
1. Bernstein-Gel’fand-Gel’fand (BGG) Correspondence

1.1. BGG in algebra. Fix a field k. Throughout, we let Sn be the
polynomial ring in n variables

Sn = k[t1, . . . , tn] with deg(ti) = 2

and we let En be the exterior algebra in n variables

En = Λk(e1, . . . , en) with deg(ei) = −1

(Unless otherwise stated, all indexing is cohomological. Sometimes
we’ll write just S or E for Sn or En.)

Given any graded ring R, a dg-R-module is a graded R-module M
equipped with a degree 1, R-linear endomorphism dM such that d2M =
0. (This is not quite the same thing as a complex of graded R-modules,
but the latter determines a dg-R-module via “totalization”.)

The BGG correspondence is an equivalence of triangulated categories

Db(dg − Sn −modules)
∼=−→ Db(dg − En −modules).

In lay terms: dg-Sn-modules and dg-En-modules are the same thing,
up to quasi-isomorphism (weak equivalence). The correspondence is
given by

M 7→ k ⊗L
S M = K ⊗S M

where K = (E∗ ⊗k S,
∑

i ei ⊗ ti) (the Koszul resolution of k).
For instance k ←→ E∗ ∼= Σ−nE and S ←→ k under BGG.
The BGG correspondence induces an equivalence on subcategories

Db(dg-Sn-modules M with dimk H
∗(M) <∞)

∼=−→ Db(perfect dg-En-modules) = Thick(E)

1.2. “topological BGG”. Let Tn denote the n-dimensional torus

Tn =

n︷ ︸︸ ︷
S1 × · · · × S1

where S1 is the unit circle in the complex plane. We regard Tn as a
topological abelian group. (Sometimes we will write it as just T .)
Let X be a simple, compact Tn-CW-complex. Set

X/T = {pt} ×T X, the orbit space

and

XT = ET ×T X = (ET ×X)/T, the homotopy orbit space.

(Heuristic for algebraists: ET ×T X = {pt} ×L
T X.)
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“Topological BGG”: The map X → {pt} induces a map XT →
{pt}T = BT , and the T -space X may be recovered from XT → BT ,
by forming the pull-back of

ET

��
XT

// BT.

In fact, there is a bijection (up to weak equivalence):

{spaces with T -actions} ←→ {spaces equipped with a map to BT}.

1.3. Connection between the two BGGs. The group law for T
makes C∗(T,Q) (the rational chain complex) into a dga (= differential
graded algebra) over Q and the action of T on X makes C∗(X,Q) into
a dg-C∗(T,Q)-module.

The map XT → BT makes C∗(XT ,Q) is a dg-C∗(BT,Q)-module (in
fact, algebra). We could instead use Sulliven minimal models here, as
was discussed in detail by Hanke.

Proposition 1.1. C∗(Tn,Q) and C∗(BTn,Q) are both formal: there
are quasi-isomorphisms of dgas En → C∗(Tn,Q) and Sn → C∗(BTn,Q).
Thus, C∗(X,Q) and hence C∗(X,Q) is a dg-En-module and C∗(XT ,Q)
is a dg-Sn-module.

So, starting with X equipped with a Tn-action, we get a dg-En-
module C∗(X,Q). We may also associate to X the dg-Sn-module
C∗(XT ,Q). These coincide under (algebraic) BGG.

An important point: There is more structure on the topological side,
that is ignored when passing to algebra. For instance, C∗(XT ,Q) is a
dg-Sn-algebra (not merely a dg-Sn-module).

2. To*al Rank Conjecture for ∗ ∈ {r, t}

Total Rank Conjecture [Avramov]. Suppose M is a graded Sn-
module (i.e., a dg-Sn-module with trivial differential) and 0 < dimk(M) <
∞. Then

∑
i bi(M) ≥ 2n where bi(M) is the i-th Betti number of

M . That is, if F∗
∼−→ M is the minimal free resolution of M , then∑

i rankS(Fi) ≥ 2n. Alternatively, dimk H∗(M ⊗L
S k) ≥ 2n.

Remark 2.1. This was originally stated in the local case.

Generalized Total Rank Conjecture [F. Lore] Assume F is a
semi-free dg-Sn-module such that 0 < dimk H

∗(F ) <∞. Then dimk H
∗(F⊗S

k) ≥ 2n.
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Perfect dg-E-module Conjecture: Let P be a perfect dg-En-
module. Then dimk H

∗(P ) ≥ 2n.

Toral Rank Conjecture: [Halperin] If Tn acts freely on X then
dimQ H∗(X,Q) ≥ 2n; i.e., dimQ H∗(X,Q) ≥ 2toral rank of X .

