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Review of standard Lieb-Robinson bounds
General quantum spin system: Spins
fixed to sites of a finite lattice Λ. Local
and bounded interactions hxy .

Hamiltonian: On Hilbert space
⊗

j∈Λ Cd , consider

HΛ =
∑
x∼y

hxy , x ∼ y nearest-neighbors

(Also OK: Sufficiently rapidly decaying interactions and/or
unbounded on-site interactions.)

Dynamics: For an observable A, set A(t) = e itHΛAe−itHΛ

Lieb-Robinson bound: For any observables A and B

‖[A(t),B]‖ ≤ C‖A‖‖B‖eξ(vt−d(A,B))

where d(A,B) = dist(suppA, suppB).



Interpretation of Lieb-Robinson bounds

Lieb-Robinson (LR) bound:

‖[A(t),B]‖ ≤ C‖A‖‖B‖eξ(vt−d(A,B))

Note that LHS = 0 at time t = 0 (if d(A,B) > 0)

Interpretation: Correlations between
A and B stay localized within an ef-
fective light cone d(A,B) ≤ vt up to
exponentially small errors.

Foss-Feig et al., PRL 114 (2014)

→ Quantum spin systems mimick the “region of causality” of
relativistic systems. The underlying lattice is crucial for this.

Remarks: (i) Proof uses that interactions are bounded and local.
In particular, the constants C , v , ξ depend on maxx∼y ‖hxy‖
(ii) v is called the “Lieb-Robinson velocity” (Of course, v � c .)



Short history of Lieb-Robinson bounds

• 1974: First proof by Lieb & Robinson

• ...(crickets)...

• 2004: Hastings uses and extends LR bounds as a tool in the
proof of higher-dimensional Lieb-Schultz-Mattis theorem

• 2005: Nachtergaele & Sims widely extend LR bounds; use
them as a tool to prove exponential clustering (independently:
Hastings-Koma)

• 2006: Nachtergaele-Ogata-Sims use LR bounds as a tool to
prove existence of infinite-volume dynamics

• 2006: Bravyi-Hastings-Verstraete identify several useful
corollaries of LR bounds (e.g., bounds on dynamical
generation of entanglement and topological order)

• 2007: Hastings proof of area law for gapped 1D spin chains
using LR bounds as a tool

• 2007-today: many extensions and diverse applications of LR
bounds (e.g., to lattice fermions by Nachtergaele-Sims-Young)



Unreasonable effectiveness of Lieb-Robinson bounds

Corollary (example): Local operators spread at most with speed v

‖A(t)− Ar (t)‖ ≤ Ceξ(vt−r)

where Ar (t) = TrΛ\(suppA+r)A(t) is supported in suppA + r .

Main message: Lieb-Robinson bounds are an extremely versatile
analytical tool for many body physics with decisive applications in,
e.g.,

• quantum information theory (1D area law)

• condensed-matter physics (classification of quantum phases)

• high-energy physics (fast scrambling)

Question: Why are Lieb-Robinson bounds so useful? In a nutshell:

local and bounded interactions
LRBs
=⇒ locality of dynamics



How restrictive are the assumptions on the interaction?
Restriction: To prove LR bound, the two assumptions on the
interaction between different sites were critical:

(a) local (short-ranged)

(b) bounded

...but there are many relevant physical systems for which these fail!

Remove (a) → long-range bounded interactions: Massive
research effort in the last 10 years has essentially resolved this
problem. (Experimentally relevant, e.g., for Rydberg atoms)

Remove (b) → unbounded interactions: Much less understood!
(But experimentally observed, e.g., for ultracold bosons in optical
traps.) Most results for the paradigmatic Bose-Hubbard model.

HBH =
∑
x ,y

Jxyb
†
xby +

∑
x

V (nx)

Prototypical case: Jxy = δx∼y and V (nx) = U
2 nx(nx − 1)− µnx



Brief literature review of bosonic Lieb-Robinson bounds
Key restriction: Lieb-Robinson bound only known for special
initial states. (Absence of particles helps because ‖nx‖ =∞.)

Main challenge: Control positive density states e.g. Mott states⊗
x∈Λ

(b†x)νx |0〉x , with νx ∈ {0, 1, 2, . . .} occupation no.’s

Nachtergaele-Raz-Schlein-Sims (’07): LRB in oscillator systems

Eisert-Gross (’09): Construction of unbounded interaction where
information spreads super-ballistically

Schuch-Harrison-Osborne-Eisert (’11): Initially all particles
localized in finite region, control transport into empty space.
Follow-up by Wang-Hazzard (’20).

Kuwahara-Saito (’21): Perturbations of stationary state with
controlled average density spread at most (almost-)ballistically.
→ first meaningful result at positive density!

Yin-Lucas (’21): Bound on Tr(e−µN [A(t),B]).



Setup for the first result

For Λ ⊂ Zd , recall the Bose-Hubbard Hamiltonian

HBH =
∑
x ,y

Jxyb
†
xby +

∑
x

V (nx)

Question 1: Can we extend the previous result bounding transport
into initially empty space to bounding transport through initially
empty space?

Hopping assumption: For some integer p ≥ 2,

κ
(p)
J = sup

x∈Λ

∑
y∈Λ

|x − y |p|Jxy | ≤ C (C independent of Λ)

Examples: (i) If Jxy . |x − y |−α, then p = α− d − 1, so
α ≥ d + 3 works.
(ii) For nearest-neighbor hopping Jxy , can take any p.

(iii) We call vmax = κ
(1)
J the maximal propagation speed.



