Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

Finite Group Actions, Cohomology of Groups and Rank Conjectures - Part II

Alejandro Adem

University of British Columbia

September 2022

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

Periodic Cohomology

Homotopy Group Actions

Rank Two Groups

Higher Rank Actions

Periodic Cohomology ●○○○○	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

Periodic Cohomology

In Lecture I we saw that if a finite group G acts freely on a sphere, then all of its abelian subgroups are cyclic. What this means is that G does not contain any subgroup of the form $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$, p prime.

Examples include:

• $\mathbb{Z}/n\mathbb{Z}$ acts freely on any \mathbb{S}^{2k+1}

• Q_8 the quaternion group of order eight, is a subgroup of \mathbb{S}^3 and so acts freely on it.

• More generally, if V is an orthogonal/unitary G-representation, then G acts on S(V). According to Wolf, G acts freely on some S(V) if and only if (i) every subgroup of order pq (where p, q are prime) in G is cyclic and (ii) G does not contain $SL_2(\mathbb{F}_p)$ with p > 5 as a subgroup.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

We have a geometric restriction

Theorem (Milnor, 1957)

A finite group G acting freely on a sphere must have every element of order two in its centre.

This means for example that the dihedral groups D_{2p} cannot act freely on any sphere. However if we consider actions on spaces homotopy equivalent to a sphere, this condition is not relevant.

Theorem (Swan, 1961)

G acts freely on a finite complex $X \simeq \mathbb{S}^n$ for some n > 0 if and only if every abelian subgroup in *G* is cyclic.

Periodic Cohomology ○○●○○	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

The most complete result was obtained using surgery:

Theorem (Madsen-Thomas-Wall, 1976)

A finite group G acts freely and smoothly on some sphere \mathbb{S}^n if and only if all the abelian subgroups in G are cyclic and every involution is central.

Note however that determining precisely which groups act freely on a particular sphere is more subtle. For example, consider the semidirect product $\mathbb{Z}/3\mathbb{Z} \times_T Q_{16}$ where the element of order 8 acts non-trivially on $\mathbb{Z}/3\mathbb{Z}$. Then this group has periodic cohomology of period 4 but does not act freely on any finite homotopy \mathbb{S}^3 . If a finite group *G* acts freely on an n-sphere we can only conclude that *G* has periodic cohomology of period dividing n + 1.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions
00000			

We now consider a general notion of periodicity for the cohomology of topological spaces:

Definition

The cohomology of a connected topological space W is said to be periodic if there exist integers r, S > 0 and a class $\alpha \in H^r(W, Z)$ such that for any coefficient module M,

 $\cup \alpha: H^t(W, M) \to H^{t+r}(W, M)$

is an isomorphism for all $t \geq S$.

• For a finite group G, BG has periodic cohomology if and only if every abelian subgroup of G is cyclic.

• For a discrete group Γ of finite vcd, $B\Gamma$ has periodic cohomology if and only if every finite subgroup of Γ has periodic cohomology.

Question: Is abstract periodicity always induced by cup product?

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions
00000			

Cohomological periodicity can be characterized as follows

Theorem (Adem-Smith 2001)

A connected CW–complex X has periodic cohomology if and only if there exists an orientable spherical fibration

 $\mathbb{S}^N \to E \to X$

where E has the homotopy type of a finite dimensional complex.

Corollary

A discrete group Γ acts freely and properly on some $\mathbb{S}^n \times \mathbb{R}^k$ if and only if Γ is countable and $B\Gamma$ has periodic cohomology.

Example: The Burnside group $\Gamma = G(d, e)$ with d generators and prime exponent e > 665, is countable with periodic cohomology and so acts freely on some $\mathbb{S}^n \times \mathbb{R}^k$.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions
	000		

Homotopy Group Actions

We now consider homotopy group actions on X (following J.Grodal).