These Conjectures are related as follows:

• The Generalized Total Rank Conjecture and the Perfect dg-E-
module Conjectures are equivalent. This is a consequence of
BGG.
• The Generalized Total Rank Conjecture implies the Total Rank
Conjecture. This holds since a graded free resolution determines
a dg-module.
• The Generalized Total Rank Conjecture implies the Toral Rank
Conjecture. This holds since given a simple, free T -CW-complex
X, C∗(XT ) is a semi-free dg-Sn-module with finite dimensional
homology.

3. A Theorem

Theorem 3.1 (W, 2017). If char(k) ̸= 2 and F is a semi-free dg-Sn-
module such that 0 < h(F ) <∞, then

rankSn(F ) ≥ 2n · |χ(F )|
h(F )

where

χ(F ) :=
∑
i

(−1)i dimk H
i(F ) and h(F ) :=

∑
i

dimk H
i(F )

Corollary 3.2. The Total Rank Conjecture holds for graded modules,
provided char(k) ̸= 2.

Theorem 3.3 (Topological Version of this Theorem). Assume Tn acts
freely on X, with X a compact, simple Tn-CW-complex. Then

h(X) ≥ 2n · χ(XT )

h(XT )

where h(X) =
∑

i dimQ H i(X,Q) and χ(X) =
∑

i(−1)i dimQ H i(X,Q).
(Note that XT ∼ X/T under these assumptions.)

Corollary 3.4. The Toral Rank Conjecture holds for X whenever
Hodd(XT ,Q) = 0.
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3.1. Example: Rationally Elliptic Spaces. Say X is “rationally
elliptic”: this means both H∗(X,Q) and π∗(X,Q) are finite dimen-
sional. Algebraically, this means the Sulliven modelM(X) is a finite
generated as a Q-algebra and it has finite dimensional homology. Let

χπ(Y ) =
∑
i

(−1)i dimQ πi(Y,Q).

If Tn acts freely on X then Halperin has shown that χπ(X) ≤ −n. We
have

χπ(XT ) = χπ(X)− χπ(Tn) = χπ(X) + n ≤ 0.

Halperin also shows that χπ(XT ) = 0 if and only if Hodd(X,Q) = 0.
We conclude:

Corollary 3.5. If Tn acts freely on a rationally elliptic X and χπ(X) =
−n (the largest value possible) then the Toral Rank Conjecture holds
for X: dimQ H∗(X,Q) ≥ 2n

Remark 3.6. Halperin shows that if χπ(XT ) < 0, then χ(XT ) = 0. So,
if χπ(X) > −n, then the Theorem above gives no information.

Naive Question: If X is elliptic and χπ(X) = −n then does X
admit a free Tn-action?
The answer is likely “no”. Examples where χπ(X) = −n and X

does not admit a free Tn-action represent a place to look for counter-
examples to the Toral Rank Conjecture.

4. E-module version of Theorem, and its proof

Under BGG, Theorem 3.1 is equivalent to:

Theorem 4.1. Assume char(k) ̸= 2. Let P be a perfect dg-En-module.

Then h(P ) ≥ 2n · |χ(P )|
h(P )

where P = P ⊗E k = P/(e1, . . . , en)P .

Proof. The central idea is to approximate P ⊗E P in two ways.

(1) (Easy part) h(P ⊗E P ) ≤ h(P )h(P ).
(2) (Sneaky, but still pretty easy part) 2n · |χ(P )| ≤ h(P ⊗E P )

Remark 4.2. The topological version of these two facts are:

(1) h(X ×T X) ≤ h(X)h(XT )
(2) 2n · | ch(XT )| ≤ h(X ×T X)

I leave the proof of (1) to your imaginations. For (2), we use that
C2 = ⟨τ⟩ acts on P ⊗E P by τ(α ⊗ β) = (−1)|α||β|β ⊗ α and thus
(provided char(k) ̸= 2)

P ⊗E P = S2
E(P )⊕ Λ2

E(P )
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where S2
E(P ) = (P ⊗E P )(1) and Λ2

E(P ) = (P ⊗E P )(−1). Set

Ψ2(P ) = S2
E(P )− Λ2

E(P ) in the Grothendieck group.

and

χΨ2(P ) = χ(S2
E(P ))− χ(Λ2

E(P )) ∈ Z.

Key Fact: χΨ2(P )) = 2nχ(P ).
Sketch of Proof of Key Fact: χΨ2 enjoys the following properties:

• χ(Ψ2(−)) is additive on short exact sequences of perfect dg-En-
modules,
• χ(Ψ2(ΣP )) = −Ψ2(ΣP )).
• χ(Ψ2(E)) = 1.

