BIRS Cross-Community Collaborations in Combinatorics

A New Direction: The Oriented Chromatic Number of Random Graphs of Bounded Degree

JD Nir

University of Manitoba
$\xrightarrow[\text { soow }]{ }$ Toronto Metropolitan University

June 1, 2022

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip:

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip: H

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip: H

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip:

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip: T

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip:

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}$: n vertices, each possible edge included with probability p.

Flip: H

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip: H

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip: T

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}$: n vertices, each possible edge included with probability p.

Flip: T

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip: T

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip: H

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each possible edge included with probability p.

Flip: T

Motivation

Random Graphs

Definition
A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}$: n vertices, each possible edge included with probability p.

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each pair adjacent with probability p.
- $\mathcal{G}_{n, d}$: d-regular graph of order n, selected uniformly.

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each pair adjacent with probability p.
- $\mathcal{G}_{n, d}$: d-regular graph of order n, selected uniformly.
- Many others

Motivation

Random Graphs

Definition

A random graph \mathcal{G} is a probability distribution over graphs, though we often think of it as a random process that results in a graph.

Some examples:

- $\mathcal{G}_{n, p}: n$ vertices, each pair adjacent with probability p.
- $\mathcal{G}_{n, d}$: d-regular graph of order n, selected uniformly.
- Many others

Different random graph models produce different distributions.

Motivation

Graph Colouring

Definition
A vertex colouring of a graph is an assignment of colours to vertices such that adjacent vertices receive different colours.

Motivation
 Graph Colouring

Definition
A vertex colouring of a graph is an assignment of colours to vertices such that adjacent vertices receive different colours. The chromatic number of a graph G is the smallest k such that G admits a vertex colouring with k colors.

Motivation
 Graph Colouring

Definition
A vertex colouring of a graph is an assignment of colours to vertices such that adjacent vertices receive different colours. The chromatic number of a graph G is the smallest k such that G admits a vertex colouring with k colors.

Motivation

Chromatic Number of Random Graphs Direction

JD Nir

Definition

The chromatic number of a random graph $\chi(\mathcal{G})$ is a random variable that takes value k with the probability that $G \sim \mathcal{G}$ has $\chi(G)=k$.

```
Motivation
Chromatic Number of Random Graphs
```


Definition

The chromatic number of a random graph $\chi(\mathcal{G})$ is a random variable that takes value k with the probability that $G \sim \mathcal{G}$ has $\chi(G)=k$.

Example: if \mathcal{G} is the collection of cycles of length $3 \leq \ell \leq 100$ with uniform probability then

$$
\chi(\mathcal{G})=
$$

Motivation

Chromatic Number of Random Graphs

Definition

The chromatic number of a random graph $\chi(\mathcal{G})$ is a random variable that takes value k with the probability that $G \sim \mathcal{G}$ has $\chi(G)=k$.

Example: if \mathcal{G} is the collection of cycles of length $3 \leq \ell \leq 100$ with uniform probability then

Motivation

Asymptotic certainty

A New Direction

JD Nir

Motivation
Undirected Graphs

Directed
Graphs

Question

For $p=\frac{1}{2}$, what is the probability M_{n} that $\mathcal{G}_{n, p}$ is not a complete graph?

Motivation

Asymptotic certainty

Question

For $p=\frac{1}{2}$, what is the probability M_{n} that $\mathcal{G}_{n, p}$ is not a complete graph?

Any missing edge prevents $\mathcal{G}_{n, p}$ from being complete, so

$$
M_{n}=1-\left(\frac{1}{2}\right)^{\binom{n}{2}}
$$

Motivation

Asymptotic certainty

$$
M_{n}=1-\left(\frac{1}{2}\right)^{\binom{n}{2}}
$$

n	1	2	3	4	5
M_{n}	0%	50%	87.5%	98.4375%	$\geq 99.9 \%$

Motivation

Asymptotic certainty

Question

For $p=\frac{1}{2}$, what is the probability M_{n} that $\mathcal{G}_{n, p}$ is not a complete graph?

