

BIRS Cross-Community Collaborations in Combinatorics

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

A New Direction: The Oriented Chromatic Number of Random Graphs of Bounded Degree

JD Nir

University of Manitoba Toronto Metropolitan University

June 1, 2022

A New Direction

JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Flip:

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Flip: H

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

A New Direction

JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n,p}$: n vertices, each pair adjacent with probability p.
- $\mathcal{G}_{n,d}$: *d*-regular graph of order *n*, selected uniformly.

A New Direction

JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n,p}$: n vertices, each pair adjacent with probability p.
- $\mathcal{G}_{n,d}$: *d*-regular graph of order *n*, selected uniformly.
- Many others

A New Direction

JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A **random graph** G is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n,p}$: n vertices, each pair adjacent with probability p.
- $\mathcal{G}_{n,d}$: *d*-regular graph of order *n*, selected uniformly.
- Many others

Different random graph models produce different distributions.

Motivation Graph Colouring

A New Direction

Motivation

Undirected Graphs

Directed Graphs

Definition

A **vertex colouring** of a graph is an assignment of colours to vertices such that adjacent vertices receive different colours.

Motivation Graph Colouring

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A vertex colouring of a graph is an assignment of colours to vertices such that adjacent vertices receive different colours. The chromatic number of a graph G is the smallest k such that G admits a vertex colouring with k colors.

Motivation Graph Colouring

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Definition

A vertex colouring of a graph is an assignment of colours to vertices such that adjacent vertices receive different colours. The chromatic number of a graph G is the smallest k such that G admits a vertex colouring with k colors.

Motivation Chromatic Number of Random Graphs

Definition

A New Direction

Motivation

Undirected Graphs

Directed Graphs The chromatic number of a random graph $\chi(\mathcal{G})$ is a random variable that takes value k with the probability that $G \sim \mathcal{G}$ has $\chi(G) = k$.

Motivation Chromatic Number of Random Graphs

Definition

A New Direction

Motivation

Undirected Graphs

Directed Graphs The chromatic number of a random graph $\chi(\mathcal{G})$ is a random variable that takes value k with the probability that $G \sim \mathcal{G}$ has $\chi(G) = k$.

Example: if ${\cal G}$ is the collection of cycles of length $3 \le \ell \le 100$ with uniform probability then

 $\chi(\mathcal{G}) =$

Motivation Chromatic Number of Random Graphs

Definition

A New Direction

Motivation

Undirected Graphs

Directed Graphs The chromatic number of a random graph $\chi(\mathcal{G})$ is a random variable that takes value k with the probability that $G \sim \mathcal{G}$ has $\chi(G) = k$.

Example: if ${\cal G}$ is the collection of cycles of length $3 \le \ell \le 100$ with uniform probability then

Question

A New Direction

Motivation

Undirected Graphs

Directed Graphs

For $p = \frac{1}{2}$, what is the probability M_n that $\mathcal{G}_{n,p}$ is **not** a complete graph?

Question

A New Direction

Motivation

Undirected Graphs

Directed Graphs

For $p = \frac{1}{2}$, what is the probability M_n that $\mathcal{G}_{n,p}$ is **not** a complete graph?

Any missing edge prevents $\mathcal{G}_{n,p}$ from being complete, so

$$M_n = 1 - \left(\frac{1}{2}\right)^{\binom{n}{2}}$$

A New Direction

Motivation

Undirected Graphs

Directed Graphs

Question For $p = \frac{1}{2}$, what is the probability

For $p = \frac{1}{2}$, what is the probability M_n that $\mathcal{G}_{n,p}$ is **not** a complete graph?

Any missing edge prevents $\mathcal{G}_{n,p}$ from being complete, so

$$M_n = 1 - \left(\frac{1}{2}\right)^{\binom{n}{2}}$$

n	1	2	3	4	5
M_n	0%	50%	87.5%	98.4375%	$\geq 99.9\%$

Question

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

For $p = \frac{1}{2}$, what is the probability M_n that $\mathcal{G}_{n,p}$ is **not** a complete graph?

