Reconfiguration of Regular Induced Subgraphs

Hiroshi Eto (Tohoku University)Takehiro Ito (Tohoku University)
Yasuaki Kobayashi (Hokkaido University)
Yota Otachi (Nagoya University)

Combinatorial Reconfiguration

Kunihiro Wasa (Hosei Uinversity)

Outline

- Reconfiguration Problems
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Outline

- Reconfiguration Problems
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Reconfiguration Problems

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

【Independent Set Reconfiguration under Token Sliding rule】

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and $T ?$

Token Sliding rule: A token can be moved to only an adjacent vertex

Reconfiguration Problems

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

【Independent Set Reconfiguration under Token Sliding rule】

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T ?

Token Sliding rule: A token can be moved to only an adjacent vertex

Reconfiguration Problems

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

【Independent Set Reconfiguration under Token Sliding rule】

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T ?

Token Sliding rule: A token can be moved to only an adjacent vertex

S
(1)
\dagger

Reconfiguration Problems

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

【Independent Set Reconfiguration under Token Sliding rule】

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T ?

Token Sliding rule: A token can be moved to only an adjacent vertex

Reconfiguration Problems

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

【Independent Set Reconfiguration under Token Sliding rule】

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T ?

Token Sliding rule: A token can be moved to only an adjacent vertex

Reconfiguration Problems

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

【Independent Set Reconfiguration under Token Sliding rule】

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and $T ?$

Token Sliding rule: A token can be moved to only an adjacent vertex

Reconfiguration Problems

Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

【Independent Set Reconfiguration under Token Sliding rule】

Input:	A graph G and vertex sets S and T of G.
Question:	Is there a TS-sequence between S and T ?

Token Sliding rule: A token can be moved to only an adjacent vertex

(1)

T 10

Outline

- Reconfiguration Problems
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Regular Induced Subgraphs

- We denote by $G[U]$ the subgraph of G induced by U.
- We say that a vertex subset U of a graph G is a d-regular set of G if $G[U]$ is d-regular.

Vertex subsets $S_{1}, S_{2}, S_{3} \subseteq U$
3-regular Induced subgraph $G[U]$

Regular induced subgraph

$$
d=0
$$

Independent set

$d=1$
Induced matching

$$
d=2
$$

Induced cycle

Outline

- Introduction
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Regular Induced Subgraph Reconfiguration

| d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$ | |
| ---: | :--- | :--- |
| Input: | A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G. |
| Question: | Is there an R-sequence between $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$? |

Reconfiguration rule ($R \in T J, T S$)

- TJ:Token Jumping
- TS:Token Sliding

Reconfiguration Rule

TJ(Token Jumping)

- $U_{i} \leftrightarrow U_{i+1}$ under TJ if $\left|U_{i} \backslash U_{i+1}\right|=\left|U_{i+1} \backslash U_{i}\right|=1$

TS(Token Sliding)

- $U_{i} \leftrightarrow U_{i+1}$ under TS if $U_{i} \backslash U_{i+1}=\{v\}, U_{i+1} \backslash U_{i}=\{w\}$, and $v w \in E(G)$

Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Reconfiguration rule ($R \in T J, T S$)

- TJ:Token Jumping
- TS:Token Sliding

Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Example

$$
\begin{aligned}
& \text { Reconfiguration rule TJ (Token Jumping) } \\
& \mathrm{d}=1, \boldsymbol{R I S}_{\boldsymbol{I}}
\end{aligned}
$$

TJ-sequence

$U^{s} \quad U^{t}$

Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Example

$$
\begin{aligned}
& \text { Reconfiguration rule TJ (Token Jumping) } \\
& \mathrm{d}=1, \boldsymbol{R I S}_{\boldsymbol{I}}^{\boldsymbol{\boldsymbol { 1 }}}
\end{aligned}
$$

U^{S}

U_{1}

U^{t}

Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Example

$$
\begin{aligned}
& \text { Reconfiguration rule TJ (Token Jumping) } \\
& \text { d=1, } \boldsymbol{R I S \boldsymbol { S } _ { \mathbf { 1 } }}
\end{aligned}
$$

U^{t}
20

Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Example

```
Reconfiguration rule TJ (Token Jumping)
```


U^{S}

U_{1}

U_{2}

U_{3}

U^{t}

Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Example

```
Reconfiguration rule TJ (Token Jumping)
```


