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• Chen, Gu, and Wen, Phys. Rev. B 83 (3) (2011).
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Quantum complexity generically grows linearly in time  
for a time exponential in the system size.
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Figure 1. a. The evolution of complexity of under random quan-
tum circuits was conjectured in Ref. [14] to grow linearly until times
exponential in the number of qubits n. b. In the space of n-qubit
unitaries (blue), we measure the complexity of a unitary U as the
number of two-qubit gates necessary to effect U (green jagged path;
each path segment is a gate). Nielsen’s complexity [22, 45, 47, 48],
considered in Ref. [14], attributes a high metric cost to directions in
unitary space corresponding to nonlocal operators; the complexity
of U is the shortest path in this geometry connecting 1 to U (red
path). Nielsen’s geometry invites the toolbox of differential geome-
try, avoiding the discrete nature of circuits. The circuit complexity
upper bounds the Nielsen complexity; opposite bounds hold for ap-
proximate notions of circuit complexity [22].

proach (Figure 1b) [22, 45, 47, 48]. Further evidence for the
conjecture has arisen from counting arguments [57].

Brandao et al. [10] recently proved a key result on the
growth of quantum complexity of random circuits by leverag-
ing the toolbox of t-designs. The latter are finite collections of
unitaries that approximate completely random unitaries [49].
Specifically, Ref. [10] proved a robust polynomial growth of
quantum complexity in the size of a random circuit. In the
regime of high local dimension, the growth in complexity was
even shown to be linear in the size of the random circuit.

We prove that the circuit complexity of a random circuit
grows linearly with time (with the number of gates applied).
We consider unitaries constructed from quantum circuits com-
posed of Haar-random two-qubit gates. The key idea of our
proof is to consider globally the set of all unitaries that can be
generated with a fixed arrangement of gates. We show that the
dimension of this set, which we call accessible dimension, is a
good proxy quantity for the quantum complexity of almost all
unitaries in this set. Our bound on the complexity holds for
all random circuits described above, with probability 1. In-
stead of invoking unitary designs [10] or Nielsen’s geometric
approach [22, 45, 47, 48], we employ elementary aspects of
differential topology and algebraic geometry, combined with
an inductive construction of Clifford circuits. Clifford circuits
play a pivotal role in quantum computing, as circuits that can
easily be implemented fault-tolerantly [27, 28].

This work is organized as follows. First, we introduce the
setup and definitions. Second, we present the main result, the
complexity’s exponentially long linear growth. We present a
high-level overview of the proof third. The key mathematical
steps follow, in the methods section. Two corollaries follow:
an extension to random arrangements of gates and an exten-
sion to slightly imperfect gates. In the discussion, we compare
our results with known results and explain our work’s impli-
cations for various subfields of quantum physics. Finally, we

discuss the opportunities engendered by this work. In Ap-
pendix A of Ref. [2], we review elementary algebraic geome-
try required for the proof. Proof details appear in Appendix B.
We elaborate on states’ complexities in Appendix C. We
prove two corollaries in Appendices D and E. Finally, we
compare notions of circuit complexity in Appendix F.

Preliminaries. This work concerns a system of n qubits.
For convenience, we assume that n is even. We simplify
tensor-product notation as |0ki := |0i⌦k, for k = 1, 2, . . . , n;
and 1k denotes the k-qubit identity operator. Let Uj,k denote
a unitary gate that operates on qubits j and k. Such gates need
not couple the qubits together and need not be geometrically
local. An architecture is an arrangement of some fixed num-
ber R of gates [Figure 2(a)].

Definition 1 (Architecture). An architecture is a directed
acyclic graph that contains R 2 Z>0 vertices (gates). Two
edges (qubits) enter each vertex, and two edges exit.

Figures 2(b) and 2(c) illustrate example architectures gov-
erned by our results.