Proposition

The following sets are in natural 1-1–correspondence and all define homotopy G-actions on a complex X:

- \blacktriangleright [BG, BAut(X)]
- Fiber homotopy equivalence classes of fibrations
 X → E → BG
- G actions on spaces Z homotopy equivalent to X, where two spaces Z', Z" are deemed equivalent if there exists a zig-zag of G-equivariant maps Z' → Z₀ ← Z₁ → ··· ← Z_n → Z" which are homotopy equivalences.
- ► G-homotopy equivalence classes of actions on free G-spaces Z, homotopy equivalent to X.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

Given a homotopy G-action on X, and any G-space Z which realizes it, then $H^*(EG \times_G Z, R)$ is an invariant of the homotopy action. We will denote this invariant by $H^*(X_{hG}, R)$. We will assume that $H_*(X, \mathbb{Z})$ is finitely generated, whence we can use the usual spectral sequence to infer that $H^*(X_{hG}, \mathbb{F}_p)$ is finitely generated over $H^*(BG, \mathbb{F}_p)$ and has Krull Dimension ranging between zero and the p-rank of the finite group G.

Definition

- Suppose given a homotopy G-action on X as above. A finite group G is said to act with h-isotropy of p-rank equal to n on X if the Krull Dimension of H^{*}(X_{hG}, F_p) is equal to n.
- The h-isotropy rank of a homotopy group action of G on X is defined as the maximum of the h-isotropy ranks over all primes p dividing |G|.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

In this context we obtain, for a given homotopy action of G on X:

Proposition

- The action has trivial h-isotropy (h-free) if and only if G acts freely on a finite dimensional complex equivalent to the action (Wall's criterion).
- The action has h−isotropy rank equal to one if and only if H*(X_{hG}, Z) ≠ 0 for infinitely many values of i > 0 and X_{hG} has periodic cohomology.

We shall call an action with h-isotropy rank equal to one a homotopy periodic action. We reformulate an application of our previous results that characterizes homotopy periodic actions.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

Theorem

Given a G-homotopy action on a connected complex X with $H_*(X,\mathbb{Z})$ finitely generated, then the action is homotopy periodic if and only if there exists an orientable spherical fibration

$$\mathbb{S}^n \to E \to X_{hG}$$

where E is homotopy equivalent to a finite dimensional complex.

Corollary

Let X be a simply connected finite CW–complex with a homotopy periodic G action, then there exists a finite free G–CW complex $Y \simeq X \times \mathbb{S}^N$ for some N > 1.

Corollary

Given a periodic homotopy G-action on a sphere \mathbb{S}^n , then G acts freely on a finite complex $X \simeq \mathbb{S}^N \times \mathbb{S}^n$.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

Rank Two Groups

If G acts on a complex X with isotropy that has periodic cohomology, then from Quillen's results it's not hard to see that the action will be homotopy periodic. Hence we see that a direct strategy for constructing free actions on a product of two spheres is to construct an action on a single sphere which has isotropy with periodic cohomology.

For a rank two *p*-group *P* we observe that by inducing up a faithful character ρ from a central subgroup *C* of order *p* we obtain an action of *P* on $S(V) = S(Ind_C^P(\rho))$ where *P* acts with rank one isotropy.

This construction together with elementary bounds on rank yields

Theorem

A *p*-group *P* does not contain $(\mathbb{Z}/p\mathbb{Z})^3$ as a subgroup if and only if it acts freely on a finite complex $Y \simeq \mathbb{S}^n \times \mathbb{S}^m$.

geometric examples. The **fixity** is defined as the smallest integer f such that G acts freely on U(n)/U(n-f-1). We recall results due to A-Davis-Ünlü. Fixity one gives rise to a spherical fibration over a sphere with a free G-action

$$U(n-1)/U(n-2) \rightarrow U(n)/U(n-2) \rightarrow U(n)/U(n-1).$$

Using bundle theory we can show that

Proposition

If $G \subset U(n)$ has fixity one, then G acts smoothly and freely on $\mathbb{S}^{2n-1} \times \mathbb{S}^{4n-5}$.

Example: If $G \subset U(3)$ then it acts freely on $\mathbb{S}^5 \times \mathbb{S}^7$; this includes groups such as A_5 , $SL_3(\mathbb{F}_2)$ and $3A_6$.

Example: For rank two *p*-groups *P* with p > 3 one can show that either *P* acts freely on a product $S(V) \times S(W)$ or *P* has a representation $P \subset U(p)$ of fixity one. Hence a rank two *p*-group for p > 3 acts smoothly and freely on a product of two spheres.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups ○●○○○	Higher Rank Actions

Proposition

If $G \subset U(n)$ is of fixity equal to two, then G acts freely on a finite complex $X \simeq \mathbb{S}^{2n-1} \times \mathbb{S}^{4n-5} \times \mathbb{S}^M$ for some M > 0.

