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Definition

A vertex colouring of a graph is an assignment of colours to
vertices such that adjacent vertices receive different colours.

The chromatic number of a graph G is the smallest k such
that G admits a vertex colouring with k colors.
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Definition

The chromatic number of a random graph χ(G) is a random
variable that takes value k with the probability that G ∼ G has
χ(G) = k.

Example: if G is the collection of cycles of length 3 ≤ ` ≤ 100
with uniform probability then

χ(G) =

0 1 2 3 4

50% 50%
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Question

For p = 1
2 , what is the probability Mn that Gn,p is not a

complete graph?

Any missing edge prevents Gn,p from being complete, so

Mn = 1−
(
1

2

)(n2)
.

n 1 2 3 4 5

Mn 0% 50% 87.5% 98.4375% ≥ 99.9%

If Pn is the probability that property X holds for, say, Gn,p and

lim
n→∞

Pn → 1

then property X holds asymptotically almost surely or a.a.s.

5 / 15



A New
Direction

JD Nir

Motivation

Undirected
Graphs

Directed
Graphs

Motivation
Asymptotic certainty

Question

For p = 1
2 , what is the probability Mn that Gn,p is not a

complete graph?

Any missing edge prevents Gn,p from being complete, so

Mn = 1−
(
1

2

)(n2)
.

n 1 2 3 4 5

Mn 0% 50% 87.5% 98.4375% ≥ 99.9%

If Pn is the probability that property X holds for, say, Gn,p and

lim
n→∞

Pn → 1

then property X holds asymptotically almost surely or a.a.s.

5 / 15



A New
Direction

JD Nir

Motivation

Undirected
Graphs

Directed
Graphs

Motivation
Asymptotic certainty

Question

For p = 1
2 , what is the probability Mn that Gn,p is not a

complete graph?

Any missing edge prevents Gn,p from being complete, so

Mn = 1−
(
1

2

)(n2)
.

n 1 2 3 4 5

Mn 0% 50% 87.5% 98.4375% ≥ 99.9%

If Pn is the probability that property X holds for, say, Gn,p and

lim
n→∞

Pn → 1

then property X holds asymptotically almost surely or a.a.s.

5 / 15



A New
Direction

JD Nir

Motivation

Undirected
Graphs

Directed
Graphs

Motivation
Asymptotic certainty

Question

For p = 1
2 , what is the probability Mn that Gn,p is not a

complete graph?

Any missing edge prevents Gn,p from being complete, so

Mn = 1−
(
1

2

)(n2)
.

n 1 2 3 4 5

Mn 0% 50% 87.5% 98.4375% ≥ 99.9%

If Pn is the probability that property X holds for, say, Gn,p and

lim
n→∞

Pn → 1

then property X holds asymptotically almost surely or a.a.s.5 / 15



A New
Direction

JD Nir

Motivation

Undirected
Graphs

Directed
Graphs

Undirected Graphs

Question

What can we say asymptotically about χ(Gn,p=d/n) or χ(Gn,d)?

Erdős-Rényi (1960): Problem introduced

Shamir-Spencer (1986): Use martingales to show a.a.s.
χ(Gn,d/n) lives in a window of length 5.

 Luczak (1991): Shrank the window length to 2.

Achlioptas-Friedgut (1997): χ(Gn,d/n) has a sharp
threshold, but where?

Achlioptas-Naor (2005): One of these two values.

Kemkes-Pérez-Wormald (2009): Gn,d concentrated on the
same two values.

Coja-Oghlan et al. (2013): Use ideas from statistical
physics to show both models concentrated on one value
(for d large enough).
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Kemkes-Pérez-Wormald (2009): Gn,d concentrated on the
same two values.

Coja-Oghlan et al. (2013): Use ideas from statistical
physics to show both models concentrated on one value
(for d large enough).

6 / 15



A New
Direction

JD Nir

Motivation

Undirected
Graphs

Directed
Graphs

Undirected Graphs

Question

What can we say asymptotically about χ(Gn,p=d/n) or χ(Gn,d)?

Erdős-Rényi (1960): Problem introduced

Shamir-Spencer (1986): Use martingales to show a.a.s.
χ(Gn,d/n) lives in a window of length 5.

 Luczak (1991): Shrank the window length to 2.

Achlioptas-Friedgut (1997): χ(Gn,d/n) has a sharp
threshold, but where?

Achlioptas-Naor (2005): One of these two values.

Kemkes-Pérez-Wormald (2009): Gn,d concentrated on the
same two values.

Coja-Oghlan et al. (2013): Use ideas from statistical
physics to show both models concentrated on one value
(for d large enough).

6 / 15



A New
Direction

JD Nir

Motivation

Undirected
Graphs

Directed
Graphs

Undirected Graphs

Question

What can we say asymptotically about χ(Gn,p=d/n) or χ(Gn,d)?
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Key Idea (Overlap Matrices)

In order to calculate second moments, need to know which
types of graphs permit many colourings.
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Maximize f(ρ) = H(ρ) + E(ρ) where entropy and energy
compete with ρ subject to constraints:
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Doubly regular tournaments satisfy:

1 d+(v) = d+(u) for every u, v ∈ V (~G)

2 Every pair of vertices u, v have the same number of
common out-neighbours.

The product of a doubly-regular tournament with itself is
strongly regular and has (unsigned) adjacency matrix

1
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(
M ⊗M + (J − I)⊗ (J − I)

)
.
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(2d/2, 6ed/2 + 6d+ 17].
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For ~G ∼ ~Gn,2, with high probability, χo(~G) ∈ {4, 5}, but each
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Proof idea: with positive probability, ~G has no oriented 5-cycle.
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Next steps:

Adapt statistical physics models to directed case.

Challenge: finding the right type of colouring.

Lower bound on concentration window length?

Focus on small cases, like d = 3. Great workshop problem!
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