Any missing edge prevents $\mathcal{G}_{n, p}$ from being complete, so

$$
M_{n}=1-\left(\frac{1}{2}\right)^{\binom{n}{2}}
$$

n	1	2	3	4	5
M_{n}	0%	50%	87.5%	98.4375%	$\geq 99.9 \%$

If P_{n} is the probability that property X holds for, say, $\mathcal{G}_{n, p}$ and

$$
\lim _{n \rightarrow \infty} P_{n} \rightarrow 1
$$

then property X holds asymptotically almost surely or a.a.s.

Undirected Graphs

A New Direction

JD Nir

Question
What can we say asymptotically about $\chi\left(\mathcal{G}_{n, p=d / n}\right)$ or $\chi\left(\mathcal{G}_{n, d}\right)$?

Motivation
Undirected Graphs

Undirected Graphs

Question

What can we say asymptotically about $\chi\left(\mathcal{G}_{n, p=d / n}\right)$ or $\chi\left(\mathcal{G}_{n, d}\right)$?

- Erdős-Rényi (1960): Problem introduced

Undirected Graphs

Question

What can we say asymptotically about $\chi\left(\mathcal{G}_{n, p=d / n}\right)$ or $\chi\left(\mathcal{G}_{n, d}\right)$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi\left(\mathcal{G}_{n, d / n}\right)$ lives in a window of length 5 .

Undirected Graphs

Question

What can we say asymptotically about $\chi\left(\mathcal{G}_{n, p=d / n}\right)$ or $\chi\left(\mathcal{G}_{n, d}\right)$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi\left(\mathcal{G}_{n, d / n}\right)$ lives in a window of length 5 .
- Łuczak (1991): Shrank the window length to 2.

Undirected Graphs

Question

What can we say asymptotically about $\chi\left(\mathcal{G}_{n, p=d / n}\right)$ or $\chi\left(\mathcal{G}_{n, d}\right)$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi\left(\mathcal{G}_{n, d / n}\right)$ lives in a window of length 5 .
- Łuczak (1991): Shrank the window length to 2.
- Achlioptas-Friedgut (1997): $\chi\left(\mathcal{G}_{n, d / n}\right)$ has a sharp threshold, but where?

Undirected Graphs

Question

What can we say asymptotically about $\chi\left(\mathcal{G}_{n, p=d / n}\right)$ or $\chi\left(\mathcal{G}_{n, d}\right)$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi\left(\mathcal{G}_{n, d / n}\right)$ lives in a window of length 5 .
- Łuczak (1991): Shrank the window length to 2.
- Achlioptas-Friedgut (1997): $\chi\left(\mathcal{G}_{n, d / n}\right)$ has a sharp threshold, but where?
- Achlioptas-Naor (2005): One of these two values.

Undirected Graphs

Question

What can we say asymptotically about $\chi\left(\mathcal{G}_{n, p=d / n}\right)$ or $\chi\left(\mathcal{G}_{n, d}\right)$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi\left(\mathcal{G}_{n, d / n}\right)$ lives in a window of length 5 .
- Łuczak (1991): Shrank the window length to 2.
- Achlioptas-Friedgut (1997): $\chi\left(\mathcal{G}_{n, d / n}\right)$ has a sharp threshold, but where?
- Achlioptas-Naor (2005): One of these two values.
- Kemkes-Pérez-Wormald (2009): $\mathcal{G}_{n, d}$ concentrated on the same two values.

Undirected Graphs

A New
Direction
JD Nir

Question

What can we say asymptotically about $\chi\left(\mathcal{G}_{n, p=d / n}\right)$ or $\chi\left(\mathcal{G}_{n, d}\right)$?

- Erdős-Rényi (1960): Problem introduced
- Shamir-Spencer (1986): Use martingales to show a.a.s. $\chi\left(\mathcal{G}_{n, d / n}\right)$ lives in a window of length 5 .
- Łuczak (1991): Shrank the window length to 2.
- Achlioptas-Friedgut (1997): $\chi\left(\mathcal{G}_{n, d / n}\right)$ has a sharp threshold, but where?
- Achlioptas-Naor (2005): One of these two values.
- Kemkes-Pérez-Wormald (2009): $\mathcal{G}_{n, d}$ concentrated on the same two values.
- Coja-Oghlan et al. (2013): Use ideas from statistical physics to show both models concentrated on one value (for d large enough).

Undirected Graphs

Key Idea (Overlap Matrices)
In order to calculate second moments, need to know which types of graphs permit many colourings.

