Sampling with Mirrored Stein Operators

Jiaxin Shi

Microsoft Research New England

Joint work with Chang Liu, Lester Mackey

Sampling from an Unnormalized Distribution

Fig. from Murray (2009)

MCMC

Particle evolution methods e.g., Stein Variational Gradient Descent

 $\theta^1, \theta^2, \dots, \theta^n$

Find the direction that **most quickly** decreases the KL divergence to p

Optimal direction in the RKHS of kernel K.

Two Regimes of SVGD

(Liu & Wang, 2016)
$$\theta_{t+1}^i \leftarrow \theta_t^i + \epsilon_t \frac{1}{n} \sum_{j=1}^n \left(K(\theta_t^i, \theta_t^j) \nabla \log p(\theta_t^j) + \nabla_{\theta_t^j} \cdot K(\theta_t^j, \theta_t^i) \right)$$

- n = 1: reduces to gradient descent on $-\log p(\theta)$ if $\nabla \cdot K(\theta, \theta) = 0$.
- $n \to \infty$: weak convergence to p under certain conditions.

(Gorham & Mackey, 2017; Liu 2017; Gorham et al., 2020)

They Break Down for Constrained Targets

SVGD + Projection: Samples end up collecting on the boundary.

(Gorham & Mackey, 2015)

(Gorham & Mackey, 2015)

Under suitable boundary conditions, Langevin Stein Operator statisfies

(Gorham & Mackey, 2015)

Under suitable boundary conditions, Langevin Stein Operator statisfies

$$\mathbb{E}_p[(\mathcal{S}_p g)(\theta)] = \mathbb{E}_p[g(\theta)^\top \nabla \log p(\theta) + \nabla \cdot g(\theta)]$$
$$= \int \nabla \cdot ((p(\theta)g(\theta))d\theta = 0$$

(Gorham & Mackey, 2015)

Under suitable boundary conditions, Langevin Stein Operator statisfies

$$\mathbb{E}_p[(\mathcal{S}_p g)(\theta)] = \mathbb{E}_p[g(\theta)^\top \nabla \log p(\theta) + \nabla \cdot g(\theta)]$$
$$= \int \nabla \cdot ((p(\theta)g(\theta))d\theta = 0$$

The last identity holds because of divergence theorem:

$$\int_{\Theta} \nabla \cdot ((p(\theta)g(\theta))d\theta = 0 \Leftrightarrow \int_{\partial \Theta} p(\theta)g(\theta)^{\top} n(\theta)d\theta = 0$$

For unconstrained domain, since p vanishes at infinity, this holds under very mild conditions, such as bounded Lipschitz g.

(Gorham & Mackey, 2015)

Under suitable boundary conditions, Langevin Stein Operator statisfies

$$\mathbb{E}_p[(\mathcal{S}_p g)(\theta)] = \mathbb{E}_p[g(\theta)^\top \nabla \log p(\theta) + \nabla \cdot g(\theta)]$$
$$= \int \nabla \cdot ((p(\theta)g(\theta))d\theta = 0$$

The last identity holds because of divergence theorem:

$$\int_{\Theta} \nabla \cdot ((p(\theta)g(\theta))d\theta = 0 \Leftrightarrow \int_{\partial \Theta} p(\theta)g(\theta)^{\top}n(\theta)d\theta = 0$$

For unconstrained domain, since p vanishes at infinity, this holds under very mild conditions, such as bounded Lipschitz g.

Therefore, $q_t = p$ is a stationary point of the SVGD dynamics.

Two Problems of SVGD for Constrained Targets

Two Problems of SVGD for Constrained Targets

- Standard SVGD updates can push the particles outside of its support
 - Result: Future updates undefined.

Two Problems of SVGD for Constrained Targets

- Standard SVGD updates can push the particles outside of its support
 - Result: Future updates undefined.
- The boundary conditions may fail to hold for g in the RKHS
 - This happens when p is non-vanishing or explosive on the boundary
 - Result: SVGD need not converge to p since p is not a stationary point.

