Parameterized Complexity of Reconfiguration of Atoms

Appeared at 16th International Conference and Workshops on Algorithms and Computation

Alexandre Cooper ${ }^{1}$, Stephanie Maaz ${ }^{2, *}$, Amer E. Mouawad ${ }^{3}$, Naomi Nishimura ${ }^{2, *}$
${ }^{1}$ Institute of Quantum Computing, University of Waterloo, Canada
${ }^{2}$ David R. Cheriton School of Computer Science, University of Waterloo, Canada
${ }^{3}$ Department of Computer Science, American University of Beirut, Lebanon
${ }^{3}$ University of Bremen, Bremen, Germany
* Research supported by the Natural Sciences and Engineering Research Council of Canada.

Motivation: Challenges in Quantum Simulation

- Given a positioning of a set of traps, loading atoms into those traps results in a random non-desired arrangement of atoms.
- Can move an atom along a connected series of traps that are empty.
- Survival probability of an atom decreases due to movement.
- Goal: Minimize the total number of moves.

A randomly generated 2D-positioning of atoms in a 2D-array of traps.
[Schymik et al., 2020]
[Ebadi et al., 2021]

A Reconfiguration Problem

- This problem can be seen as a reconfiguration problem. For a definition of reconfiguration problems, see [lto et al., 2011].
- Configuration: set of vertices representing the placement of tokens in a graph G.
- Move: displacement of a single token along a path of free vertices (vertices without tokens).
- Transforming sequence: sequence of moves so that we form a target configuration T from a source configuration S of a given graph G.
- $|S|=|T|$.

Token Moving (TM): For a given graph G, source configuration S, and target configuration T, can we find a transforming sequence of length at most ℓ ?

Token Moving Is NP-Hard

Unlabelled
Undirected

Unlabelled Directed

Labelled
Directed

- It is NP-hard for both undirected variants [Calinescu et al., 2018].
- UDTM and LDTM are also NP-hard.

Parameterized Algorithms and Complexity

- Design algorithms to solve problems in time $f(p) \cdot$ poly (n), where:
- n is the size of the instance,
- p is some parameter(s).
- Intuition: design algorithms that put all the load on the parameters.
- A problem is fixed-parameter tractable if it admits such an algorithm.
- Analogous to P: FPT.

Analogous to NP-hard: W[1]-hard or W[2]-hard.

Terminology - UTM

Representation of S on G

Representation of T on G

- \mathbf{O} (for obstacle vertices): $\mathrm{S} \cap \mathrm{T}$ (red).
- $\mathbf{T} \backslash \mathbf{S}$ (green).
- $\mathrm{S} \backslash \mathrm{T}$ (blue).
- F (for free vertices): $V_{G}-S \cup T$ (white).

Outline

Possible parameters:

- k, the number of tokens
- ℓ, the number of moves
- f, the number of free vertices

Below are the proven results in the paper:

	k	ℓ	$\ell+f$	$\ell-\|S \backslash T\|$
UUTM	FPT	FPT	FPT	W[2]-hard
UDTM	FPT	FPT	FPT	W[2]-hard
LUTM	Open	W[1]-hard	W[1]-hard	W[2]-hard
LDTM	Open	W[1]-hard	W[1]-hard	W[2]-hard

Table: Summary of results for Unlabelled/Labelled and Undirected/Directed Token Moving problem variants

Parameter k - UUTM \& UDTM

- k : the number of tokens.
- Build an equivalent smaller instance, of size some function of k; instance with shortest transforming sequences of the same length to those of the original instance.

- $f=|F|$, where F is the set of free vertices.
- $n-f \leq 2 k$.

Parameter k - UUTM \& UDTM

Lemma 1.1

For any yes-instance of UUTM or any instance of UDTM, in a shortest transforming sequence, no token moves more than once.

Proof by contradiction:

- Pick a shortest sequence that minimizes the distance between the first and the second move of the same token ($t_{0}=s_{y}$).
- Build a new sequence with one less move and maintain the invariant that the two sequences differ only in the placement of a single token.

β

β^{\prime}

Parameter k - UUTM \& UDTM

Lemma 1.2

For any instance of UUTM or any instance of UDTM, we can form an equivalent contracted instance.

- The only role a free vertex can play is in connecting its neighbors, thus remove it and add an edge (arc) between each appropriate pair of its neighbors.

Lemma 1.3

UUTM and UDTM are fixed-parameter tractable and can be solved in time $k^{0(\ell)} \cdot n^{O(1)}$, where k is the number of tokens and ℓ is the number of moves.

- Choose up to 2ℓ vertices from $S \cup T$, pair them as sources and targets of moves, order those moves, and test in polynomial time whether the formed sequence is a transforming sequence.

Road Map

- k, the number of tokens
- ℓ, the number of moves
- f, the number of free vertices

	k	ℓ	$\ell+f$	$\ell-\|S \backslash T\|$
UUTM	FPT	FPT	FPT	W[2]-hard
UDTM	FPT	FPT	FPT	W[2]-hard
LUTM	Open	W[1]-hard	W[1]-hard	W[2]-hard
LDTM	Open	W[1]-hard	W[1]-hard	W[2]-hard

Table: Summary of results for Unlabelled/Labelled and Undirected/Directed Token Moving problem variants

Parameter ℓ - UUTM

G_{α} : graph resulting from removing from the representation of the source configuration on G any parts not used by a sequence of moves α. \rightarrow Every token appearing in G_{α} participates in at least one move.

Lemma 2.1

For any contracted instance of UUTM, there exists a transforming sequence α of minimum length such that G_{α} is a forest.

