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Sampling from an Unnormalized Distribution

MCMC Particle evolution methods
e.g., Stein Variational Gradient Descent
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Fig. from Murray (2009)



Stein Variational Gradient Descent (SVGD)
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(Liu & Wang, 2016)
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Langevin Stein Operator:
(Gorham & Mackey, 2015)



Stein Variational Gradient Descent (SVGD)

(Liu & Wang, 2016)

Find the direction that most quickly decreases the KL divergence to  4

Langevin Stein Operator:
(Gorham & Mackey, 2015)



Stein Variational Gradient Descent (SVGD)

Optimal direction in the RKHS of kernel .K 5

(Liu & Wang, 2016)

Langevin Stein Operator:
(Gorham & Mackey, 2015)



Two Regimes of SVGD

(Liu & Wang, 2016)

●             : reduces to gradient descent on                   if                           .

●                 : weak convergence to p under certain conditions.

(Gorham & Mackey, 2017; Liu 2017; Gorham et al., 2020)
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They Break Down for Constrained Targets
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SVGD + Projection: Samples end up collecting on the boundary. 



Langevin Stein Operators
(Gorham & Mackey, 2015)
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The last identity holds because of divergence theorem:

For unconstrained domain, since p vanishes at infinity, this holds 
under very mild conditions, such as bounded Lipschitz g.



Langevin Stein Operators

Under suitable boundary conditions, Langevin Stein Operator statisfies

Therefore,               is a stationary point of the SVGD dynamics.

(Gorham & Mackey, 2015)
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The last identity holds because of divergence theorem:

For unconstrained domain, since p vanishes at infinity, this holds 
under very mild conditions, such as bounded Lipschitz g.



Two Problems of SVGD for Constrained Targets
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Two Problems of SVGD for Constrained Targets

● Standard SVGD updates can push the particles outside of its 
support
● Result: Future updates undefined.
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Two Problems of SVGD for Constrained Targets

● The boundary conditions may fail to hold for g in the RKHS
● This happens when p is non-vanishing or explosive on the boundary
● Result: SVGD need not converge to p since p is not a stationary 

point.

● Standard SVGD updates can push the particles outside of its 
support
● Result: Future updates undefined.
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This Talk is About

Sampling Optimization

Mirror descentParticle evolution samplers
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Mirror Descent

Strictly convex
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Mirror Descent

Continuous time limit: mirror flow

Strictly convex

Equivalent Riemannian gradient flow: 
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Mirrored Dynamics
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Mirrored Stein Operator
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A Stein Operator for Constrained Targets

Mirrored Stein Operator*
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A Stein Operator for Constrained Targets

Mirrored Stein Operator*

*derived from the (infinitesimal) generator of Riemannian Langevin diffusion. 

15
Shi, Liu & Mackey. Sampling with Mirrored Stein Operators. 2021



A Stein Operator for Constrained Targets

Mirrored Stein Operator*

Proposition 1 (informal)             generates mean-zero functions 
under p if 

and            is bounded Lipschitz. 

*derived from the (infinitesimal) generator of Riemannian Langevin diffusion. 
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A Stein Operator for Constrained Targets

Mirrored Stein Operator*

Proposition 1 (informal)             generates mean-zero functions 
under p if 

and            is bounded Lipschitz. 

*derived from the (infinitesimal) generator of Riemannian Langevin diffusion. 

Intuitively, we expect                    to cancel the growth of p at the boundary.
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Example: The Dirichlet Distribution
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Example: The Dirichlet Distribution
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Negative entropy                            satisfies the boundary 
condition  
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Negative entropy                            satisfies the boundary 
condition  
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Mirrored Dynamics
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Mirrored Stein Operator
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Two Algorithms
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Two Algorithms
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- the RKHS of a fixed kernel
● Mirrored SVGD: SVGD in the  space.

● : GD on .

η
n = 1 −log pH(η)

Choosing optimal  ingt
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- the RKHS of a fixed kernel
● Mirrored SVGD: SVGD in the  space.

● : GD on .

η
n = 1 −log pH(η)

- the RKHS of an adaptive kernel that incorporates the geometry
● Stein Variational Mirror Descent (SVMD)

● : Mirror Descent on .n = 1 −log p(θ)

Choosing optimal  ingt



Mirrored SVGD (MSVGD)

Theorem 4 If                             , then the optimal mirrored 
updates can alternatively be expressed as

where  

19

transformed density of p
in dual space
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Mirrored SVGD (MSVGD)

Theorem 4 If                             , then the optimal mirrored 
updates can alternatively be expressed as

where  

● MSVGD is SVGD in    space with the transformed kernel     .
● When only a single particle is used            , Mirrored SVGD reduces 

to gradient ascent on the log transformed density                .