This Talk is About

Particle evolution samplers

Mirror descent

Mirror Descent

Continuous time limit: mirror flow

$$d\eta_t = -\nabla f(\theta_t) dt, \ \theta_t = \nabla \psi^*(\eta_t)$$

Equivalent Riemannian gradient flow: $d\theta_t = -\nabla^2 \psi(\theta_t)^{-1} \nabla f(\theta_t) dt$

$$\frac{d}{dt} \mathrm{KL}(q_t \| p) = -\mathbb{E}_{q_t}[(\mathcal{M}_{p,\psi}g_t)(\theta)]$$

 $(\mathcal{M}_{p,\psi}g)(\theta) = g(\theta)^{\top} \nabla^2 \psi(\theta)^{-1} \nabla \log p(\theta) + \nabla \cdot (\nabla^2 \psi(\theta)^{-1} g(\theta))$ Shi, Liu & Mackey. Sampling with Mirrored Stein Operators. 2021

Mirrored Stein Operator*

 $(\mathcal{M}_{p,\psi}g)(\theta) = g(\theta)^{\top} \nabla^2 \psi(\theta)^{-1} \nabla \log p(\theta) + \nabla \cdot (\nabla^2 \psi(\theta)^{-1} g(\theta))$

Mirrored Stein Operator*

$$(\mathcal{M}_{p,\psi}g)(\theta) = g(\theta)^{\top} \nabla^2 \psi(\theta)^{-1} \nabla \log p(\theta) + \nabla \cdot (\nabla^2 \psi(\theta)^{-1} g(\theta))$$

*derived from the (infinitesimal) generator of Riemannian Langevin diffusion.

Mirrored Stein Operator*

$$(\mathcal{M}_{p,\psi}g)(\theta) = g(\theta)^{\top} \nabla^2 \psi(\theta)^{-1} \nabla \log p(\theta) + \nabla \cdot (\nabla^2 \psi(\theta)^{-1} g(\theta))$$

*derived from the (infinitesimal) generator of Riemannian Langevin diffusion.

Proposition 1 (informal)
$$\mathcal{M}_{p,\psi}$$
 generates mean-zero functions
under p if $\int_{\partial \Theta} p(\theta) \|\nabla^2 \psi(\theta)^{-1} n(\theta)\|_2 d\theta = 0$
and $g \in C^1$ is bounded Lipschitz.

Mirrored Stein Operator*

$$(\mathcal{M}_{p,\psi}g)(\theta) = g(\theta)^{\top} \nabla^2 \psi(\theta)^{-1} \nabla \log p(\theta) + \nabla \cdot (\nabla^2 \psi(\theta)^{-1} g(\theta))$$

*derived from the (infinitesimal) generator of Riemannian Langevin diffusion.

Proposition 1 (informal)
$$\mathcal{M}_{p,\psi}$$
 generates mean-zero functions
under p if $\int_{\partial \Theta} p(\theta) \|\nabla^2 \psi(\theta)^{-1} n(\theta)\|_2 d\theta = 0$
and $q \in C^1$ is bounded Lipschitz.

Intuitively, we expect $\nabla^2 \psi(\theta)^{-1}$ to **cancel the growth** of p at the boundary.

Example: The Dirichlet Distribution

$$p(\theta) \propto \prod_{j=1}^{d+1} \theta_j^{\alpha_j - 1} \quad \left\{ \begin{array}{l} \alpha_j < 1 : \theta_j \to 0, \theta_{-j} = \frac{1 - \theta_j}{d} \Rightarrow p(\theta) \to \infty, \\ \alpha_j = 1 : \theta_j \to 0, \theta_{-j} = \frac{1 - \theta_j}{d} \Rightarrow p(\theta) > 0. \end{array} \right.$$

Example: The Dirichlet Distribution

$$p(\theta) \propto \prod_{j=1}^{d+1} \theta_j^{\alpha_j - 1} \begin{cases} \alpha_j < 1 : \theta_j \to 0, \theta_{-j} = \frac{1 - \theta_j}{d} \Rightarrow p(\theta) \to \infty, \\ \alpha_j = 1 : \theta_j \to 0, \theta_{-j} = \frac{1 - \theta_j}{d} \Rightarrow p(\theta) > 0. \end{cases}$$
Negative entropy $\psi(\theta) = \sum_{j=1}^{d+1} \theta_j \log \theta_j$ satisfies the boundary condition
$$\int_{\partial \Theta} p(\theta) \|\nabla^2 \psi(\theta)^{-1} n(\theta)\|_2 d\theta = 0.$$

