Packing and covering rainbow spanning trees for small color classes

CCCIC 2021
Florian Hörsch

Institut für Diskrete Mathematik und Algebra TU Ilmenau, Germany

$$
\text { May 29, } 2021
$$

Factorization of matroids in rainbow bases

Problem setting

Given k matroids M_{1}, \ldots, M_{k} on a common ground set S, can we partition S in subsets S_{1}, \ldots, S_{t} such that S_{j} is a basis of M_{i} for $i=1, \ldots, k$ and $j=1, \ldots, t$?

Factorization of matroids in rainbow bases

Problem setting

Given k matroids M_{1}, \ldots, M_{k} on a common ground set S, can we partition S in subsets S_{1}, \ldots, S_{t} such that S_{j} is a basis of M_{i} for $i=1, \ldots, k$ and $j=1, \ldots, t$?

Restriction on k

- easy for $k=1$,

Factorization of matroids in rainbow bases

Problem setting

Given k matroids M_{1}, \ldots, M_{k} on a common ground set S, can we partition S in subsets S_{1}, \ldots, S_{t} such that S_{j} is a basis of M_{i} for $i=1, \ldots, k$ and $j=1, \ldots, t$?

Restriction on k

- easy for $k=1$,
- difficult for $k \geq 3$,

Factorization of matroids in rainbow bases

Problem setting

Given k matroids M_{1}, \ldots, M_{k} on a common ground set S, can we partition S in subsets S_{1}, \ldots, S_{t} such that S_{j} is a basis of M_{i} for $i=1, \ldots, k$ and $j=1, \ldots, t$?

Restriction on k

- easy for $k=1$,
- difficult for $k \geq 3$,
- interesting for $k=2$.

Factorization of matroids in rainbow bases

Problem setting

Given k matroids M_{1}, \ldots, M_{k} on a common ground set S, can we partition S in subsets S_{1}, \ldots, S_{t} such that S_{j} is a basis of M_{i} for $i=1, \ldots, k$ and $j=1, \ldots, t$?

Restriction on k

- easy for $k=1$,
- difficult for $k \geq 3$,
- interesting for $k=2$.

Included problems

- Arborescences in digraphs,
- Matchings in bipartite graphs,
- Rota's basis conjecture.

Recent developpements

Definition

A direct sum of uniform matroids (of rank 1) is a (unitary) partition matroid.

Recent developpements

Definition

A direct sum of uniform matroids (of rank 1) is a (unitary) partition matroid.

Theorem (Harvey, Király, Lau, 2011)

The algorithmic problem of factorizing two matroids in common bases can be reduced to the case that one of the matroids is a unitary partition matroid.

Recent developpements

Definition

A direct sum of uniform matroids (of rank 1) is a (unitary) partition matroid.

Theorem (Harvey, Király, Lau, 2011)

The algorithmic problem of factorizing two matroids in common bases can be reduced to the case that one of the matroids is a unitary partition matroid.

Theorem (Bérczi, Schwarcz, 2020)

The above problem is difficult in two ways.

Factorization in arborescences

Theorem(Edmonds, 1975)

A digraph D can be factorized in k spanning r-arobrescences if and only if

- its underlying graph can be factorized in k spanning trees,
- $d_{D}^{-}(r)=0$ and $d_{D}^{-}(v)=k$ for all $v \in V(D)-r$.

Factorization in arborescences

Theorem(Edmonds, 1975)

A digraph D can be factorized in k spanning r-arobrescences if and only if

- its underlying graph can be factorized in k spanning trees,
- $d_{D}^{-}(r)=0$ and $d_{D}^{-}(v)=k$ for all $v \in V(D)-r$.

Factorization in arborescences

Theorem(Edmonds, 1975)

A digraph D can be factorized in k spanning r-arobrescences if and only if

- its underlying graph can be factorized in k spanning trees,
- $d_{D}^{-}(r)=0$ and $d_{D}^{-}(v)=k$ for all $v \in V(D)-r$.

Connection

Special case of rainbow spanning tree factorization!

Complexity results

Complexity results

Theorem

- Deciding whether a colored graph can be factorized in rainbow spanning trees is NP-hard.
- This answers a question of Bérczi and Schwarcz.

Complexity results

Theorem

- Deciding whether a colored graph can be factorized in rainbow spanning trees is NP-hard.
- This answers a question of Bérczi and Schwarcz.

Theorem

- Deciding whether a digraph can be factorized in spanning trees of bounded in-degree is NP-hard.
- This answers a question of Frank.

Small color classes

Observation

All negative instances occur when the size of some color classes equals the number of bases.

Small color classes

Observation

All negative instances occur when the size of some color classes equals the number of bases.

Definition

- A k-multiple tree is a graph that can be factorized in k spanning trees.
- A coloring is p-bounded if every color class has size at most p.

Small color classes

Observation

All negative instances occur when the size of some color classes equals the number of bases.

Definition

- A k-multiple tree is a graph that can be factorized in k spanning trees.
- A coloring is p-bounded if every color class has size at most p.

Conjecture

Let G be a k-multiple tree with a $(k-1)$-bounded coloring for some positive integer k. Then G can be factorized in k rainbow spanning trees.

Small color classes

Observation

All negative instances occur when the size of some color classes equals the number of bases.

Definition

- A k-multiple tree is a graph that can be factorized in k spanning trees.
- A coloring is p-bounded if every color class has size at most p.