U^{S}

U_{1}

U_{2}

U_{3}

U_{4}

U^{t}

Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Example
Reconfiguration rule TJ (Token Jumping)
$\mathrm{d}=1, \boldsymbol{R} \boldsymbol{I} \boldsymbol{S} \boldsymbol{R}_{\mathbf{1}}$

23

Regular Induced Subgraph Reconfiguration

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Example
Reconfiguration rule TJ (Token Jumping)
$\mathrm{d}=1, \boldsymbol{R} \boldsymbol{I} \boldsymbol{S} \boldsymbol{R}_{\mathbf{1}}$

RISR $_{d}$

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Reconfiguration rule ($R \in T J, T S$)

- TJ:Token Jumping
- TS:Token Sliding

$\boldsymbol{R I S R}_{\boldsymbol{d}}$

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between $U^{\boldsymbol{S}}$ and $U^{t} ?$

Example

$$
\begin{aligned}
& \text { Reconfiguration rule TS (token Sliding) } \\
& \text { d=1, } \boldsymbol{R I S R}_{\mathbf{1}}
\end{aligned}
$$

Is there a TS-sequence?
$U^{s} \quad U^{t}$

$\boldsymbol{R I S R}_{\boldsymbol{d}}$

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between $U^{\boldsymbol{S}}$ and $U^{t} ?$

Example

$$
\begin{aligned}
& \text { Reconfiguration rule TS (token Sliding) } \\
& \text { d=1, } \boldsymbol{R I S R}_{\mathbf{1}}
\end{aligned}
$$

There is no TS-sequence!

U^{s}

U^{t}

RISR $_{d}$

RISR $_{d}$

d-Regular Induced Subgraph Reconfiguration under $R\left(R I S R_{d}\right)$	
Input:	A graph G and d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$

Reconfiguration rule ($R \in T J, T S$)

- TJ:Token Jumping
- TS:Token Sliding

Outline

- Introduction
- Regular Induced Subgraphs
- Our Problem
- Related work and Our Results

Related work

Independent set reconfiguration $=\boldsymbol{R I S R}_{\mathbf{0}}$

k -clique reconfiguration is a $\mathrm{k}-1$ regular induced subgraph reconfiguration

- $k=4$
- CRISR $_{3}$

Graph class

Bipartite graph
A graph is bipartite if its vertex set can be partitioned into 2 independent sets.

Chordal graph
A graph is chordal if every cycle of length at least 4 has a chord.

Related work and Our Results

General graph

Perfect graph

Bipartite graph

	$R I S R_{d}$	
	$T S$	$T J$
Chordal graphs	[Belmonte et al., 2021] $d=0:$ PSPACE-c	[Kamiński et al., 2012] $d=0: P$
Bipartite graphs	[Lokshtanov et al., 2019] $d=0:$ PSPACE-c	[Lokshtanov et al., 2019] $d=0:$ NP-c

Chordal graph

Related work and Our Results

	$R I S R_{d}$	
	TS	TJ
Chordal graphs	[Belmonte et al., 2021] $d=0:$ PSPACE-c [Our Results] $d \geq 1$:PSPACE-c	$\begin{aligned} & \text { [Kamiński et al., 2012] } \\ & d=0: P \\ & \text { [Our Results] } \\ & d \geq \mathbb{1}: \text { PSPACE-c } \end{aligned}$
Bipartite graphs	[Lokshtanov et al., 2019] $d=0:$ PSPACE-c [Our Results] $d \geq 1: \mathrm{P}$	$\begin{aligned} & \text { [Lokshtanov et al., 2019] } \\ & d=0: \text { NP-c } \\ & \text { [Our Results] } \\ & d \geq 1: P S P A C E-c ~ \end{aligned}$

	$R I S R_{d}$	
	$T S$	$T J$
Bipartite	$\begin{array}{l}\text { [Lokshtanov et al., 2019] } \\ d=0: \text { PSPACE-c }\end{array}$	$\begin{array}{l}\text { [Lokshtanov et al., 2019] } \\ d=0: \text { NP-c } \\ \text { grapgh } \\ \text { [Our Results] }] \\ d \geq \mathbf{1}: P\end{array}$

d \geq \mathbf{1}: PSPACE-c\end{array}\right]\).

