H∗(BG ) is a finitely generated
module over H∗(BU(n)) ∼= Z[c1, . . . , cn] where c1, . . . , cn denote
the Chern classes, in even degrees. Thus from the point of view of
commutative algebra the objects aren’t all bad. If pG (t) denotes the
Poincaré series for H∗(EG ×G X ,Fp), then as shown by Venkov,

pG (t) =
∑
i≥0

dimFp H i (EG ×G X ,Fp) =
r(t)∏n

i=1(1− t2i )

where r(t) ∈ Z[t]. The order of the pole at t = 1 is the Krull
Dimension of the equivariant cohomology ring.
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The main results of Smith theory can be recovered using the coho-
mological methods first introduced by Borel. For a finite p–group P,
we have:

I If P acts on a space X with the mod p homology of a point,
then XP 6= ∅ and it has the mod p homology of a point.

I If X has the mod p homology of a sphere then XP also has
the mod p homology of a sphere.

The basic ingredient here is to use a central subgroup of order p and
apply the fact that for P = Z/pZ, we have isomorphisms

H i (EP ×P X ,Fp) ∼= H i (BP × XP ,Fp)

for i > dim X . Also key to this is the cohomology of the group of
prime order:

H∗(Z/pZ,Z) = H∗(L∞p ,Z) ∼= Z[u]/(pu) where deg u =2.
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In fact elementary abelian p–groups V play a key role in transforma-
tion groups. Their cohomology mod p can be computed using the
Kunneth formula. Let V = (Z/pZ)m, then for p = 2,

H∗(V ,F2) ∼= F2[x1, . . . , xm] where deg xi = 1.

For p odd

H∗(V ,Fp) ∼= Λ∗(e1, . . . , em)⊗ Fp[y1, . . . , ym]

where deg ei=1, deg yi = 2.

Theorem (Localization Theorem)

For V = (Z/pZ)m there exists a class z ∈ H∗(BV ,Fp) such that
the inclusion XV → X induces an isomorphism

H∗(EV ×V X ,Fp) ∼= H∗(BV × XV ,Fp)

of H∗(BV ,Fp)–modules after inverting the powers of z .
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Note that there are important elaborations on this cohomological
approach using homotopy fixed-points MapV (EV ,X ), due to Lannes
and Dwyer-Wilkerson.

Another classical result due to Quillen is that for any finite group
G , the Krull dimension of H∗(EG ×G X ,Fp) is equal to r(X ), the
rank of the largest elementary abelian p–subgroup that fixes a point
in X . In terms of group cohomology we have

Theorem (Quillen-Venkov)

The restriction maps H∗(G ,Fp)→ H∗(V ,Fp) induce an
F–isomorphism

H∗(G ,Fp)→ limV∈Ap(G) H
∗(V ,Fp)

Example: If Σn denotes the symmetric group then in fact we have

H∗(Σn,F2) ∼= limV∈A2(G) H
∗(V ,F2)
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Recall that a complete resolution F̂∗ can be obtained by splicing a
free resolution of Z with its dual. Following Swan, we can define the
G–hypercohomology of C ∗(X ) using a complete resolution, yielding
the equivariant Tate cohomology of X , denoted Ĥ∗G (X ). We list
some properties that we will use later:

I If the G–action on X is free, then Ĥ∗G (X ) ≡ 0, i.e. the
cohomology of the orbit space no longer plays a role.

I Multiplication by |G | always annihilates Ĥ∗G (X ) i.e. it has a
finite exponent that divides |G |.

I For i > dim X , Ĥ i
G (X ) ∼= H i (EG ×G X ,Z).

I As before there are two spectral sequences converging to
Ĥ∗G (X ), obtained from the two filtrations of the double

complex HomZG (F̂∗,C
∗(X )):

Ep,q
2 = Ĥp(G ,Hq(X )) and Ep,q

1 = Ĥq(G ,Cp(X )).
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Restrictions on Free Group Actions

We now focus on restrictions for free group actions.