Conjecture

Let G be a k-multiple tree with a $(k-1)$-bounded coloring for some positive integer k. Then G can be factorized in k rainbow spanning trees.

Conjecture

There is an integer k such that every k-multiple tree with a 2-bounded coloring can be factorized in k spanning trees one of which is rainbow.

Approximative results

Observation

Factorizing in rainbow spanning trees can be read in 3 different ways :

- packing rainbow spanning trees,
- covering by rainbow forests,
- covering by rainbow spanning trees.

Approximative results

Observation

Factorizing in rainbow spanning trees can be read in 3 different ways :

- packing rainbow spanning trees,
- covering by rainbow forests,
- covering by rainbow spanning trees.

Theorem

Let G be a k-multiple tree for some $k \geq 4$ with some 2-bounded coloring. Then G can be covered by $4 k$ rainbow spanning trees.

Proof preparation

Observation

Let T be a tree with a 2-bounded coloring. Then T can be factorized in two rainbow forests.

Proof preparation

Observation

Let T be a tree with a 2-bounded coloring. Then T can be factorized in two rainbow forests.

Lemma (Broersma, Li, 1997)

Let G be a 2 -multiple tree with a 2-bounded coloring. Then G contains a rainbow spanning tree.

Proof preparation

Observation

Let T be a tree with a 2-bounded coloring. Then T can be factorized in two rainbow forests.

Lemma (Broersma, Li, 1997)

Let G be a 2-multiple tree with a 2 -bounded coloring. Then G contains a rainbow spanning tree.

Proof setup

- Let G be a k-multiple tree with a 2 -bounded partition,

Proof preparation

Observation

Let T be a tree with a 2-bounded coloring. Then T can be factorized in two rainbow forests.

Lemma (Broersma, Li, 1997)

Let G be a 2-multiple tree with a 2 -bounded coloring. Then G contains a rainbow spanning tree.

Proof setup

- Let G be a k-multiple tree with a 2 -bounded partition,
- let X be a rainbow forest in G,

Proof preparation

Observation

Let T be a tree with a 2-bounded coloring. Then T can be factorized in two rainbow forests.

Lemma (Broersma, Li, 1997)

Let G be a 2-multiple tree with a 2 -bounded coloring. Then G contains a rainbow spanning tree.

Proof setup

- Let G be a k-multiple tree with a 2 -bounded partition,
- let X be a rainbow forest in G,
- the partner of some $x \in X$ is the edge with the same color.

Proof

Proof steps

- Let T_{1}, \ldots, T_{4} be 4 edge-disjoint spanning trees in G,

Proof

Proof steps

- Let T_{1}, \ldots, T_{4} be 4 edge-disjoint spanning trees in G,

Proof

Proof steps

- Let T_{1}, \ldots, T_{4} be 4 edge-disjoint spanning trees in G,

Proof

Proof steps

- Let T_{1}, \ldots, T_{4} be 4 edge-disjoint spanning trees in G,
- let X_{1} be the edges in X whose partners are not in T_{1} or T_{2},

Proof

Proof steps

- Let T_{1}, \ldots, T_{4} be 4 edge-disjoint spanning trees in G,
- let X_{1} be the edges in X whose partners are not in T_{1} or T_{2},
- let $G^{\prime}=T_{1} \cup T_{2} \cup X_{1}$,

Proof

Proof steps

- Let T_{1}, \ldots, T_{4} be 4 edge-disjoint spanning trees in G,
- let X_{1} be the edges in X whose partners are not in T_{1} or T_{2},
- let $G^{\prime}=T_{1} \cup T_{2} \cup X_{1}$,
- let $G^{\prime \prime}=G^{\prime} / X_{1}$,

Proof

Proof steps

- Let T_{1}, \ldots, T_{4} be 4 edge-disjoint spanning trees in G,
- let X_{1} be the edges in X whose partners are not in T_{1} or T_{2},
- let $G^{\prime}=T_{1} \cup T_{2} \cup X_{1}$,
- let $G^{\prime \prime}=G^{\prime} / X_{1}$,
- $G^{\prime \prime}$ contains a rainbow spanning tree T by the above lemma,

Proof

Proof steps

- Let T_{1}, \ldots, T_{4} be 4 edge-disjoint spanning trees in G,
- let X_{1} be the edges in X whose partners are not in T_{1} or T_{2},
- let $G^{\prime}=T_{1} \cup T_{2} \cup X_{1}$,
- let $G^{\prime \prime}=G^{\prime} / X_{1}$,
- $G^{\prime \prime}$ contains a rainbow spanning tree T by the above lemma,
- $T \cup X_{1}$ forms a rainbow spanning tree in G.

Smaller cases

$k=3$
A similar proof leads to a slightly weaker bound.

Smaller cases

$k=3$
A similar proof leads to a slightly weaker bound.

Conjecture

There is an integer t such that every 2-multiple tree with a 2-bounded coloring can be covered by t rainbow spanning trees.

Smaller cases

$$
k=3
$$

A similar proof leads to a slightly weaker bound.

Conjecture

There is an integer t such that every 2-multiple tree with a 2-bounded coloring can be covered by t rainbow spanning trees.

Theorem

Every 2-multiple tree with a 2-bounded coloring can be covered by $O(\log (|V(G)|))$ rainbow spanning trees.

Thank You!

