Reconfiguration of Regular Induced Subgraphs

O Hiroshi Eto (Tohoku University)

Takehiro Ito (Tohoku University) Yasuaki Kobayashi (Hokkaido University) Yota Otachi (Nagoya University) Kunihiro Wasa (Hosei Uinversity)

Outline

- Reconfiguration Problems
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Outline

- Reconfiguration Problems
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

[Independent Set Reconfiguration under Token Sliding rule]

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T?

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

[Independent Set Reconfiguration under Token Sliding rule]

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T?

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

[Independent Set Reconfiguration under Token Sliding rule]

Input:	A graph G and vertex sets S and T of G.	
Question:	Is there a TS-sequence between S and T?	

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

[Independent Set Reconfiguration under Token Sliding rule]

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T ?

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

[Independent Set Reconfiguration under Token Sliding rule]

Input:	A graph G and vertex sets S and T of G.	
Question:	Is there a TS-sequence between S and T?	

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

[Independent Set Reconfiguration under Token Sliding rule]

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T?

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

[Independent Set Reconfiguration under Token Sliding rule]

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T?

Outline

- Reconfiguration Problems
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Regular Induced Subgraphs

- We denote by G[U] the subgraph of G induced by U.
- We say that a vertex subset *U* of a graph *G* is a d-regular set of *G* if *G*[*U*] is *d-regular*.

Vertex subsets $S_1, S_2, S_3 \subseteq U$ 3-regular Induced subgraph G[U]

Regular induced subgraph

d =0 Independent set

d =1 Induced matching

d =2 Induced cycle

Outline

- Introduction
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G.

Question: Is there an R-sequence between U^s and U^t ?

Reconfiguration rule ($R \in TJ,TS$)

- TJ:Token Jumping
- TS:Token Sliding

Reconfiguration Rule

TJ(Token Jumping)

• $U_i \leftrightarrow U_{i+1}$ under **TJ** if $|U_i \setminus U_{i+1}| = |U_{i+1} \setminus U_i| = 1$

TS(Token Sliding)

• $U_i \leftrightarrow U_{i+1}$ under **TS** if $U_i \setminus U_{i+1} = \{v\}$, $U_{i+1} \setminus U_i = \{w\}$, and $vw \in E(G)$

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Reconfiguration rule (R \in TJ,TS)

- TJ:Token Jumping
- TS:Token Sliding

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example Reconfiguration rule TJ (Token Jumping) d=1, *RISR*₁

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example

Reconfiguration rule TJ (Token Jumping)

d=1, *RISR*₁

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example

Reconfiguration rule TJ (Token Jumping) d=1, **RISR**₁

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example

Reconfiguration rule TJ (Token Jumping) d=1, *RISR*₁

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example

Reconfiguration rule TJ (Token Jumping)

d=1, *RISR*₁

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example

Reconfiguration rule TJ (Token Jumping) d=1, **RISR**₁

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example

Reconfiguration rule TJ (Token Jumping) d=1, **RISR**₁

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Reconfiguration rule (R \in TJ,TS)

- TJ:Token Jumping
- TS:Token Sliding

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example Reconfiguration rule TS (token Sliding) d=1, *RISR*₁

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Example Reconfiguration rule TS (token Sliding) d=1, *RISR*1

d-Regular Induced Subgraph Reconfiguration under R (RISR_d)

Input: A graph G and d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Reconfiguration rule ($R \in TJ,TS$)

- TJ:Token Jumping
- TS:Token Sliding

Outline

- Introduction
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Related work

Independent set reconfiguration = *RISR*₀

k-clique reconfiguration is a k-1 regular induced subgraph reconfiguration

- *k* = 4
- CRISR₃

Bipartite graph

A graph is bipartite if its vertex set can be partitioned into 2 independent sets.

A graph is chordal if every cycle of length at least 4 has a chord.