• A brickwork is the architecture of any circuit formed
as follows: Apply a string of two-qubit gates: U1,2 ⌦
U3,4 ⌦ . . .⌦ Un�1,n. Then, apply a staggered string of
gates, as shown in Fig. 2(b). Perform this pair of steps
T times total, using possibly different gates each time.

• A staircase is the architecture of any circuit formed as
in Fig. 2(c): Apply a stepwise string of two-qubit gates:
Un,n�1Un�2,n�1 . . . U2,1. Repeat this process T times,
using possibly different gates each time.

The total number of gates in the brickwork architecture, as in
the staircase architecture, is R = (n�1)T . Our results extend
to more-general architectures, e.g., the architecture depicted
in Fig. 2(a) and architectures of non-nearest-neighbor gates.
Circuits of a given architecture can be formed randomly.

Definition 2 (Random quantum circuit). Let A denote an ar-
bitrary architecture. A probability distribution can be induced
over the architecture-A circuits as follows: For each vertex in
A, draw a gate Haar-randomly from SU(4). Then, contract
the unitaries along the edges of A. Each circuit so constructed
is called a random quantum circuit.

Implementing a unitary with the optimal gates, in the optimal
architecture, concretizes the notion of complexity.

Definition 3 (Exact circuit complexities). Let U 2 SU(2n)
denote an n-qubit unitary. The (exact) circuit complexity
Cu(U) is the least number of two-qubit gates in any circuit
that implements U . Similarly, let | i denote a pure quantum
state vector. The (exact) state complexity Cstate(| i) is the
least number r of two-qubit gates U1, U2, . . . , Ur, arranged
in any architecture, such that U1U2 . . . Ur|0ni = | i.

We now define the concept of a backwards-light-cone,
which we use to ensure that the circuits we consider are suffi-
ciently well connected. Consider creating two vertical cuts in
a circuit (dashed lines in Fig. 2). The gates between the cuts



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.  as input to quantum computation|0⟩⊗n



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.

~ clean scrap paper
 as input to quantum computation|0⟩⊗n



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.

~ clean scrap paper
 as input to quantum computation|0⟩⊗n

a resource



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.

~ clean scrap paper
 as input to quantum computation|0⟩⊗n

a resource

• Resource theory: simple quantum-information-theoretic model 
for constrained operations

• Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.

~ clean scrap paper
 as input to quantum computation|0⟩⊗n

a resource

• Resource theory: simple quantum-information-theoretic model 
for constrained operations

• Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.

~ clean scrap paper
 as input to quantum computation|0⟩⊗n

a resource

• Resource theory: simple quantum-information-theoretic model 
for constrained operations

• Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).
• Uses: formalize, and calculate optimal efficiencies of, operational tasks



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.

~ clean scrap paper
 as input to quantum computation|0⟩⊗n

a resource

• Resource theory: simple quantum-information-theoretic model 
for constrained operations

• Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).
• Uses: formalize, and calculate optimal efficiencies of, operational tasks

Example: distill 
high-quality entanglement



2 complexity conjectures by Brown and Susskind

Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

(2) A resource theory for uncomplexity can be defined.

• State complexity: difficulty of preparing a desired state from |0⟩⊗n

• Uncomplexity: (maximal complexity)  (actual complexity)−
• Uncomplexity is useful.

~ clean scrap paper
 as input to quantum computation|0⟩⊗n

a resource

• Resource theory: simple quantum-information-theoretic model 
for constrained operations

• Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).
• Uses: formalize, and calculate optimal efficiencies of, operational tasks

Example: distill 
high-quality entanglement



2 complexity conjectures by Brown and Susskind
Proofs of

(1) Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. 
(in press) arXiv:2106.05305.

(2) NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, 
arXiv:2110.11371 (2021).



2 complexity conjectures by Brown and Susskind
Proofs of

(1) Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. 
(in press) arXiv:2106.05305.

(2) NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, 
arXiv:2110.11371 (2021).



Where we’re headed



Where we’re headed

• Why is the problem hard?