Example: The Dirichlet Distribution

$$p(\theta) \propto \prod_{j=1}^{d+1} \theta_j^{\alpha_j - 1} \begin{cases} \alpha_j < 1 : \theta_j \to 0, \theta_{-j} = \frac{1 - \theta_j}{d} \Rightarrow p(\theta) \to \infty, \\ \alpha_j = 1 : \theta_j \to 0, \theta_{-j} = \frac{1 - \theta_j}{d} \Rightarrow p(\theta) > 0. \end{cases}$$
Negative entropy $\psi(\theta) = \sum_{j=1}^{d+1} \theta_j \log \theta_j$ satisfies the boundary condition
$$\int_{\partial \Theta} p(\theta) \|\nabla^2 \psi(\theta)^{-1} n(\theta)\|_2 d\theta = 0.$$

 $(\mathcal{M}_{p,\psi}g)(\theta) = g(\theta)^{\top} \nabla^2 \psi(\theta)^{-1} \nabla \log p(\theta) + \nabla \cdot (\nabla^2 \psi(\theta)^{-1} g(\theta))$ Shi, Liu & Mackey. Sampling with Mirrored Stein Operators. 2021

Choosing optimal g_t in

Choosing optimal g_t in

- the RKHS of a fixed kernel
- **Mirrored SVGD**: SVGD in the η space.
- n = 1: GD on $-\log p_H(\eta)$.

Choosing optimal g_t in

- the RKHS of a fixed kernel
- **Mirrored SVGD**: SVGD in the η space.
- n = 1: GD on $-\log p_H(\eta)$.
- the RKHS of an adaptive kernel that incorporates the geometry
- Stein Variational Mirror Descent (SVMD)
- n = 1: Mirror Descent on $-\log p(\theta)$.

Mirrored SVGD (MSVGD)

 $\begin{array}{l} \hline \mathbf{Theorem 4} \ \text{If } K(\theta, \theta') = k(\theta, \theta')I, \ \text{then the optimal mirrored} \\ \text{updates can alternatively be expressed as} \\ g_{q_t,kI}^*(\theta_t) = \mathbb{E}_{q_t,H}[k_{\psi}(\eta, \eta_t)\nabla \log p_H(\eta) + \nabla_{\eta}k_{\psi}(\eta, \eta_t)]. \\ \text{where } k_{\psi}(\eta, \eta') = k(\nabla \psi^*(\eta), \nabla \psi^*(\eta')) \\ \end{array} \begin{array}{l} \text{transformed density of p} \\ \text{in dual space} \end{array}$

Mirrored SVGD (MSVGD)

 $\begin{array}{l} \hline \textbf{Theorem 4} \ \text{If } K(\theta, \theta') = k(\theta, \theta')I, \ \text{then the optimal mirrored} \\ \text{updates can alternatively be expressed as} \\ g_{q_t,kI}^*(\theta_t) = \mathbb{E}_{q_t,H} [k_{\psi}(\eta, \eta_t) \nabla \log p_H(\eta) + \nabla_{\eta} k_{\psi}(\eta, \eta_t)]. \\ \text{where } k_{\psi}(\eta, \eta') = k(\nabla \psi^*(\eta), \nabla \psi^*(\eta')) \\ \end{array} \qquad \begin{array}{l} \text{transformed density of p} \\ \text{in dual space} \end{array}$

- MSVGD is SVGD in η space with the **transformed kernel** k_{ψ} .
- When only a single particle is used (n = 1), Mirrored SVGD reduces to gradient ascent on the log transformed density $\log p_H(\eta)$.

Single Particle MSVGD is Not Mirror Descent

Still want an algorithm that reduces to mirror descent when n = 1?

- θ space is the space we are primarily interested in.
- Mode in θ space need not match mode in η space
- Using log p(θ) to guide the evolution could work better if p(θ) is better behaved than p_H(η).