The next result uses propagation techniques.

Theorem

Let $G \subset U(n)$ which acts freely on U(n)/U(k) (with fixity n-k-1) $k \geq 1$. If the order of G is prime to (n-1)!, then G acts freely, smoothly, homologically trivially on $\mathbb{S}^{2n-1} \times \mathbb{S}^{2n-3} \times \cdots \times \mathbb{S}^{2k-1}$.

Corollary

Let P denote a finite non-abelian p-group with cyclic center and having an abelian maximal subgroup. If the rank of P is r < p, then there exists a free, smooth and homologically trivial action of P on $M = S^{2p-1} \times S^{2p-3} \times \cdots \times S^{2(p-r)+1}$, a product of r spheres.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups ○○●○○	Higher Rank Actions

Question: does every rank two group act homotopy periodically on some sphere?

The answer is no, and we in fact can give a complete description of how it goes wrong. Let $\mathrm{Qd}(p)$ denote the semi-direct product $(\mathbb{Z}/p)^2 \rtimes SL_2(\mathbb{F}_p)$, where $SL_2(\mathbb{F}_p)$ acts via the natural representation on $\mathbb{Z}/p \times \mathbb{Z}/p$. The following result tells us that this group does not give rise to a periodic action, even up to homotopy.

Proposition (Grodal)

Every homotopy action of Qd(p) on a sphere X has rank two h-isotropy at the prime p. In other words, the equivariant cohomology $H^*(EQd(p) \times_{Qd(p)} X, \mathbb{F}_p)$ will always have Krull dimension two.

This requires understanding homotopy fixed points via the work of Dwyer-Wilkerson and Lannes T-functor. On the other hand this is all that can go wrong if we want to construct homotopy actions on spheres with periodic cohomology.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups ○○○●○	Higher Rank Actions

We recall a concept from group theory:

Definition

A subquotient of a group G is a factor group H/K where $H, K \subset G$ with $K \subseteq H$. A group L is said to be involved in G if L is isomorphic to a subquotient of G. In particular, for a prime p, we say that L is p'-involved in G if L is isomorphic to a subquotient H/K of G where K has order relatively prime to p.

We can obtain a complete characterization of those finite groups that can act homotopy periodically on spheres. This builds on work in M.Jackson's thesis.

Theorem (A-Grodal)

A finite group G admits a homotopy periodic action on some sphere if and only if $rk(G) \le 2$ and Qd(p) is not p'-involved in G for any p > 2.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups ○○○○●	Higher Rank Actions

This provides a complete answer for the approach using periodicity. It implies for example that every odd order rank two group G acts freely on a finite complex homotopy equivalent to a product of two spheres.

It is an open question whether or not Qd(p) can act freely on a product of two spheres! Any such action would not allow any equivariant projection onto a sphere. It has an irreducible nature. However, using *p*-compact groups, we are able to construct an exotic example for p = 3:

Theorem (Adem-Grodal)

Qd(3) acts freely on a finite dimensional simply connected complex Z such that $H^*(Z,\mathbb{Z}) \cong H^*(\mathbb{S}^{11} \times \mathbb{S}^{15},\mathbb{Z})$ as an algebra but which is not homotopy equivalent to $\mathbb{S}^{11} \times \mathbb{S}^{15}$.

Question: Does every rank 2 finite group *G* act freely on a finite dimensional, simply–connected complex *X* such that $H^*(X, \mathbb{Z})$ is an exterior algebra on two odd–dimensional generators?

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions ●○○○○○

Higher Rank Actions

We would like to go beyond the rank two case. Recall that r(G), the rank of G, is defined as the maximal rank of a p-elementary abelian subgroup of G, over all prime divisors p of |G|.

Definition

The homotopy rank h(G) of a finite group G is the minimal k such that G acts freely on a finite complex $X \simeq \mathbb{S}^{n_1} \times \cdots \times \mathbb{S}^{n_k}$.

- Every finite group G acts freely on some product of spheres, so this is well-defined.
- The rank conjecture from Lecture I is equivalent to $r(G) \leq h(G)$.

It turns out that such a question can be investigated more completely in an algebraic context.