I’ll omit justification of the first two. For the last E ⊗E E ∼= E, but
under this isomorphism τ acts as τ(α) = (−1)|α|α. So S2

E(E) = Eeven

and Λ2
E(E) = Eodd. Whence χ(Ψ2(E)) = 2n−1 − (−2n−1) = 2n =

2nχ(E). The Key Fact follows from these three properties, since P
perfect means P is built up from E and its suspensions by a sequence
of mapping cones constructions.

We can now complete the proof of Theorem 4.1:

h(P ⊗E P ) = h(S2
E(P )) + h(Λ2

E(P ))

≥ heven(S2
E(P )) + hodd(Λ2

E(P ))

≥ χ(S2
E(P ))− χ(Λ2

E(P ))

= χ(Ψ2
E(P ))

= 2nχ(P )

(When χ(P ) < 0, interchange roles of even and odd.) □

Remark 4.3. In fact χ(S2
E(P )) = 2n−1χ(P ) and χ(Λ2

E(P )) = −2n−1χ(P ).
The topological version of the first of these

χ(Sp2(X)T ) = 2n−1χ(XT )

where Sp2(X) = (X ×X)/C2, the second symmetric power of X.

Question 4.4. Is there a space X with a free Tn-action such that
h(X ×T X) < 2nh(XT )? Any counter-example to the Toral Rank Con-
jecture would have to have this property (but just having it doesn’t make
it a counter-example). How about h(Sp2(X)T ) < 2n−1h(XT )?

Algebraical version of this question: Is there is dg-Sn-algebra A such
that h(A⊗Sn A) < 2nh(A)? Or h(Symm2

Sn
(A)) < 2n−1h(A)?
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5. A counter-example to the Generalized Total Rank
Conjecture

Theorem 5.1. (Iyengar-W, 2018) The Generalized Total Rank Con-
jecture is false if n ≥ 8 and char(k) ̸= 2.

Proof. For simplicity, take n = 8. We disprove the Perfect dg-E8-
module Conjecture. Let ω = e1e2 + e3e4 + e5e6 + e7e8 ∈ E−2 and
set

P = cone(E(2)
ω−→ E).

The map E(2)
ω−→ E has “highest possible rank” — in each degree, it

is either injective or surjective. It follows that

h(P ) = 8+
(8
1

)
+(

(8
2

)
−1)+(

(8
3

)
−
(8
1

)
)+(

(8
4

)
−
(8
2

)
)+(

(8
4

)
−
(8
6

)
)+(

(8
5

)
−
(8
7

)
)+(

(8
6

)
−1)+8 = 252 < 256 = 28.

□

Remark 5.2. Under BGG, the corresponding dg-Sn-module F satisfies
H0(F ) = k = H3(F ) and Hj(F ) ̸= 0 for all other j. It follows that
F cannot be homotopy equivalent to a commutative dg-algebra and
thus it cannot be of the form C∗(XT ) for a space X with a free Tn-
action. That is, we have not given a counter example to the Toral
Rank Conjecture.

6. p-torus actions

Fix a prime p and let V = (Z/p)×n, a elementary abelian p-group
of rank n. Assume X a compact V -CW-complex such that V acts
freely on X. Then there is a finite free chain complex CV

∗ (X,Fp) of
Fp[V ]-modules whose homology is H∗(X,Fp).

Conjecture 6.1. (Carlsson) If the action V on X is free then h(X,Fp) ≥
2n, where h(X,Fp) =

∑
i dimFp Hi(X,Fp).

“Algebraic analogue” of this conjecture:

Conjecture 6.2. Let F be any finite free complex of Fp[V ]-modules.
Then h(F,Fp) ≥ 2n.

Theorem 6.3. (Iyengar-W) The algebraic conjecture is false for p ≥ 3
and n ≥ 8.

Proof. For simplicity, assume n = 8. Set

R = Fp[V ] ∼= Fp[y1, . . . , y8]/(y
p
1, . . . , y

p
8).

The only properties used are that R is a complete intersection of codi-
mension 8. Let K = KosR(y1, . . . , y8). Then K is a dg-R-algebra and
H∗(K) ∼= Λ∗

k(e1, . . . , e8) with deg(ei) = 1 (using homological indexing
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now). Let z = K2 be a cycle representing ω = e1e2+ e3e4+ e5e6+ e7e8,

and set F = cone(K(−2) z−→ K). Then by considering long exact
sequences in homology we get

h(F ) = h(cone(Λ∗
k(e1, . . . , e8)

ω−→ Λ∗
k(e1, . . . , e8))) = 252 < 256.

□

Remark 6.4. A very similar construction gives the counter-example to
the (original) Betti-degree conjecture mentioned by Peeva.

Theorem 6.5 (Rüping-Stephan). The example above does not come
from a space with a V -action.
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