	$R I S R_{d}$	
	$T S$	$T J$
Bipartite	$\begin{array}{l}\text { [Lokshtanov et al., 2019] } \\ d=0: \text { PSPACE-c }\end{array}$	$\begin{array}{l}\text { [Lokshtanov et al., 2019] } \\ d=0: \text { NP-c } \\ \text { grapgh } \\ \text { [Our Results] }] \\ d \geq \mathbf{1}: P\end{array}$
[Our Results]		
$d \geq \mathbf{1}:$ PSPACE-c		

Example

$$
\begin{aligned}
& \text { Reconfiguration rule TJ (Token Sliding) } \\
& \mathrm{d}=1, \boldsymbol{R I S R}_{\mathbf{1}}
\end{aligned}
$$

Token $\boldsymbol{t}_{1}, \boldsymbol{t}_{2}$

Related work and Our Results

	$R I S R_{d}$	
	TS	TJ
Chordal graphs	[Belmonte et al., 2021] $d=0:$ PSPACE-c [Our Results] $d \geq 1$:PSPACE-c	$\begin{aligned} & \text { [Kamiński et al., 2012] } \\ & d=0: P \\ & \text { [Our Results] } \\ & d \geq \mathbb{1}: \text { PSPACE-c } \end{aligned}$
Bipartite graphs	[Lokshtanov et al., 2019] $d=0:$ PSPACE-c [Our Results] $d \geq 1: \mathrm{P}$	$\begin{aligned} & \text { [Lokshtanov et al., 2019] } \\ & d=0: \text { NP-c } \\ & \text { [Our Results] } \\ & d \geq 1: P S P A C E-c ~ \end{aligned}$

Chordal graph

- Every connected regular induced subgraph in a chordal graph is a complete graph [Asahiro et al., 2014].

Chordal graph

- Every connected regular induced subgraph in a chordal graph is a complete graph [Asahiro et al., 2014]

	$R I S R_{d}$	
	TS	TJ
Chordal graphs	[Belmonte et al., 2021] $d=0$: PSPACE-c [Our Results] $d \geq 1$:PSPACE-c	$\begin{aligned} & \text { [Kamiński et al., 2012] } \\ & d=0: \mathrm{P} \\ & \text { [Our Results] } \\ & d \geq \mathbf{1}: \text { PSPACE-c } \end{aligned}$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0$ 0: PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
	$d \geq 1: P S P A C E-c ~$	[Our Results]

- We give a reduction from independent set reconfiguration on chordal graph under TS.
- For each $v \in V(H)$, we take a set X_{v} of $d+1$ vertices.

Example, $d=3$

Graph $H=(V(H), E(H))$

New graph $G=(V(G), E(G) \nmid O$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	
	$d \geq \mathbf{1}:$ PSPACE-c	

- We add all possible edges between X_{u} and X_{v} if $\{u, v\} \in E(H)$

Example, $d=3$

Graph $H=(V(H), E(H))$
New graph $G=(V(G), E(G))$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	
	$d \geq \mathbf{1}:$ PSPACE-c	

- We add all possible edges between X_{u} and X_{v} if $\{u, v\} \in E(H)$

Example, $d=3$

Graph $H=(V(H), E(H))$
New graph $G=(V(G), E(G))$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	

- We add all possible edges between X_{u} and X_{v} if $\{u, v\} \in E(H)$

Example, $d=3$

Graph $H=(V(H), E(H))$
New graph $G=(V(G), E(G))$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	

- We add all possible edges between X_{u} and X_{v} if $\{u, v\} \in E(H)$

Example, $d=3$

Graph $H=(V(H), E(H))$
New graph $G=(V(G), E(G))$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	
	$d \geq \mathbf{1}:$ PSPACE-c	

- We add all possible edges between X_{u} and X_{v} if $\{u, v\} \in E(H)$

Example, $d=3$

Graph $H=(V(H), E(H))$
New graph $G=(V(G), E(G))$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	
	$d \geq \mathbf{1}:$ PSPACE-c	

- We add all possible edges between X_{u} and X_{v} if $\{u, v\} \in E(H)$

Example, $d=3$

Graph $H=(V(H), E(H))$
New graph $G=(V(G), E(G))$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	
	$d \geq \mathbf{1}:$ PSPACE-c	