19

transformed density of p
in dual space
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Single Particle MSVGD is Not Mirror Descent

Still want an algorithm that reduces to mirror descent when          ? 
●     space is the space we are primarily interested in.

● Mode in     space need not match mode in     space

● Using             to guide the evolution could work better if        is 

better behaved than          .
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Stein Variational Mirror Descent (SVMD)

Definition (Kernels for SVMD) 

Key idea: Construct an adaptive kernel that 

Given a reference kernel k, we write it in Mercer's representation: 
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① incorporates the metric induced by          ② evolves with  

where       is an eigenfunction satisfying:

Kernels for SVMD:  



A Multi-Particle Generalization of Mirror Descent

If            , then one-step of SVMD becomes
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Approximation Quality on the Simplex
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Quality of 50-particle approximations to 20-
dimensional  distributions on the simplex.



Application: Post-Selection Inference

Task: Generate valid confidence intervals (CIs) for parameters 

after data-driven model (feature) selection.

● Need to condition on the selection event.

● Target distributions are log-concave and have constrained 

support.
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Application: Post-Selection Inference

25

Unadjusted and post-selection CIs for the mutations selected by the 
randomized Lasso as candidates for HIV-1 drug resistance.
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Application: Post-Selection Inference
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A 2D selective density example.



Application: Post-Selection Inference
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Coverage of post-selection CIs.

Nominal Coverage: 0.9 5000 sample points



Convergence Results
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① Convergence of mirrored updates as .n → ∞

② Infinite-particle mirrored Stein updates decrease KL with 

sufficiently small step size and drive Mirrored Kernel Stein 
Discrepancy (MKSD) to 0.

③ MKSD determines weak convergence under suitable 

conditions.
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Convergence Results
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① Convergence of mirrored updates as .n → ∞

Theorem Suppose  satisfying . Define the 
-induced kernel . If, for some 

:

Then  for each round of 

qn
0,H = 1

n ∑n
i=1 δηi

0
W1(qn

0,H, q∞
0,H) → 0

η K∇ψ*,t(η, η′ ) := Kt(∇ψ*(η), ∇ψ*(η′ ))
c1, c2 > 0

∥∇(Kη,t( ⋅ , η)∇log pH(η) + ∇ ⋅ Kη,t( ⋅ , η))∥op ≤ c1(1 + ∥η∥2),
∥∇(Kη,t(η′ , ⋅ )∇log pH( ⋅ ) + ∇ ⋅ Kη,t(η′ , ⋅ ))∥op ≤ c2(1 + ∥η′ ∥2),

W1(qn
t,H, q∞

t,H) → 0 t
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Convergence Results
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② Infinite-particle mirrored Stein updates decrease KL with sufficiently 

small step size and drive Mirrored Kernel Stein Discrepancy (MKSD) to 0.

Theorem Assume , and 
,  is -Lipschitz, and  is 

-strongly convex. If  is sufficiently small, then

κ1 := supθ ∥Kt(θ, θ)∥op < ∞
κ2 := ∑d

i=1 supθ ∥∇2
i,d+iKt(θ, θ)∥op < ∞ ∇log pH L ψ

α ϵt

KL(q∞
t+1∥p) − KL(q∞

t ∥p) ≤ − (ϵt − ( Lκ1

2
+

2κ2

α2 ) ϵ2
t ) MKSDKt

(q∞
t ∥p)2 .
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From Constrained to Unconstrained Targets

Continuous Time Discretization
Mirror flow: Mirror descent

Riemannian gradient flow with 
metric tensor        :

Natural gradient descent with 
metric tensor 



Stein Variational Natural Gradient (SVNG)

● Replacing             in SVMD with a general metric tensor 
● In Bayesian inference                             , it is common to choose

FIM: 
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Exploiting Geometry in Bayesian Inference
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Posterior inference for large-scale Bayesian Logistic Regression
 datapoints,  
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Takeaways
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● A new family of particle evolution samplers suitable for 

constrained domains and non-Euclidean geometries.

● SVMD is a multi-particle generalization of mirror descent 

for constrained sampling problems

● SVNG can exploit the geometry of unconstrained sampling 

problems with user-specified metric tensors.
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Future Work
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● Complexity can be cubic w.r.t. the number of particles.

● Where you need mirror descent before, would it benefit 

from using a variant that is aware of uncertainty? 
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Thanks to you and my coauthors
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