Undirected Graphs

Key Idea (Overlap Matrices)
In order to calculate second moments, need to know which types of graphs permit many colourings.

Undirected Graphs

Key Idea (Overlap Matrices)
In order to calculate second moments, need to know which types of graphs permit many colourings.

Undirected Graphs

Key Idea (Overlap Matrices)
In order to calculate second moments, need to know which types of graphs permit many colourings.

$r \mathrm{r}: 0$ gr:0 br: $\frac{1}{3}$
$r g: \frac{1}{3}$ g g:0 b g:0
$r b: 0 \quad g b: \frac{1}{3} \quad$ b b $: 0$

Undirected Graphs

Key Idea (Overlap Matrices)
In order to calculate second moments, need to know which types of graphs permit many colourings.

(rx:0 gr: 0 br: $\frac{1}{3}$ rr: $\frac{1}{6}$ gr:0 br:0
rg: $\frac{1}{3}$ gg:0 bg:0 rg:0 gg: $\frac{1}{6}$ bs: $\frac{1}{3}$
rb: 0 gb: $\frac{1}{3}$ b b:0 rb: $\frac{1}{3}$ gb:0 b b:0

Undirected Graphs

Key Idea (Overlap Matrices)
In order to calculate second moments, need to know which types of graphs permit many colourings.

(rx:0 gr: 0 br: $\frac{1}{3}$ rr: $\frac{1}{6}$ gr:0 br:0
rg: $\frac{1}{3}$ gg:0 bg:0 rg:0 gg: $\frac{1}{6}$ bg: $\frac{1}{3}$
rb: 0 gb $: \frac{1}{3}$ bb: 0 rb: $\frac{1}{3}$ gb:0 b b:0

Undirected Graphs

Key Idea (Overlap Matrices)

In order to calculate second moments, need to know which types of graphs permit many colourings.

$$
\left[\begin{array}{lll}
0 & 0 & \frac{1}{3} \\
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\frac{1}{6} & 0 & 0 \\
0 & \frac{1}{6} & \frac{1}{3} \\
\frac{1}{3} & 0 & 0
\end{array}\right]
$$

Undirected Graphs

Key Idea (Overlap Matrices)

In order to calculate second moments, need to know which types of graphs permit many colourings.

Maximize $f(\rho)=H(\rho)+E(\rho)$ where entropy and energy compete with ρ subject to constraints:

Undirected Graphs

Key Idea (Overlap Matrices)

In order to calculate second moments, need to know which types of graphs permit many colourings.

Maximize $f(\rho)=H(\rho)+E(\rho)$ where entropy and energy compete with ρ subject to constraints:

Directed Graphs
 Oriented Colourings

Direction
JD Nir

Motivation
Undirected Graphs

Directed
Graphs

Directed Graphs
 Oriented Colourings

A New
Direction
JD Nir

Motivation
Graph Colouring
Undirected Graphs

Directed Graphs
 Oriented Colourings

Oriented Graph Colouring

Directed Graphs
 Oriented Colourings

Direction
JD Nir

Oriented Graph Colouring

Directed Graphs
 Oriented Colourings

Oriented Graph Colouring

Directed Graphs
 Oriented Colourings

Oriented Graph Colouring

Directed Graphs
 Oriented Colourings

A New
Direction
JD Nir

Motivation
Undirected
Graphs
Directed
Graphs

Oriented Graph Colouring

Directed Graphs
 Oriented Colourings

Direction
JD Nir

Motivation
Undirected
Graphs
Directed
Graphs

Directed Graphs

Oriented Colourings

A New
Direction
JD Nir

Motivation
Undirected
Graphs
Directed
Graphs

Directed Graphs

Oriented Colourings

A New
Direction
JD Nir

Motivation
Undirected
Graphs
Directed
Graphs

Directed Graphs
 Oriented Colourings

A New
Direction
JD Nir

Motivation
Undirected
Graphs
Directed
Graphs

Directed Graphs
 Oriented Colourings

A New
Direction
JD Nir

Motivation
Undirected
Graphs
Directed
Graphs

Directed Graphs
 Oriented Colourings

Direction
JD Nir

Motivation
Undirected
Graphs
Directed
Graphs

Directed Graphs
 Oriented Colourings

 DirectionJD Nir

Motivation
Undirected
Graphs
Directed Graphs

Overlap matrices become more complicated:

Directed Graphs
 Oriented Colourings

Direction

JD Nir

Motivation
Undirected
Graphs
Directed
Graphs

Overlap matrices become more complicated:

requires

Directed Graphs

Doubly Regular Tournaments

Question

Which tournaments produce good product tournaments?