Where we’re headed

• Setting the stage

• Why is the problem hard?



Where we’re headed

• Setting the stage

• Introduce terminology + mindset

• Why is the problem hard?



Where we’re headed

• Setting the stage

• Introduce terminology + mindset

• Main theorem

• Why is the problem hard?



Where we’re headed

• Setting the stage

• Introduce terminology + mindset

• Main theorem

• Proof sketch

• Why is the problem hard?



Where we’re headed

• Setting the stage

• Introduce terminology + mindset

• Main theorem

• Proof sketch

• Opportunities

• Why is the problem hard?



Lower-bounding quantum complexity  
for an exponentially long time is difficult.



• Knill, arXiv:9508006 (1995). 
Nielsen, arXiv:0502070 (2005). 
Gosset et al., Quant. Inf. Comp. 14, 1277 (2014). 
Roberts and Yoshida, JHEP 121, 121 (2017). 
Brandão et al., PRX Quantum 2, 030316 (2021). 
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 
170502 (2016). 
Eisert, Phys. Rev. Lett. 127, 020501 (2021). 
…

Lower-bounding quantum complexity  
for an exponentially long time is difficult.



• Knill, arXiv:9508006 (1995). 
Nielsen, arXiv:0502070 (2005). 
Gosset et al., Quant. Inf. Comp. 14, 1277 (2014). 
Roberts and Yoshida, JHEP 121, 121 (2017). 
Brandão et al., PRX Quantum 2, 030316 (2021). 
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 
170502 (2016). 
Eisert, Phys. Rev. Lett. 127, 020501 (2021). 
…

• Workarounds, earlier approaches

Lower-bounding quantum complexity  
for an exponentially long time is difficult.



• Knill, arXiv:9508006 (1995). 
Nielsen, arXiv:0502070 (2005). 
Gosset et al., Quant. Inf. Comp. 14, 1277 (2014). 
Roberts and Yoshida, JHEP 121, 121 (2017). 
Brandão et al., PRX Quantum 2, 030316 (2021). 
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 
170502 (2016). 
Eisert, Phys. Rev. Lett. 127, 020501 (2021). 
…

• Workarounds, earlier approaches
• Focus on short times.

Lower-bounding quantum complexity  
for an exponentially long time is difficult.



• Knill, arXiv:9508006 (1995). 
Nielsen, arXiv:0502070 (2005). 
Gosset et al., Quant. Inf. Comp. 14, 1277 (2014). 
Roberts and Yoshida, JHEP 121, 121 (2017). 
Brandão et al., PRX Quantum 2, 030316 (2021). 
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 
170502 (2016). 
Eisert, Phys. Rev. Lett. 127, 020501 (2021). 
…

• Workarounds, earlier approaches
• Focus on short times.
• Focus on high-dimensional subsystems.

Lower-bounding quantum complexity  
for an exponentially long time is difficult.



• Knill, arXiv:9508006 (1995). 
Nielsen, arXiv:0502070 (2005). 
Gosset et al., Quant. Inf. Comp. 14, 1277 (2014). 
Roberts and Yoshida, JHEP 121, 121 (2017). 
Brandão et al., PRX Quantum 2, 030316 (2021). 
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 
170502 (2016). 
Eisert, Phys. Rev. Lett. 127, 020501 (2021). 
…

• Workarounds, earlier approaches
• Focus on short times.
• Focus on high-dimensional subsystems.
• Use unitary -designs.t

Lower-bounding quantum complexity  
for an exponentially long time is difficult.



• Knill, arXiv:9508006 (1995). 
Nielsen, arXiv:0502070 (2005). 
Gosset et al., Quant. Inf. Comp. 14, 1277 (2014). 
Roberts and Yoshida, JHEP 121, 121 (2017). 
Brandão et al., PRX Quantum 2, 030316 (2021). 
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 
170502 (2016). 
Eisert, Phys. Rev. Lett. 127, 020501 (2021). 
…

• Workarounds, earlier approaches
• Focus on short times.
• Focus on high-dimensional subsystems.