Single Particle MSVGD is Not Mirror Descent

Still want an algorithm that reduces to mirror descent when n = 1?

- θ space is the space we are primarily interested in.
- Mode in θ space need not match mode in η space
- Using log p(θ) to guide the evolution could work better if p(θ) is better behaved than p_H(η).

Stein Variational Mirror Descent (SVMD) Key idea: Construct an adaptive kernel that

(1) incorporates the metric induced by ψ (2) evolves with q_t

Definition (Kernels for SVMD)

Given a reference kernel k, we write it in Mercer's representation:

$$k(\theta, \theta') = \sum_{i>1} \lambda_i u_i(\theta) u_i(\theta'),$$

where u_i is an eigenfunction satisfying:

$$\mathbb{E}_{q_t(\theta')}[k(\theta, \theta')u_i(\theta')] = \lambda_i u_i(\theta).$$

Kernels for SVMD:

 $K_{\psi,t}(\theta,\theta') \triangleq \mathbb{E}_{\theta_t \sim \boldsymbol{q_t}}[k^{1/2}(\theta,\theta_t)\nabla^2 \psi(\theta_t)k^{1/2}(\theta_t,\theta')]$

 $k^{1/2}(\theta, \theta') \triangleq \sum \lambda_i^{1/2} u_i(\theta) u_i(\theta')$

A Multi-Particle Generalization of Mirror Descent

If n = 1, then one-step of SVMD becomes

$$\eta_{t+1} = \eta_t + \epsilon_t \left(k(\theta_t, \theta_t) \nabla \log p(\theta_t) + \nabla k(\theta_t, \theta_t) \right), \\ \theta_{t+1} = \nabla \psi^*(\eta_{t+1}).$$

Approximation Quality on the Simplex

Quality of 50-particle approximations to 20dimensional distributions on the simplex.

Task: Generate valid confidence intervals (CIs) for parameters after data-driven model (feature) selection.

- Need to condition on the selection event.
- Target distributions are log-concave and have constrained support.

Unadjusted and post-selection CIs for the mutations selected by the randomized Lasso as candidates for HIV-1 drug resistance.

Unadjusted and post-selection CIs for the mutations selected by the randomized Lasso as candidates for HIV-1 drug resistance.

Unadjusted and post-selection CIs for the mutations selected by the randomized Lasso as candidates for HIV-1 drug resistance.

A 2D selective density example.

Coverage of post-selection Cls.

Convergence Results

(1) Convergence of mirrored updates as $n \to \infty$.

② Infinite-particle mirrored Stein updates decrease KL with sufficiently small step size and drive Mirrored Kernel Stein Discrepancy (MKSD) to 0.

③ MKSD determines weak convergence under suitable conditions.

Convergence Results

(1) Convergence of mirrored updates as $n \to \infty$.

Theorem Suppose $q_{0,H}^n = \frac{1}{n} \sum_{i=1}^n \delta_{\eta_0^i}$ satisfying $W_1(q_{0,H}^n, q_{0,H}^\infty) \to 0$. Define the η -induced kernel $K_{\nabla \psi^*, t}(\eta, \eta') := K_t(\nabla \psi^*(\eta), \nabla \psi^*(\eta'))$. If, for some $c_1, c_2 > 0$: $\|\nabla(K_{\eta, t}(\cdot, \eta) \nabla \log p_H(\eta) + \nabla \cdot K_{\eta, t}(\cdot, \eta))\|_{\text{op}} \leq c_1(1 + \|\eta\|_2),$ $\|\nabla(K_{\eta, t}(\eta', \cdot) \nabla \log p_H(\cdot) + \nabla \cdot K_{\eta, t}(\eta', \cdot))\|_{\text{op}} \leq c_2(1 + \|\eta'\|_2),$ Then $W_1(q_{t,H}^n, q_{t,H}^\infty) \to 0$ for each round of t

Convergence Results

(2) Infinite-particle mirrored Stein updates decrease KL with sufficiently small step size and drive Mirrored Kernel Stein Discrepancy (MKSD) to 0.

