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Reconfiguration:

(my current understanding, based on Nishimura’s 2018 survey)

We have

• a (finite?) set Ω of solutions to a problem instance

• a notion of adjacency of solutions

• the reconfiguration graph G with vertex set Ω and edges

given by adjacency

Usually (I imagine) Ω is exponentially large as a function of

the “size” n of the problem instance.



Reconfiguration: many structural questions

• reachability:

Given X,Y ∈ Ω, is there a path from X to Y in G?

• connectivity: Is G connected?

• shortest paths:

Given X,Y ∈ Ω, what is length of

shortest path from X to Y in G?

• diameter: What is the diameter of G?



Reconfiguration: many algorithmic questions, e.g.

• algorithms to decide reachability, connectivity,

• algorithms to find shortest paths or calculate diameter

• find “best” solution reachable from a given starting point

Related questions of computational complexity, parameterised

complexity etc. Even reachability might be intractable!



Markov chains: (discrete time, finite state space)

We have

• a finite set Ω, called a state space

• some allowed transitions, with the next transition chosen

randomly according to some rule

• a (directed) graph G stores the set of all possible transitions

(We’ll be more precise soon.)

Usually Ω is exponentially large as a function of some

parameter n.



A Markov chain M on state space Ω is a stochastic process

X0, X1, X2,. . . which is memoryless:

Pr(Xt+1 = y | X0 = x0, . . . , Xt = xt) = Pr(Xt+1 = y | Xt = xt)

for all t ∈ N and x0, . . . , xt, y ∈ Ω.

Here each Xt = Xt(n) is a random element of a set Ω = Ωn

which is usually finite but exponentially large with respect

to some parameter n.



Example: A Markov chain for graph colourings.

Let k ≥ 3 be a fixed integer and let G = (V,E) be a graph.

Write [k] = {1,2, . . . , k}.

A k-colouring of G is a function σ : V → [k] such that if

{x, y} ∈ E then σ(x) 6= σ(y).
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Let Ωk(G) be the set of all k-colourings of G.



A simple Markov chain on Ωk(G) has the following transition
procedure: from the current state X ∈ Ωk(G) do

• Choose v ∈ V uniformly at random,

• Choose c ∈ [k] uniformly at random,

• Recolour v with c to give a new state X ′, if possible.
Otherwise, let X ′ = X.

This is the Glauber dynamics or single-site update chain.
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(v, c) = (4,�)?

(v, c) = (3,�)?



We say that the Markov chain M is time-homogeneous if the

transition probabilities from a given state x are independent

of t.

For a time-homogeneous chain, the transition probabilities

can be stored in the transition matrix P of M, with rows

and columns indexed by Ω and entries

P (x, y) = Pr(Xt+1 = y | Xt = x).

Matrix P is stochastic: all rows sum to 1.

The matrix P is too large to work with directly. (e.g. can’t

find eigenvalues in polynomial time).



We can also define the directed graph G underlying the

Markov chain, with vertex set Ω and (x, y) a directed edge

if and only if P (x, y) > 0, for all x, y ∈ Ω.

A self-loop is a directed edge (x, x) in G.

[Similar to “adjacency”, “reconfiguration graph”.]

If the state space Ω is connected under moves of M then

we say that M is irreducible.

[This is (strong) “connectivity of the reconfiguration graph”.]

We don’t usually worry about shortest paths, diameter.



Write P tx(·) for the distribution of state Xt of the Markov

chain M, after t steps from initial state X0 = x.

Say M is aperiodic if for all x ∈ Ω,

gcd{t ∈ Z
+ | P tx(x) > 0} = 1.

One self-loop is sufficient to guarantee aperiodicity, if M is

irreducible.



Classical Markov chain theory

A row-vector π with nonnegative entries which add up to 1

is a stationary distribution of Markov chain M if

πP = π.

We say that Markov chain M is ergodic if it is irreducible

and aperiodic.

If M is ergodic then M has a unique stationary distribution

π such that π(x) > 0 for all x ∈ Ω, and

lim
t→∞

P tx(y) = π(y)

for all x, y ∈ Ω.

See for example: book by Levin, Peres & Wilmer (2009).



How to find π?

We say that Markov chain M satisfies the detailed balance

equations with respect to row vector ψ if

ψ(x)P (x, y) = ψ(y)P (y, x) for all x, y ∈ Ω.