Question: Given a finite complex X , can we describe the finite
groups that act freely on X?

One basic restriction is given by the Euler characteristic: if G acts
freely on X , then |G | must divide χ(X ). So for example it’s easy
to see that the only non-trivial group acting freely on an even-
dimensional sphere is Z/2Z. For odd dimensional spheres the si-
tuation is much more complicated.

Theorem (Smith)

If G acts freely on X = Sn then it cannot contain Z/pZ×Z/pZ as
a subgroup for any prime p.

We observe that by the Lefschetz fixed-point theorem, the action
must be trivial in homology if n is odd.
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Now for any subgroup Q ⊂ G , Ĥ∗Q(X ) ≡ 0 so the differential induces
an isomorphism for all p:

dn+1 : Ĥp(Q,Hn(X ,Z)) = Ĥp(Q,Z)→ Ĥp+n+1(Q,Z).

In particular this implies that Z/pZ × Z/pZ cannot be a subgroup
of G , as its cohomology contains a polynomial algebra on two ge-
nerators and so cannot have this periodic behaviour.

This condition on the cohomology of a group is called periodicity,
and what this result shows is that in fact G has periodic cohomology
of period dividing n+1. Later Artin and Tate showed that this condi-
tion is in fact equivalent to every abelian subgroup of G being cyclic.
Such groups have been classified, in particular characterized by the
condition that their p–Sylow subgroups are all cyclic or generalized
quaternion.
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We now describe a very general restriction on free group actions:

Theorem (Browder)

Let X be a connected free G–CW complex. Then |G | divides the
product

∏dimX
r=1 exp Ĥ−r−1(G ,H r (X ,Z)).

The proof of this result is very simple. We will use the spectral se-
quence with E2–term converging to Ĥ∗G (X ) ≡ 0, which has Ep,q

2 =

Ĥp(G ,Hq(X ,Z)). Consider the term E 0,0
2 = Ĥ0(G ,Z) ∼= Z/|G |Z,

which must be killed in the spectral sequence. The differentials in-
volved here are

dr+1 : E−r−1,rr+1 → E 0,0
r+1

The terms are subquotients of the groups Ĥ−r−1(G ,H r (X ,Z)) from
which we obtain the desired result.
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Corollary

If G acts trivially on the cohomology of X , then |G | divides∏dimX
r=1 exp Ĥ−r−1(G ,Z).

This relationship tells us that a certain amount of cohomological
torsion must be present to allow for a free action on a connected
complex.

We now specialize to the case when V is a p–elementary abelian
group. In this case note that for k 6= 0, p ·Ĥk(V ,Z) = 0. Recall that
if V = (Z/pZ)k then k is referred to as the rank of V . For a finite
connected complex X let dp(X ) = #{i > 0 | H i (X ,Z(p)) 6= 0}.

Proposition

If V acts freely and homologically trivially on a connected finite
complex X , then rank(V ) ≤ dp(X ).

Indeed, the previous result implies that prank(V ) must divide pdp(X ).
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Some of these results extend to actions which aren’t free by applying
cohomological varieties and ideas due to J. Carlson. A key result is
the following

Theorem (AA)

Let X denote a connected G–CW complex. Let r(X ) denote the
maximal rank among all isotropy subgroups of the action. Then
there exist cohomology classes ζ1, . . . , ζr(X ) ∈ H∗(G ,Z) such that

exp Ĥ∗G (X )|
∏r(X )

i=1 exp ζi .

This result says that the torsion in Ĥ∗G (X ) has to be accounted for
by at most r(X ) classes in H∗(G ,Z). For elementary abelian groups
this yields

Corollary

If V is a p–elementary abelian group acting on a finite connected
complex X , then the exponent of Ĥ∗V (X ) is equal to the order of
an isotropy subgroup Vx of maximal rank.
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We can use this approach to obtain analogous restrictions for non–
free actions of elementary abelian p–groups. Now the top exponent
in Ĥ0(V ) ∼= Z/|V |Z has to be reduced by at least [V : Vx ] in the
spectral sequence, where Vx ⊂ V is of maximal rank.