Theorem Assume $\kappa_1 := \sup_{\theta} \|K_t(\theta, \theta)\|_{op} < \infty$, and $\kappa_2 := \sum_{i=1}^d \sup_{\theta} \|\nabla_{i,d+i}^2 K_t(\theta, \theta)\|_{op} < \infty$, $\nabla \log p_H$ is *L*-Lipschitz, and ψ is α -strongly convex. If ϵ_t is sufficiently small, then

$$\mathrm{KL}(q_{t+1}^{\infty} \| p) - \mathrm{KL}(q_t^{\infty} \| p) \le -\left(\epsilon_t - \left(\frac{L\kappa_1}{2} + \frac{2\kappa_2}{\alpha^2}\right)\epsilon_t^2\right) \mathrm{MKSD}_{K_t}(q_t^{\infty} \| p)^2$$

 $MSD(q, p, \mathcal{G}) \triangleq \sup_{g \in \mathcal{G}} \mathbb{E}_q[(\mathcal{M}_{p,\psi}g)(\theta)]$ and $MKSD_K(q, p) \triangleq MSD(q, p, \mathcal{B}_{\mathcal{H}_K}).$ Shi, Liu & Mackey. Sampling with Mirrored Stein Operators. 2021

From Constrained to Unconstrained Targets

Continuous Time	Discretization
Mirror flow: $d\eta_t = -\nabla f(\theta_t) dt,$ $\theta_t = \nabla \psi^*(\eta_t)$	Mirror descent
Riemannian gradient flow with metric tensor $\nabla^2 \psi$: $d\theta_t = -\nabla^2 \psi(\theta_t)^{-1} \nabla f(\theta_t) dt$	Natural gradient descent with metric tensor $\nabla^2 \psi$

Stein Variational Natural Gradient (SVNG)

- Replacing $abla^2\psi(\cdot)$ in SVMD with a general metric tensor
- In Bayesian inference $p(\theta) \propto \pi(\theta)\pi(y|\theta)$, it is common to choose

FIM:
$$G(\theta) = \mathbb{E}_{\pi(y|\theta)} [\nabla \log \pi(y|\theta) \nabla \log \pi(y|\theta)^{\top}]$$

Exploiting Geometry in Bayesian Inference

Posterior inference for large-scale Bayesian Logistic Regression 581,012 datapoints, d = 54

Takeaways

• A new family of particle evolution samplers suitable for

constrained domains and non-Euclidean geometries.

- SVMD is a multi-particle generalization of mirror descent for constrained sampling problems
- SVNG can exploit the geometry of unconstrained sampling problems with user-specified metric tensors.

Future Work

- Complexity can be cubic w.r.t. the number of particles.
- Where you need mirror descent before, would it benefit from using a variant that is aware of uncertainty?

Thanks to you and my coauthors

References

Liu, Q., & Wang, D. (2016). Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm. Advances in Neural Information Processing Systems, 29, 2378-2386.

Liu, Q. (2017). Stein variational gradient descent as gradient flow. Advances in Neural Information Processing Systems, 30, 3118-3126.

Gorham, J., & Mackey, L. (2015). Measuring Sample Quality with Stein's Method. Advances in Neural Information Processing Systems, 28, 226-234.

Gorham, J., & Mackey, L. (2017). Measuring sample quality with kernels. In International Conference on Machine Learning (pp. 1292-1301).

Gorham, J., Raj, A., & Mackey, L. (2020). Stochastic Stein Discrepancies. Advances in Neural Information Processing Systems, 33, 17931-17942.

References

Murray, I. (2009). Markov chain Monte Carlo. Tutorial at Machine Learning Summer School, 2009

Duncan, A., Nüsken, N., & Szpruch, L. (2019). On the geometry of Stein variational gradient descent. arXiv preprint arXiv:1912.00894.

Korba, A., Salim, A., Arbel, M., Luise, G., & Gretton, A. (2020). A nonasymptotic analysis for Stein variational gradient descent. Advances in Neural Information Processing Systems, 33, 4672--4682.

Chewi, S., Gouic, T. L., Lu, C., Maunu, T., Rigollet, P., & Stromme, A. J. (2020). Exponential ergodicity of mirror-Langevin diffusions. arXiv preprint arXiv:2005.09669.