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Equivariant cohomology
T = (S1)r compact torus

X “nice” T -space, e.g. TC-variety or T -manifold of finite type

ET → BT universal T -bundle

XT = (ET × X )/T Borel construction (homotopy quotient)

Equivariant cohomology: H∗
T (X ) = H∗(XT ;Q)

H∗
T (X ) is a f. g. module over

A = H∗(BT ) ∼= Q[t1, . . . , tr ] with deg(ti) = 2.

X equivariantly formal: H∗
T (X ) free/A

In this case, H∗
T (X ) ∼= A ⊗Q H∗(X ) as A-modules

Examples: compact Hamiltonian T -mfs (Frankel, Kirwan),
complete smooth TC-vars (Goresky–Kottwitz–MacPherson, Weber)



Two exact sequences
Chang–Skjelbred sequence (1974): H∗

T (X ) free /A =⇒

0 → H∗
T (X ) → H∗

T (XT ) δ→ H∗+1
T (X1, XT )

is exact, where X1 = union of orbits of dimension ≤ 1.

This is an efficient way to compute H∗
T (X ), in particular if XT is

finite and X1 a union of 2-spheres (“GKM method” 1998).

augm. Atiyah–Bredon sequence (1974): H∗
T (X ) free /A =⇒

0 → H∗
T (X ) → H∗

T (X0) → H∗+1
T (X1, X0) → H∗+2

T (X2, X1) →
· · · → H∗+r−1

T (Xr−1, Xr−2) → H∗+r
T (Xr , Xr−1) → 0

is exact, where Xi = union of orbits of dimension ≤ i .

The CS / GKM method only uses a small part of this sequence!



The cohomology of the AB sequence
AB∗(X ) = complex of A-modules

H∗
T (X0) → H∗+1

T (X1, X0) → H∗+2
T (X2, X1) →

· · · → H∗+r−1
T (Xr−1, Xr−2) → H∗+r

T (Xr , Xr−1)

Theorem

H i(AB∗(X )) = Exti
A(HT

∗ (X ), A) for any i ≥ 0

The A-module HT
∗ (X ) is a suitably defined equivariant homology

of X . (It is not the homology of XT or any other space.) Morally,

“ CT
∗ (X ) = HomA(C∗(XT ), A) or HomC∗(BT )(C∗(XT ), C∗(BT )) ”

Poincaré duality (over Q) lifts to equivariant PD iso over A:

H∗
T (X ) ∩[X ]−−−→ HT

n−∗(X ) where n = dim X



Syzygies
Let M be a f. g. A-module

M j-th syzygy: ∃ exact sequence
0 → M → Fj−1 → · · · → F1 → F0

with F0, . . . , Fj−1 f. g. free/A

Syzygies interpolate between torsion-freeness and freeness:
zeroeth syzygy = any M

first syzygy = torsion-free
second syzygy = reflexive (i.e., M → M∨∨ iso)

...
r -th syzygy = free

(r + 1)-st syzygy = free
...



Partial exactness

Theorem
Let j ≥ 0. The augmented AB sequence is exact at all
positions i ≤ j − 2 ⇐⇒ H∗

T (X ) is a j-th syzygy.

This includes Atiyah–Bredon’s result and its converse.

Corollary
The CS sequence is exact ⇐⇒ H∗

T (X ) is reflexive

Example
T = (S1)r acts on (S2)r . Set X = (S2)r \ {x , y} where
x , y ∈ {N, S}r are fixed points, differing in k ≥ 1 coordinates
Then H∗

T (X ) is a syzygy of order k − 1



The underlying algebraic result

Lemma
H∗

T (Xi , Xi−1) is zero or a Cohen–Macaulay module of dim r − i .

Let M be a f. g. R-module and K ∗ a complex of f. g. R-modules.
Consider an augmented complex K̄ ∗ with K̄−1 = M,

0 → M → K 0 → K 1 → · · · → K r → 0

Assume the following:
Each K i is zero or CM of dimension r − i
For each p◁ R, if the localized complex K̄ ∗

p is exact at all but
possibly two adjacent positions, then it is exact everywhere.

Theorem
Under these assumptions,

M is a j-th syzygy ⇐⇒ H i(K̄ ∗) = 0 for i ≤ j − 2



Poincaré duality
Let X be a compact oriented T -manifold.

Corollary
CS sequence is exact ⇐⇒ the equivariant Poincaré pairing

H∗
T (X ) × H∗

T (X ) → A, (α, β) 7→ 〈α ∪ β, [X ]〉
is perfect.

Corollary
If H∗

T (X ) is a syzygy of order ≥ r/2, then it is free over A.

Proof
H∗

T (X ) syzygy of order ≥ r/2 ⇒ left half of AB sequence exact.
Syzygy order ≥ r/2 also implies depth H∗

T (X ) ≥ r/2, hence

0 = Extk
A(H∗

T (X ), A) PD= Extk
A(HT

∗ (X ), A) = Hk(AB(X ))
for k ≥ r/2. So right half of AB sequence is exact, too.



Big polygon spaces
S1 acts on S3 ⊂ C2 via g(u, z) = (u, gz)

This gives an action of T = (S1)r on (S3)r .

X =
{(

(u1, z1
)
, . . . , (ur , zr )) ∈ (S3)r

∣∣∣ u1 + · · · + ur = 0
}

Assume that r = 2m + 1 is odd. Then X is a compact orientable
T -manifold of dimension 3r − 2, and XT is a “space of polygons”.

Theorem
H∗

T (X ) is a syzygy of order exactly m.

Open: minimal dimension for syzygy order m where r = 2m + 1
r = 1: dim X = 1 is minimal for syzygy order 0.
r = 3: dim X = 7 is minimal for syzygy order 1
r ≥ 5 odd: Is 3r − 2 still the smallest possible dimension?



Other versions
Analogous results hold in various settings:

G = T torus, rational (or real) coefficients (A–F–P)
G compact connected Lie group, real coefficients (F)
orbit filtration by rank of isotropy groups
(builds on work of Goertsches–Mare)
G = (Zp)r , coefficients in Zp (A–F–P)
(p = 2 also done by Bourguiba–Lannes–Schwartz–Zarati)

In each case, the starting point is a “CM filtration” (Xi) of X such
that H∗

G(Xi , Xi−1) is zero or CM of projective dimension i .

Thank you!
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