The first result

Theorem (Faupin-L-Sigal 2021)

Let A,B commute with N and suppA ⊂ Br , suppB ⊂ Λ \ BcR .
Suppose that nxϕ = 0 for x ∈ BR \ Br . Then

〈ϕ, [A(t),B]ϕ〉 ≤ C

(
vmaxt

2(R − r)

)p−2

‖A‖‖B‖〈ϕ,Nϕ〉

Interpretation: Trans-
port through a region
that initially has no par-
ticles happens at most at
speed

vmax =
∑
xy

|Jxy ||x − y |(
for n.n.

= 2d |J|
)



Comments on first result
More general version allows for:

• Some particles inside annulus (but not fixed positive density)

• Unbounded observables A and B not necessarily commuting
with N (e.g., polynomials in b†x , bx) → replace ‖A‖‖B‖ by
suitably N-weighted norms

Compared to result for spin systems this has three restrictions:

(i) matrix elements instead of norms (expected, if not necessary)

(ii) mild restrictions on observables

(iii) requires few particles inside annulus

→ Result paves the way for adapting LR-based proofs to bosonic
situations where these requirements are met.

Consequence (example): With A and ϕ as before and ρ < R−r
2 ,

〈ϕ, (A(t)− Aρ(t))ϕ〉 ≤ C

(
vmaxt

2(R − r)

)p−2

‖A‖〈ϕ,Nϕ〉,

where Aρ(t) = TrΛ\(suppA+rho)A(t) is supported in suppA + ρ.



The second result
Question 2: Can we treat general positive-density states if we
only want to bound transport of macroscopic fraction of particles
(“thermodynamic perspective”)?

Normalized local particle number: For X ⊂ Λ,

N̄X =
1

N

∑
x∈X

nx , X c = Λ \ X .

Let dXY = dist (X ,Y ) and ψt = e−itHΛψ0.

Theorem (Faupin-L-Sigal 2021)

Let v > vmax and 0 ≤ η < ξ ≤ 1. Let PN̄Xc≤ηψ0 = ψ0. Then

〈ψt ,PN̄Y≥ξψt〉 ≤ C

(
vt

dXY

)p−1



Interpretation of second result

For PN̄Xc≤ηψ0 = ψ0, we have

〈ψt ,PN̄Y≥ξψt〉 ≤ C

(
vt

dXY

)p−1

The transport of 1% of the particles
from X to Y takes time proportional
to d(X ,Y ).

“A macroscopic cloud of particles
moves at most at speed vmax.”

Result does not require any constraint
on the local particle density.



Main proof idea for Result 2: ASTLOs

Technique: “adiabatic spacetime localization observables”
(ASTLOs); inspired by technique first developed for one-body
Schrödinger operators −∆ + V on L2(Rd).

Idea: Dynamically track local parti-
cle number outside of the light cone
but in an adiabatically smeared-out
way, where only particles at distance
∼ d(X ,Y ) from the light cone are fully
counted.
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Cutoff profile χ

Definition of ASTLO: Let χ : R+ → [0, 1] be a really nice cutoff
function. Set

At =
1

N

∑
x∈Λ

χ

(
|x | − diamX − vt

εdXY

)
nx

for ε sufficiently small but fixed.



Second-order ASTLO

Heuristic: Adiabatic smearing leads to controllable time derivative
and thus precise tracking of number of particles outside the light
cone.

For result 1, this can be implemented. For result 2, we need to
smear out the spectral projectors PN̄Y≥ξ as well.

Second-order ASTLO: Let f : R+ → [0, 1] be a nice cutoff
function such that f = 0 until η and f = 1 after ξ. Then set

Φ(t) = f (At)

With 〈·〉t ≡ 〈·〉ψt , we have

〈Φ(0)〉0 = 0, 〈PN̄Y≥ξ〉t ≤ 〈Φ(t)〉ψt =

∫ t

0

d

dτ
〈Φ(τ)〉τdτ

so it suffices to control growth rate of 〈Φ(t)〉t in time.



Key estimates on time derivative
We calculate the time derivative and recall Φ(t) ≡ f (At).

d

dt
〈Φ(t)〉t = 〈DΦ(t)〉t , DΦ(t) ≡ Φ′(t) + i [H,Φ(t)].

Key technical estimate: Given cutoff functions f , χ there exist
f̃ , χ̃ such that we have the differential inequality

Df (At) ≤ −
v − vmax

s
f ′(At)A′t +

C

s2
f̃ ′(Ãt)Ã′t +

C

sp
. (1)

Proved by iterated commutator expansion of [H,Φ(t)] using
resolvents (starting from Helffer-Sjöstrand formula) and some
analytical tricks to get operator inequalities.

Observation: The leading and subleading terms in (1) are of the
same structure → iteration possible!∫ t

0
〈f ′(Ar )A′r 〉r ≤

C

s

∫ t

0
〈f̃ ′(Ãr )Ã′r 〉r︸ ︷︷ ︸
≤C

s
etc.

+
C

sp−1



Summary and open problems

Summary: New Lieb-Robinson bounds for Bose-Hubbard model
Result 1: LRB through initially particle-free region.
Result 2: Bound on transport of macroscopic particle clouds for
general initial states.

New analytical proof tool: Adiabatic space-time localization
observables (ASTLO) Φ(t)

Two key properties: (i) Φ(t) dynamically tracks particles far
(namely at distance & εdXY ) outside of light cone
(ii) 〈Φ(t)〉t can be shown to be slowly varying by commutator
expansion; its growth can then be controlled by iteration trick.

Open problems:

• Use Result 1 to develop (suitably restricted) bosonic analog of
LPPL principle, quasi-adiabatic evolution, etc.

• Macroscopic transport of other physical quantities, e.g.,
entanglement?



Thank you for your attention!