We also say that M is reversible, or time-reversible, with

respect to ψ.

If M is ergodic and satisfies detailed balanced with respect

to some vector ψ 6= 0, then the unique stationary distribution

π is given by normalising ψ.

In this case, the underlying graph G is really undirected.



Example: A Markov chain for graph colourings.

Fact: The Glauber dynamics Mk(G) is irreducible on Ωk(G)

when k ≥ ∆(G)+2, where ∆(G) is the maximum degree of

G.

Also Mk(G) is aperiodic as P (x, x) ≥ 1/k for any x ∈ Ωk(G).

So Mk(G) is ergodic.

The transition probabilities satisfy

P (x, y) =
1

kn
= P (y, x)

whenever x, y ∈ Ωk(G) differ on a single vertex,

and P (x, y) = 0 for all other x 6= y.

The chain satisfies detailed balance with respect to (1,1, . . . ,1),
so its stationary distribution is uniform.



We use the detailed balanced equations to design our Markov

chains, so they have the desired stationary distribution.

In particular, if π is uniform then P must be symmetric.

We also need to prove irreducibility; that is, the underlying

graph G is connected.

Aperiodicity is easy: just ensure P (x, x) > 0 for all x ∈ Ω.

Now we have a very well behaved Markov chain which

converges to its stationary distribution.... eventually.

Q: How quickly?



For probability distributions σ, µ on Ω, the total variation

distance between σ and µ is

dTV(σ, µ) =
1

2

∑

x∈Ω

|σ(x)− µ(x)|.

Define the mixing time τ(ε) of M by

τ(ε) = max
x∈Ω

min{t | dTV(P
t
x, π) < ε}.

Here ε > 0 is a small user-defined tolerance.

We say that the Markov chain M is rapidly mixing if τ(ε) is

bounded above by some polynomial in log |Ω| and log(ε−1).



This is a strong condition: we want to get exponentially

close to the stationary distribution, over an exponentially

large state space, in polynomial time.

Linear algebra ⇒ eigenvalues of P control convergence of

M. But Ω is too big to allow direct computation of the

eigenvalues in polynomial time.

Other methods:

• coupling

• geometric arguments [*]

• functional inequalities,

e.g. Poincaré inequality, log-Sobolev inequality



Geometry of the state space

Which state space do you think encourages rapid mixing?

Constrictions in the state space make it difficult for the chain

to escape: exponential mixing time!

Lack of constrictions allows chain to mix freely. Results by

Jerrum & Sinclair (1987) make this precise: conductance.



Method II: Canonical paths

x

yz
w

• For all pairs (x, y) ∈ Ω2, define a path γxy from x to y,

where each step is a transition of the Markov chain.

• Analyse the congestion of the set of all paths: are any

transitions heavily loaded? Then apply Sinclair (1992).



NB: Canonical paths might not be shortest paths.

Instead, we want to avoid having too many paths going

through the same edge of G.

(These conditions almost seem orthogonal!??, somehow??)



Let M be time-homogeneous, ergodic, reversible Markov

chain with N = |Ω|. The eigenvalues of the transition matrix

P are real and satisfy

1 = λ0 > λ1 ≥ · · · ≥ λN−1 > −1

and the mixing time of M is controlled by

λmax = max{λ1, |λN−1|}.

If π∗ = min{π(x) | x ∈ Ω} then

τ(ε) ≤ (1− λmax)
−1

(

log(1/π∗) + log(ε−1)
)

.

See Sinclair (1992).

The quantity (1− λmax)−1 is the relaxation time of M.



Typically λmax = λ1. This can be guaranteed by making the

chain lazy, that is, replacing P with (I + P )/2.

However, a method of Diaconis & Saloff-Coste (1993) can

be applied directly to bound (1+λN−1)
−1, without resorting

to laziness.

As a special case, if every state has a self-loop then

(1 + λN−1)
−1 ≤ 1

2 max
x∈Ω

P (x, x)−1.

The point is, we can focus on λ1.

The quantity 1− λ1 is called the spectral gap.



Sinclair (1992): Let M be time-homogenous, ergodic and

reversible with stationary distribution π.

Let Γ = {γxy | x, y ∈ Ω} be a set of canonical paths for M.