Proof by contradiction:

- Pick any sequence and look at the subsequence β between the first move in α and the move that form the first cycle(s) in G_{α}.
- Each token in G_{β} must move (once).

Parameter ℓ - UUTM

Proof by contradiction:

- Build from G_{β} a forest of trees with equal number of vertices in S and T.
- We can find a minimum length sequence for any instance of UUTM in linear time on trees [Calinescu et al., 2018].
- Repeat the reasoning for the next cycle(s) in G_{α}.

Parameter ℓ - UUTM - Proof

Lemma 2.2

For a contracted instance of UUTM, there exists a transforming sequence α of minimum length such that G_{α} is a forest, each tree in the forest is a minimum Steiner tree with terminals and leaves in $S \Delta T$, internal vertices in $S \cup T$, and such that each internal vertex in O is the source vertex of a move.

Finding a minimum Steiner tree is fixed-parameter tractable when parameterized by the number of terminals [Dreyfus \& Wagner, 1972].
Theorem 2.1
UUTM is fixed-parameter tractable when parameterized by ℓ, the number of moves.

- Form an equivalent contracted instance.
- Attempt all possible partitions of vertices in $S \Delta T$ into $1, \ldots, \ell$ Steiner trees, having equal number of vertices in $S \backslash T$ and $T \backslash S$.
- The number of moves associated with each tree is equal to the number of tokens present in the tree.

Road Map

- k, the number of tokens
- ℓ, the number of moves
- f, the number of free vertices

	k	ℓ	$\ell+f$	$\ell-\|S \backslash T\|$
UUTM	FPT	FPT	FPT	W[2]-hard
UDTM	FPT	FPT	FPT	W[2]-hard
LUTM	Open	W[1]-hard	W[1]-hard	W[2]-hard
LDTM	Open	W[1]-hard	W[1]-hard	W[2]-hard

Table: Summary of results for Unlabelled/Labelled and Undirected/Directed Token Moving problem variants

Parameter ℓ - UDTM

Lemma 3.1

If there exist instances of UDTM such that for every transforming sequence α of minimum length, G_{α} is not a forest, then at least one of those instances must be a contracted circle instance:

- Cycle vertices and cycle segments.
- Forest of trees attached to the cycle vertices, where in each tree all arcs are directed solely towards or solely away from the root.
- Source (sink) junction vertices with an out-pool (in-pool) tree.

Parameter ℓ - UDTM

Lemma 3.2

Given a directed tree D, two configurations S and T of D such that every leaf of D is in $S \Delta T$, and a one-to-one mapping μ from S to T such that there is a directed path from each $s \in S$ to $\mu(s) \in T$ (and $s \neq \mu(s)$ for all s), then there exists a transformation from S to T in D.

- Find a one-to-one mapping that does not use $s^{\prime} t^{\prime}$ in the contracted circle instance.

Lemma 3.3

For any yes-instance UDTM, there exists a transforming sequence α of minimum length such that G_{α} is a directed forest.

Parameter ℓ - UDTM

[Alon et al., 2008.]
Let H be a directed forest on q vertices. Let $D=(V, E)$ be a directed n-vertex graph and $\beta: E \rightarrow \mathcal{R}$ be a real-weight function defined on the edges of D, then a subgraph of D isomorphic to H with maximal total weight, if one exists, can be found in FPT worst-case time.

Theorem 3.1

UDTM is fixed-parameter tractable when parameterized by ℓ.

- Form an equivalent contracted instance of the given graph D.
- q, the total number of vertices in D_{α} is at least $|S \Delta T|$ and at most $|S \Delta T|+\ell-S \backslash T$.
- Enumerate all directed forests (H) on q vertices, with the sets S^{\prime}, T^{\prime} and determine in fixed parameter tractable time whether it is a yes-instance.
- Assign weights to edges of the graph D and add edges to D and H so as to use the theorem of Alon et al. to find if D contains a subgraph of the correct form to be isomorphic to D_{α}.

Road Map

- k, the number of tokens
- ℓ, the number of moves
- f, the number of free vertices

	k	ℓ	$\ell+f$	$\ell-\|S \backslash T\|$
UUTM	FPT	FPT	FPT	W[2]-hard
UDTM	FPT	FPT	FPT	W[2]-hard
LUTM	Open	W[1]-hard	W[1]-hard	W[2]-hard
LDTM	Open	W[1]-hard	W[1]-hard	W[2]-hard

Table: Summary of results for Unlabelled/Labelled and Undirected/Directed Token Moving problem variants

Parameter ℓ - S \T

Red-Blue Dominating Set (RBDS): For a bipartite graph $G=\left(V_{B} \cup V_{R}, E\right)$ of blue and red vertices and an integer k, determine whether G contains a subset of V_{B} of size at most k such that each vertex in V_{R} is the neighbor of a vertex in the subset. RDBS is W[2]-hard. [Downey \& Fellows, 1997]

Using Red-Blue Dominating Set, UUTM and UDTM are W[2]-hard when parameterized by $\ell-|S \backslash T|$.

- $\ell=|R|+k$.

Parameter ℓ - S \T

Using Red-Blue Dominating Set, LUTM and LDTM are W[2]-hard when parameterized by $\ell-|S \backslash T|$.

- $\ell=|R|+2 k$.

Future Work and Open Questions

Other challenges present in the process:

- Under certain conditions, atoms can be displaced simultaneously.
- Survival probability of an atom decreases also with the distance it travels and the passage of time.

Open questions:

- Can we find efficient approximation algorithms with provable guarantees?
- Can we also design efficient parallel approximation algorithms?
- Can we incorporate movement of atoms in batches subject to a given set of physical constraints?

Thank you!
 Any questions?