Directed Graphs

Doubly Regular Tournaments

Question

Which tournaments produce good product tournaments?

Motivation
Undirected Graphs
(1) $d^{+}(v)=d^{+}(u)$ for every $u, v \in V(\vec{G})$

Directed Graphs
 Doubly Regular Tournaments

Question

Which tournaments produce good product tournaments?
Motivation
Undirected Graphs

Doubly regular tournaments satisfy:
(1) $d^{+}(v)=d^{+}(u)$ for every $u, v \in V(\vec{G})$
(2) Every pair of vertices u, v have the same number of common out-neighbours.

Directed Graphs
 Doubly Regular Tournaments

Direction
JD Nir

Question

Which tournaments produce good product tournaments?

Doubly regular tournaments satisfy:
(1) $d^{+}(v)=d^{+}(u)$ for every $u, v \in V(\vec{G})$
(2) Every pair of vertices u, v have the same number of common out-neighbours.

The product of a doubly-regular tournament with itself is strongly regular and has (unsigned) adjacency matrix

$$
\frac{1}{2}(M \otimes M+(J-I) \otimes(J-I))
$$

Directed Graphs
 Matrix Optimization

More intricate constraints on overlap matrices:

Directed Graphs
 Matrix Optimization

More intricate constraints on overlap matrices:

Motivation
Undirected
Graphs

X

Directed Graphs

Results

 Direction JD Nir
Motivation

Theorem (Gunderson-N., 2022+)

The oriented chromatic numbers $\chi_{o}\left(\overrightarrow{\mathcal{G}}_{n, p=d / n}\right)$ and $\chi_{o}\left(\overrightarrow{\mathcal{G}}_{n, d}\right)$ are concentrated in the window

Directed Graphs

Results

 Direction JD Nir
Theorem (Gunderson-N., 2022+)

The oriented chromatic numbers $\chi_{o}\left(\overrightarrow{\mathcal{G}}_{n, p=d / n}\right)$ and $\chi_{o}\left(\overrightarrow{\mathcal{G}}_{n, d}\right)$ are concentrated in the window

$$
\left(2^{d / 2}, 6 e^{d / 2}+6 d+17\right] .
$$

Directed Graphs

Results

A New Direction
JD Nir

Motivation
Undirected
Graphs

Maybe the exponential gap isn't our fault?

Directed Graphs

Results

 DirectionJD Nir

Maybe the exponential gap isn't our fault?

Theorem

For $\vec{G} \sim \overrightarrow{\mathcal{G}}_{n, 2}$, with high probability, $\chi_{o}(\vec{G}) \in\{4,5\}$, but each occurs with positive probability.

Directed Graphs

Results

 DirectionJD Nir

Maybe the exponential gap isn't our fault?

Theorem
 For $\vec{G} \sim \overrightarrow{\mathcal{G}}_{n, 2}$, with high probability, $\chi_{o}(\vec{G}) \in\{4,5\}$, but each occurs with positive probability.

Proof idea: with positive probability, \vec{G} has no oriented 5-cycle.

Directed Graphs

Where to next? Direction JD Nir

Next steps:

- Adapt statistical physics models to directed case.

Directed Graphs

Where to next?

 DirectionJD Nir

Motivation

Undirected
Graphs
Directed Graphs

Next steps:

- Adapt statistical physics models to directed case. Challenge: finding the right type of colouring.

Directed Graphs

Where to next?

 DirectionJD Nir

Motivation
Undirected
Graphs
Directed Graphs

Next steps:

- Adapt statistical physics models to directed case. Challenge: finding the right type of colouring.
- Lower bound on concentration window length?

Directed Graphs

Where to next?

Direction
JD Nir

Motivation

Next steps:

- Adapt statistical physics models to directed case. Challenge: finding the right type of colouring.
- Lower bound on concentration window length?
- Focus on small cases, like $d=3$. Great workshop problem!

Thanks!

Thank you!