Define the congestion

ρ̄ = ρ̄(Γ) = max
zw∈E(G)

1

π(z)P (z, w)

∑

γxy∋zw
π(x)π(y) |γxy|

where |γxy| is the length of the path γxy.

Then

(1− λ1)
−1 ≤ ρ̄.

So we want an upper bound on ρ̄ which is polynomial in

log |Ω|.



Theorem (Sinclair, 1992)

Suppose that M is time-homogenous, ergodic and reversible,

and let Γ be a set of canonoical paths for M. Then

(1− λ1)
−1 ≤ ρ̄.

Proof. Let L = I − P , so that the eigenvalues of L are

µi = 1− λi. The variational characterisation of µ1 is

µ1 = infψ

∑

x,y∈Ω

(

ψ(x)− ψ(y)
)2
π(x)P (x, y)

∑

x,y∈Ω

(

ψ(x)− ψ(y)
)2
π(x)π(y)

,

with the infimum taken over all non-constant functions

ψ : Ω → R.



Now

∑

x,y

(

ψ(x)− ψ(y)
)2
π(x)π(y)

=
∑

x,y
π(x)π(y)





∑

e∈γxy

(

ψ(e+)− ψ(e−)
)





2

≤
∑

x,y
π(x)π(y) |γxy|

∑

e∈γxy

(

ψ(e+)− ψ(e−)
)2
,

writing e = e−e+ for each e ∈ γxy. The final line uses the

Cauchy–Schwarz inequality.



Exchanging the order of summation gives

∑

x,y

(

ψ(x)− ψ(y)
)2
π(x)ψ(y)

≤
∑

e

(

ψ(e+)− ψ(e−)
)2 ∑

γxy∋e
π(x)π(y) |γxy|

≤
∑

e

(

ψ(e+)− ψ(e−)
)2
π(e−)P (e−, e+) ¯ρ(Γ)

= ¯ρ(Γ)
∑

x,y

(

ψ(x)− ψ(y)
)2
π(x)P (x, y),

which implies that

1 ≤ ρ̄ (1− λ1),

completing the proof. �



Example:

A Markov chain for perfect and near-perfect matchings.

Let G = (V,E) be a graph. A matching in G is a set of

edges M ⊆ E such that no vertex is incident with more than

one edge of M .

If |V | = 2n and |M | = n then M is a perfect matching.

Matchings with n− 1 edges are called near-perfect.

1 2 3
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Let P be the set of all perfect matchings of G and let N be

the set of all near-perfect matchings of G. Broder (1986)

introduced a Markov chain with state space P ∪N .

From current state M ∈ P ∪N ,

• with probability
1

2
let M ′ =M ; otherwise:

• Choose e = uv ∈ E(G) uniformly at random.

• If M ∈ P and e ∈M then let M ′ =M \ e.

e

⇒

e



• If M ∈ N and both u, v are unmatched in M then let

M ′ =M + e.

e

⇒

e

• If M ∈ N and exactly one of u, v are matched in M , with

matching edge e′, then let M ′ = (M \ e′) + e.

ee′

⇒

ee′



The Broder chain is irreducible (honest!), and aperiodic (in

fact it is lazy).

If P (M,M ′) is nonzero for distinct M,M ′ then

P (M,M ′) =
1

2m
= P (M ′,M),

where m is the number of edges of G.

So the stationary distribution is uniform.

Broder (1986) applied coupling to try to analyse this chain,

but his proof was incorrect. Jerrum & Sinclair (1989) used

canonical paths.



Let M , M ′ be two elements of P ∪N .

M M ′

The symmetric difference M ⊕ M ′ is the disjoint union of

cycles and at most two paths.



We process the components of M ⊕M ′ in some canonical

order, and let the start vertex of each cycle (respectively,

path) be the least labelled vertex (respectively, endvertex)

in the cycle/path.

, ,

∗

e
∗ ∗

Denote by e = e(C) the edge of M incident with the start-

vertex of each cycle C.

With each component we process, we add a few more steps

to our canonical path from M to M ′.



How to process a cycle:

e

∗

⇒

∗

⇒

∗

⇒

⇒

∗

⇒

∗

⇒

∗



Paths are processed similarly. This defines a canonical path

γXY between each pair (X,Y ) ∈ P ∪N .

Now we must analyse the set of canonical paths Γ = {γXY }.

What is the load on each transition?