Any missing edge prevents $\mathcal{G}_{n,p}$ from being complete, so

$$M_n = 1 - \left(\frac{1}{2}\right)^{\binom{n}{2}}$$

n	1	2	3	4	5
M_n	0%	50%	87.5%	98.4375%	$\geq 99.9\%$

If P_n is the probability that property X holds for, say, $\mathcal{G}_{n,p}$ and

$$\lim_{n \to \infty} P_n \to 1$$

then property X holds asymptotically almost surely or a.a.s.

A New Direction

Motivation

Undirected Graphs

Directed Graphs

Question

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

What can we say asymptotically about $\chi(\mathcal{G}_{n,p=d/n})$ or $\chi(\mathcal{G}_{n,d})$?

• Erdős-Rényi (1960): Problem introduced

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi(\mathcal{G}_{n,d/n})$ lives in a window of length 5.

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi(\mathcal{G}_{n,d/n})$ lives in a window of length 5.
- Łuczak (1991): Shrank the window length to 2.

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi(\mathcal{G}_{n,d/n})$ lives in a window of length 5.
- Łuczak (1991): Shrank the window length to 2.
- Achlioptas-Friedgut (1997): $\chi(\mathcal{G}_{n,d/n})$ has a sharp threshold, but where?

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

What can we say asymptotically about $\chi(\mathcal{G}_{n,p=d/n})$ or $\chi(\mathcal{G}_{n,d})$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi(\mathcal{G}_{n,d/n})$ lives in a window of length 5.
- Łuczak (1991): Shrank the window length to 2.
- Achlioptas-Friedgut (1997): $\chi(\mathcal{G}_{n,d/n})$ has a sharp threshold, but where?
- Achlioptas-Naor (2005): One of these two values.

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

What can we say asymptotically about $\chi(\mathcal{G}_{n,p=d/n})$ or $\chi(\mathcal{G}_{n,d})$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi(\mathcal{G}_{n,d/n})$ lives in a window of length 5.
- Łuczak (1991): Shrank the window length to 2.
- Achlioptas-Friedgut (1997): $\chi(\mathcal{G}_{n,d/n})$ has a sharp threshold, but where?
- Achlioptas-Naor (2005): One of these two values.
- Kemkes-Pérez-Wormald (2009): $\mathcal{G}_{n,d}$ concentrated on the same two values.

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

What can we say asymptotically about $\chi(\mathcal{G}_{n,p=d/n})$ or $\chi(\mathcal{G}_{n,d})$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi(\mathcal{G}_{n,d/n})$ lives in a window of length 5.
- Łuczak (1991): Shrank the window length to 2.
- Achlioptas-Friedgut (1997): $\chi(\mathcal{G}_{n,d/n})$ has a sharp threshold, but where?
- Achlioptas-Naor (2005): One of these two values.
- Kemkes-Pérez-Wormald (2009): $\mathcal{G}_{n,d}$ concentrated on the same two values.
- Coja-Oghlan et al. (2013): Use ideas from statistical physics to show both models concentrated on one value (for *d* large enough).

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Key Idea (Overlap Matrices)

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Key Idea (Overlap Matrices)

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Key Idea (Overlap Matrices)

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Key Idea (Overlap Matrices)

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Key Idea (Overlap Matrices)

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Key Idea (Overlap Matrices)

A New Direction JD Nir

Motivation

Undirected Graphs Directed Graphs Key Idea (Overlap Matrices)

In order to calculate second moments, need to know which types of graphs permit many colourings.

 $\begin{bmatrix} 0 & 0 & \frac{1}{3} \\ \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \end{bmatrix}$

A New Direction

Motivation

Undirected Graphs Directed

Graphs

Key Idea (Overlap Matrices)

In order to calculate second moments, need to know which types of graphs permit many colourings.

Maximize $f(\rho)=H(\rho)+E(\rho)$ where entropy and energy compete with ρ subject to constraints:

A New Direction JD Nir

Motivation

Undirected Graphs

Graphs

Key Idea (Overlap Matrices)

In order to calculate second moments, need to know which types of graphs permit many colourings.