Proposition

Let X be a connected V –CW complex. Then [V : Vx ] divides the
product

∏dimX
r=1 exp Ĥ−r−1(V ,H r (X ,Z)), where Vx is an isotropy

subgroup of maximal rank.

Corollary

If V acts freely and homologically trivially on a connected finite
complex X , then rank(V )− rank(Vx) ≤ dp(X ) where Vx ⊂ V is
an isotropy subgroup of maximal rank.
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Products of Spheres

We now consider the celebrated case of a product of spheres.

Conjecture

If an elementary abelian p–group V acts freely on a product of
spheres X = Sn1 × · · · × Snk , then rank(V ) ≤ k .

This question has been considered by several authors. We focus on
the equidimensional case.

Theorem (Carlsson)

If V acts freely and homologically trivially on X = (Sn)k , then
rank(V ) ≤ k

For X = (Sn)k , dp(X ) = k , whence the result follows. This proof
is very different from Carlsson’s. The non-homogically trivial case
requires some representation theory.
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Theorem (Adem-Browder)

If p is odd and V acts freely on X = (Sn)k , then

rank(V ) ≤ dimFpH
n(X ,Fp)G +

1

p − 2
[k − dimFpH

n(X ,Fp)G ]

For p=2, n 6= 1, 3, 7 we used a modified approach to establish the
bound, applying the fact that for those values of n, Hn(X ,F2) is a
permutation module by Hopf invariant one considerations. The case
n = 1 was settled by Yalcin using Bieberbach groups. Therefore we
have

Theorem
Let V be an elementary abelian p–group acting freely on (Sn)k .
Then rank(V ) ≤ k if p is odd, or if p = 2 and k 6= 3, 7.
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More generally the case of actions on equidimensional spheres that
permute the basis in homology gives rise to a stronger bound.

Theorem (Adem-Benson)

Let V be an elementary abelian p-group of rank r acting freely on
a finite dimensional CW complex X ' (Sn)t in such a way that the
basis u1, u2, . . . , ut of Hn(X ,Fp) corresponding to the t spheres is
permuted by V . Then the number of orbits of V on {u1, . . . , ut} is
at least r, i.e. rank(V ) ≤ dim Hn(X ,Fp)V .

More recently Hanke settled the non-equidimensional case provided
p is large relative to dim(X). He will tell us about this in his lectures.
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It is conjectured that free actions of elementary abelian groups on
finite complexes must be supported by large enough mod p coho-
mology. Specifically we have the following much more general con-
jecture:

Conjecture (Carlsson)

If V is a p–elementary abelian group acting freely on a finite
connected complex X , then

2rank(V ) ≤
dimX∑
i=0

dimFpHi (X ,Fp)

This has been settled for p = 2 and k ≤ 4. Of course an analogous
algebraic question can be asked for free FpV –chain complexes, an
interesting topic in its own right...
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We can apply the exponent techniques from non-free actions to
obtain

Corollary

If V acts on X = (Sn)k , then rank(V )−max{rank(Vx)} ≤ k
provided p is odd or p = 2 and n 6= 3, 7.

Conjecture

If X is a finite connected V –CW complex with a maximal rank
isotropy subgroup Vx , then

2[rank(V )−rank(Vx )] ≤
dimX∑
i=0

dimFpHi (X ,Fp)

An interesting approach is to take an extension K of the field Fp

for which there will exist a shifted subgroup of order [V : Vx ] acting
freely on C∗(X )⊗ K .
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Some background book/survey references

Places where you can find the references to the original papers.

I Cohomology of Finite Groups (AA & R.J. Milgram),
Springer-Verlag Grundlehren 309 (2nd Ed.2004).

I Topics in transformation groups (AA & J.F. Davis).
Handbook of geometric topology, pp. 1–54, North-Holland,
Amsterdam (2002).

I Lectures on the Cohomology of Finite Groups (AA),
Contemporary Mathematics 436 (2007), 317-334.
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