Periodic Cohomology Ho	omotopy Group Actions	Rank Two Groups	Higher Rank Actions
	00		00000

Let k be a field of characteristic p and consider a homogeneous system of parameters $k[\zeta_1, \ldots, \zeta_r] \subset H^*(G, k)$ where deg $\zeta_i = n_i \ge 2$ for $i = 1, \ldots, r$.

Theorem (Benson-Carlson)

There exists a finite complex C of projective kG-modules with $H^*(C) \cong \Lambda(\overline{\zeta}_1, \ldots, \overline{\zeta}_r)$ with deg $\overline{\zeta}_i = n_i - 1$. There is a spectral sequence with

$$E_2^{*,*} = H^*(G,k) \otimes \Lambda(\overline{\zeta}_1,\ldots,\overline{\zeta}_r)$$

converging to $H^*(Hom_{kG}(C, k))$ which satisfies Poincaré Duality in formal dimension $\sum_{i=1}^{r} (n_i - 1)$. In this spectral sequence we have $d_{n_i}(\overline{\zeta}_1) = \zeta_i$, and if $H^*(G, k)$ is Cohen–Macaulay, then

 $H^*(Hom_{kG}(C,k)) \cong H^*(G,k)/(\zeta_1,\ldots,\zeta_r).$

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions
00000	000	00000	00000

We provide a geometric example of this kind of phenomena. Let P be a p-group with center $Z \cong \mathbb{Z}/p^{s_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{s_t}\mathbb{Z}$. For each factor in Z we can choose a faithful linear character χ_i that extends to a representation of Z. Let $W_i = Ind_Z^P(\chi_i)$ and consider the P-complex

$$X = S(W_1) \times \cdots \times S(W_t) \cong (\mathbb{S}^{2[P:Z]-1})^t.$$

The center Z acts freely on X, and $H^*(EP \times_P X, \mathbb{F}_p)$ can be computed from the usual spectral sequence in equivariant cohomology:

Theorem (Duflot)

In the mod p spectral sequence for the P-action on X the generators transgress to a regular sequence $\{u_1, \ldots, u_t\}$ in $H^*(P, \mathbb{F}_p)$, and

$$H^*(EP \times_P X, \mathbb{F}_p) \cong H^*(P, \mathbb{F}_p)/(u_1, \ldots, u_t).$$

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

We make the following observations

If every element of order p on P is central, then the ranks agree r(P) = r(Z) = t and this yields a free P-action on X = (S^{2[P:Z]-1})^t with

$$H^*(X/P,\mathbb{F}_p)\cong H^*(P,\mathbb{F}_p)//(u_1,\ldots,u_t).$$

If r(P) = r(Z) + 1, then P acts on (S^{2[P:Z]-1})^t with periodic isotropy, whence we conclude that there exists a finite free P−complex

$$Y \simeq (S^{2[P:Z]-1})^t imes \mathbb{S}^N.$$

This argument by Duflot shows that

depth $H^*(P, \mathbb{F}_p) \ge r(Z)$.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions ○○○○●○

Using gluing arguments, Benson-Carlson were able to construct a projective $\mathbb{Z}G$ complex that has the cohomology of a product of r(G) spheres, leading them to conjecture that every group of rank k acts freely on a product of k spheres. This leads to

Conjecture: For a finite group G, r(G) = h(G).

As we have seen, r(G) = 1 if and only if h(G) = 1 and this corresponds to groups with periodic cohomology. We have also seen that

Proposition

If G is a finite group with r(G) = 2, then h(G) = 2 if Qd(p) is not p'-involved in G for any p > 2.

Corollary

If G is a group of odd order then r(G) = 2 if and only if h(G) = 2.

Periodic Cohomology	Homotopy Group Actions	Rank Two Groups	Higher Rank Actions

It may be more realistic to focus on finite dimensional complexes

Question: Does every finite group G of rank equal to n act h-freely on a product of n spheres?

Motivated by the periodic case and the exotic example constructed for $\mathrm{Qd}(3)$, we can also pose the following structural question

General Question: Let X be a connected CW-complex. Under what conditions on the cohomology of X does there exist a fibration

$$F \to E \to X$$

where the fiber F has the cohomology [homotopy type] of a product of r spheres and E is homotopy equivalent to a finite dimensional complex?