Maximize $f(\rho)=H(\rho)+E(\rho)$ where entropy and energy compete with ρ subject to constraints:

b

Oriented Graph Colouring

Oriented Graph Colouring

Oriented Graph Colouring

A New Direction

Motivation

Undirecte Graphs

Directed Graphs Overlap matrices become more complicated:

Motivation

Undirecter Graphs

Directed Graphs Overlap matrices become more complicated:

requires

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

Which tournaments produce good product tournaments?

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

Which tournaments produce good product tournaments?

Doubly regular tournaments satisfy:

•
$$d^+(v) = d^+(u)$$
 for every $u, v \in V(\vec{G})$

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

Which tournaments produce good product tournaments?

Doubly regular tournaments satisfy:

$$d^+(v) = d^+(u) \text{ for every } u, v \in V(\vec{G})$$

Every pair of vertices u, v have the same number of common out-neighbours.

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Question

Which tournaments produce good product tournaments?

Doubly regular tournaments satisfy:

$$d^+(v) = d^+(u) \text{ for every } u, v \in V(\vec{G})$$

Every pair of vertices u, v have the same number of common out-neighbours.

The product of a doubly-regular tournament with itself is strongly regular and has (unsigned) adjacency matrix

$$\frac{1}{2}(M \otimes M + (J - I) \otimes (J - I)).$$

Directed Graphs Matrix Optimization

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs More intricate constraints on overlap matrices:

Directed Graphs Matrix Optimization

Motivation

Undirected Graphs

Directed Graphs More intricate constraints on overlap matrices:

Directed Graphs Results

A	Vew
Dire	ction
JD	

Motivation

Undirected Graphs

Directed Graphs

Theorem (Gunderson-N., 2022+)

The oriented chromatic numbers $\chi_o(\vec{\mathcal{G}}_{n,p=d/n})$ and $\chi_o(\vec{\mathcal{G}}_{n,d})$ are concentrated in the window

Directed Graphs Results

A	Vew
Dire	ction
JD	

Motivation

Undirected Graphs

Directed Graphs

Theorem (Gunderson-N., 2022+)

The oriented chromatic numbers $\chi_o(\vec{\mathcal{G}}_{n,p=d/n})$ and $\chi_o(\vec{\mathcal{G}}_{n,d})$ are concentrated in the window

$$(2^{d/2}, 6e^{d/2} + 6d + 17].$$

Directed Graphs Results

	4		Ν				
D		re			i	0	n
	1	D		N		ir	

Motivation

Undirected Graphs

Directed Graphs Maybe the exponential gap isn't our fault?

Directed Graphs Results

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Maybe the exponential gap isn't our fault?

Theorem

For $\vec{G} \sim \vec{\mathcal{G}}_{n,2}$, with high probability, $\chi_o(\vec{G}) \in \{4,5\}$, but each occurs with positive probability.

Directed Graphs Results

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs Maybe the exponential gap isn't our fault?

Theorem

For $\vec{G} \sim \vec{\mathcal{G}}_{n,2}$, with high probability, $\chi_o(\vec{G}) \in \{4,5\}$, but each occurs with positive probability.

Proof idea: with positive probability, \vec{G} has no oriented 5-cycle.

Α	۱ I	٧e	
Di		cti	
J	D	N	ir

Motivation

Undirecte Graphs

Directed Graphs

Next steps:

• Adapt statistical physics models to directed case.

Motivation

Undirected Graphs

Directed Graphs

Next steps:

• Adapt statistical physics models to directed case. Challenge: finding the right type of colouring.

Motivation

Undirected Graphs

Directed Graphs

Next steps:

- Adapt statistical physics models to directed case. Challenge: finding the right type of colouring.
- Lower bound on concentration window length?

Motivation

Undirected Graphs

Directed Graphs

Next steps:

- Adapt statistical physics models to directed case. Challenge: finding the right type of colouring.
- Lower bound on concentration window length?
- Focus on small cases, like d = 3. Great workshop problem!

Thanks!

A New Direction JD Nir

Motivation

Undirected Graphs

Directed Graphs

Thank you!