- We add all possible edges between X_{u} and X_{v} if $\{u, v\} \in E(H)$

Example, $d=3$

Graph $H=(V(H), E(H))$
New graph $G=(V(G), E(G))$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	

If token \boldsymbol{t} move in graph H , then 3 -regular set R_{t} from X_{u} to X_{v} Example, d=3

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	

If token \boldsymbol{t} move in graph H , then 3 -regular set R_{t} from X_{u} to X_{v} Example, $d=3$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=$ 0: PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
	$d \geq$ 1:PSPACE-c	[Our Results]

If token \boldsymbol{t} move in graph H , then 3 -regular set R_{t} from X_{u} to X_{v} Example, $d=3$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=$ 0: PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
	$d \geq$ 1:PSPACE-c	[Our Results]

If token \boldsymbol{t} move in graph H , then 3 -regular set R_{t} from X_{u} to X_{v} Example, $d=3$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
	$d \geq 1: P S P A C E-c ~$	[Our Results]

If token \boldsymbol{t} move in graph H , then 3 -regular set R_{t} from X_{u} to X_{v} Example, $d=3$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0:$ 0:PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
$d \geq 1: P S P A C E-c ~$	[Our Results]	

If token \boldsymbol{t} move in graph H , then 3 -regular set R_{t} from X_{u} to X_{v} Example, $d=3$

	$R I S R_{d}$	
	$T S$	
	$T J$	
Chordal	[Belmonte et al., 2021]	$d=0$ 0: PSPACE-c
	[Our Results]	[Kamiński et al., 2012]
	$d=0: P$	
	$d \geq 1: P S P A C E-c ~$	[Our Results]

Related work and Our Results

	$R I S R_{d}$	
	TS	TJ
Chordal graphs	[Belmonte et al., 2021] $d=0:$ PSPACE-c [Our Results] $d \geq 1$:PSPACE-c	$\begin{aligned} & \text { [Kamiński et al., 2012] } \\ & d=0: P \\ & \text { [Our Results] } \\ & d \geq \mathbb{1}: \text { PSPACE-c } \end{aligned}$
Bipartite graphs	[Lokshtanov et al., 2019] $d=0:$ PSPACE-c [Our Results] $d \geq 1: \mathrm{P}$	$\begin{aligned} & \text { [Lokshtanov et al., 2019] } \\ & d=0: \text { NP-c } \\ & \text { [Our Results] } \\ & d \geq 1: P S P A C E-c ~ \end{aligned}$

Related work and Our Results

	$R I S R_{d}$		$C R I S R_{d}(d \geq 2)$	
	TS	TJ	TS	TJ
Chordal graphs	$\begin{aligned} & \text { [Belmonte et al., 2021] } \\ & d=0: \text { PSPACE-c } \\ & {[\text { [Our Results] }} \\ & d \geq 1: \text { PSPACE-c } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { [Kamiński et al., 2012] } \\ d=0: P \\ \text { [Our Results] }] \\ d \geq 1: \text { PSPACE-c } \\ \hline \end{array}$	$\left[\begin{array}{l} \text { [Ito et al., 2015] } \\ \mathrm{P} \end{array}\right.$	
Bipartite graphs	$\begin{aligned} & \text { [Lokshtanov et al., } \\ & 2019] \\ & d=0 \text { : PSPACE-c } \\ & {[0 \text { Res Results }]} \\ & d \geq 1: \text { P } \end{aligned}$	[Lokshtanov et al., 2019] $d=0$: NP-c [Our Results] $d \geq 1$:PSPACE-c	[Our Results] P	[Our Results] PSPACE-c

CRISR $_{d}$

Connected \boldsymbol{d}-Regular Induced Subgraph Reconfiguration under $\boldsymbol{R}\left(\right.$ CRISR $\left._{\boldsymbol{d}}\right)$		
Input:	A graph G and connected d-regular set $\boldsymbol{U}^{\boldsymbol{s}}$ and $\boldsymbol{U}^{\boldsymbol{t}}$ of G	
Question:	Is there an R-sequence between U^{s} and $U^{t} ?$	

Reconfiguration rule ($\mathrm{R} \in \mathrm{TJ}, \mathrm{TS}$)

- TJ:Token Jumping
- TS:Token Sliding