Related work and Our Results

	RISR _d	
	TS	TJ
Chordal	[Belmonte et al., 2021]	[Kamiński et al., 2012]
graphs	d = 0: PSPACE-c	d = 0:P
Bipartite	[Lokshtanov et al., 2019]	[Lokshtanov et al., 2019]
graphs	d = 0: PSPACE-c	d = 0: NP-c

Related work and Our Results

	RISR _d	
	TS	TJ
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-C$
Bipartite graphs	[Lokshtanov et al., 2019] d = 0: PSPACE-c [Our Results] $d \ge 1:P$	[Lokshtanov et al., 2019] d = 0: NP-c [Our Results] $d \ge 1:PSPACE-c$

	RISR _d	
	TS	ΤJ
Bipartite grapgh	[Lokshtanov et al., 2019] d = 0: PSPACE-c [Our Results] $d \ge 1$:P	[Lokshtanov et al., 2019] d = 0: NP-c [Our Results] $d \ge 1:PSPACE-c$

	RISR _d	
	TS	TJ
Bipartite grapgh	[Lokshtanov et al., 2019] d = 0: PSPACE-c [Our Results] $d \ge 1:P$	[Lokshtanov et al., 2019] d = 0: NP-c [Our Results] $d \ge 1:PSPACE-c$

Example

Reconfiguration rule TJ (Token Sliding)

d=1, *RISR*₁

Related work and Our Results

	RISR _d	
	TS	TJ
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-C$
Bipartite graphs	[Lokshtanov et al., 2019] d = 0: PSPACE-c [Our Results] $d \ge 1:P$	[Lokshtanov et al., 2019] d = 0: NP-c [Our Results] $d \ge 1:PSPACE-c$

Chordal graph

• Every connected regular induced subgraph in a chordal graph is a complete graph [Asahiro et al., 2014].

Chordal graph

• Every connected regular induced subgraph in a chordal graph is a complete graph [Asahiro et al., 2014]

	RISR _d	
	TS	TJ
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-C [Our Results] $d \ge 1$:PSPACE-C	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-c$

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-c$

- We give a reduction from <u>independent set reconfiguration on chordal graph</u> <u>under TS</u>.
- For each $v \in V(H)$, we take a set X_v of d + 1 vertices.

Example, d=3

Graph H = (V(H), E(H))

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1$:PSPACE-c

Example, d=3

Graph H = (V(H), E(H))

New graph G = (V(G), E(G))

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-c$

Example, d=3

Graph H = (V(H), E(H))

New graph G = (V(G), E(G))

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-c$

Example, d=3

Graph H = (V(H), E(H))

New graph G = (V(G), E(G))

43

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1$:PSPACE-c

Example, d=3

Graph H = (V(H), E(H))

New graph G = (V(G), E(G))

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1$:PSPACE-c

Example, d=3

45

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1$:PSPACE-c

Example, d=3

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1$:PSPACE-c

Example, d=3

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-c$

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-c$

	RISR _d	
	TS TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1$:PSPACE-c

	RISR _d		
	TS	TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1$:PSPACE-c	

	RISR _d		
	TS	TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-c$	

	RISR _d		
	TS	TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1$:PSPACE-c	

Independent set reconfiguration on chordal graph under TS

 $RISR_d$ on chordal graph under TS

Related work and Our Results

	RISR _d		
	TS	TJ	
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-C$	
Bipartite graphs	[Lokshtanov et al., 2019] d = 0: PSPACE-c [Our Results] $d \ge 1:P$	[Lokshtanov et al., 2019] d = 0: NP-c [Our Results] $d \ge 1:PSPACE-c$	

Related work and Our Results

	RISR _d		$CRISR_d \ (d \ge 2)$	
	TS	TJ	TS	TJ
Chordal graphs	[Belmonte et al., 2021] d = 0: PSPACE-c [Our Results] $d \ge 1$:PSPACE-c	[Kamiński et al., 2012] d = 0:P [Our Results] $d \ge 1:PSPACE-c$	[Ito et al., 2015] P	
Bipartite graphs	[Lokshtanov et al., 2019] d = 0: PSPACE-c [Our Results] $d \ge 1$:P	[Lokshtanov et al., 2019] d = 0: NP-c [Our Results] $d \ge 1:PSPACE-c$	[Our Results] P	[Our Results] PSPACE-c

Connected d-Regular Induced Subgraph Reconfiguration under $R(CRISR_d)$

Input: A graph G and connected d-regular set U^s and U^t of G

Question: Is there an R-sequence between U^s and U^t ?

Reconfiguration rule ($R \in TJ,TS$)

- TJ:Token Jumping
- TS:Token Sliding