Key tool: define the encoding ηt(X,Y ) of the transition t on

the canonical path γXY , such that if you know t = (M,M ′)

and ηt then you can uniquely recover (X,Y ).



Encodings used in Jerrum & Sinclair (1989):

If t = (M,M ′) where M,M ′ ∈ N and we are processing a

cycle, then

ηt(X,Y ) = (X ⊕ Y ⊕ (M ∪M ′)) \ {e},

where e is the edge of X adjacent to the start-vertex of the

cycle; and otherwise

ηt(X,Y ) = X ⊕ Y ⊕ (M ∪M ′).

Q: Why remove e?

A: This ensures that ηt(X,Y ) belongs to P ∪N .



Example: ηt(X,Y ) = (X ⊕ Y ⊕ (M ∪M ′)) \ {e}

M
∗ t ∗

M ′

X ⊕ Y

∗
e

∗
e

ηt(X,Y )



Facts:

• The encoding ηt(X,Y ) is either a perfect or near-perfect

matching of G.

• If you know t = (M,M ′) and ηt then you can uniquely

recover (X,Y ).

Hence no transition lies on more than |P∪N| canonical paths.

Also, if G has 2n vertices then |γXY | ≤ 2n for all X,Y ∈ P∪N .



Thus

ρ̄ = max
zw∈E(G)

1

π(z)P (z, w)

∑

γxy∋zw
π(x)π(y) |γxy|

≤ |P ∪ N|2m · |P ∪ N| ·
2n

|P ∪ N|2

= 4mn.

Also

1/π∗ = |P ∪ N| ≤ (2n)! ≤ exp(2n logn).

Jerrum & Sinclair (1989): The Broder chain has mixing time

τ(ε) ≤ 4mn(2n logn+ log(ε−1))

where G has n vertices and m edges.



The canonical path method is a thing of beauty, when it

works. But...

∗ Usually, it does NOT lead to tight bounds, and

∗ Finding a good set of canonical paths can be tricky.

Huang, Lu & Zhang (SODA 2016),

“Canonical paths for MCMC: from art to science”.

They build on work of McQuillan (2013) to reduce the task

of designing canonical paths to solving a system of linear

equations.



Sinclair (1992) introduced the multicommodity flow method,

where π(x)π(y) units of flow are split across a set of paths

from x to y in G.

This method has been used to analyse the switch chain for

sampling graphs (or directed graphs or bipartite graphs) with

given degree sequence, under various conditions.

Transitions:

From a given graph, choose a pair of non-incident edges

randomly and replace them by a (randomly chosen) pair of

edges without changing the degree sequence.



The switch chain is ergodic and its stationary distribution is

uniform.

The switch chain has been shown to be rapidly mixing in

various situations, by several authors, using multicommodity

flow. (See for example my BCC 2021 talk.)

But the mixing time bounds are just awful, e.g. Cooper,

Dyer, Greenhill (2007) proved that

τ(ε) ≤ d23 n8
(

dn log(dn) + log(ε−1)
)

for d-regular graphs on n vertices.



Q: Is it really this bad?

A: Maybe not.

Tikhomirov & Youssef, arXiv.2007.02729 proved a mixing

time bound of

C dn
(

dn log dn+ log(2ε−1)
)

for the switch chain on d-regular bipartite graphs, where

3 ≤ d ≤ nc, for some constants c, C > 0.

This is a huge improvement on any previously-known bound.

Proof is long & technical, involves establishing a Poincaré

inequality to bound the eigenvalues of the chain directly.



Connections with approximate counting

If a problem is “self-reducible” then approximate counting

can be reduced to approximately uniform sampling,

e.g. using Markov chains.

Other approaches to approximate counting using

deterministic algorithms:

• correlation decay method (Weitz, 2006)

• polynomial interpolation method (Barvinok, 2016)



Some related computational complexity questions, mostly

related to approximate counting:

Q: Is the counting problem #P-complete?

Dyer, Goldberg, Greenhill, Jerrum (2003) defined approximation-

preserving reductions (AP-reductions) and identified 3 classes

of approximate counting problems:

• solvable in randomized polynomial time (RP),

• AP-interreducible with #SAT,

• AP-interreducible with #BIS

Here #BIS is the problem of counting independent sets in

bipartite graphs.



∗ Thank you! ∗