• Assume a lack of collisions.
• Use unitary -designs.t

Lower-bounding quantum complexity  
for an exponentially long time is difficult.



Why:

Lower-bounding quantum complexity is difficult.



• Later gates can cancel earlier gates

Why:

Lower-bounding quantum complexity is difficult.



• Later gates can cancel earlier gates complexity can conceivably decrease

Why:

Lower-bounding quantum complexity is difficult.



• Later gates can cancel earlier gates complexity can conceivably decrease

CNOT

Why:

Lower-bounding quantum complexity is difficult.



• Later gates can cancel earlier gates complexity can conceivably decrease

CNOT CNOT

Collision

Why:

Lower-bounding quantum complexity is difficult.



• Later gates can cancel earlier gates complexity can conceivably decrease

CNOT CNOT

Collision

• Common assumption: Collisions almost never happen.

Why:

Lower-bounding quantum complexity is difficult.



• Later gates can cancel earlier gates complexity can conceivably decrease

CNOT CNOT

Collision

• Common assumption: Collisions almost never happen.
• Difficult to prove

Why:

Lower-bounding quantum complexity is difficult.
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Setting the stage

•  qubitsn

• Circuit of Haar-random 2-qubit unitary gates ∈ SU(4)

•  |ψ k⟩ := |ψ⟩⊗k

•  σz = |0⟩⟨0 | − |1⟩⟨1 |

• Captures features of chaos
• Needn’t be geometrically local

Assume even, for simplicity
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G2,3 G′ 2,3

G′ 1,2 G′ ′ 1,2
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• Contract the gates in the circuit unitary U ∈ SU(2n)

Contraction map  
FA

Terminology + mindset
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• Suppose that there exists a qubit t
each beginning-of-block qubit .t′ 

may be unique to t′ 

that connects, via a path of gates, to

• Gates in paths form backward light cone
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1
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Block is well-connected

Terminology + mindset



Theorem: Linear growth of complexity



Theorem: Linear growth of complexity

•  = any architecture formed by concatenatingA
 blocks of  gates each,T ≤ L



Theorem: Linear growth of complexity

•  = any architecture formed by concatenatingA
 blocks of  gates each,T ≤ L

each block containing a backward light cone.



Theorem: Linear growth of complexity

each block containing a backward light cone.

•  = any architecture formed by concatenatingA

n

1
2

⋮

 blocks of  gates each,T ≤ L



Theorem: Linear growth of complexity

each block containing a backward light cone.

•  = any architecture formed by concatenatingA

n

1
2

⋮

 gates≤ L

 blocks of  gates each,T ≤ L



Theorem: Linear growth of complexity

each block containing a backward light cone.

•  = any architecture formed by concatenatingA

n

1
2

⋮

 gates≤ L  copiesT

 blocks of  gates each,T ≤ L



Theorem: Linear growth of complexity

each block containing a backward light cone.

•  = any architecture formed by concatenatingA

n

1
2

⋮

 gates≤ L  copiesT

 blocks of  gates each,T ≤ L
•  = total number of gatesR



Theorem: Linear growth of complexity

•  = unitary implemented by any random quantum circuit in architecture U A

each block containing a backward light cone.

•  = any architecture formed by concatenatingA

n

1
2

⋮

 gates≤ L  copiesT

 blocks of  gates each,T ≤ L
•  = total number of gatesR



Theorem: Linear growth of complexity

•  = unitary implemented by any random quantum circuit in architecture U A

each block containing a backward light cone.

• Unitary’s exact complexity:

•  = any architecture formed by concatenatingA

n

1
2

⋮

 gates≤ L  copiesT

 blocks of  gates each,T ≤ L
•  = total number of gatesR



Theorem: Linear growth of complexity

•  = unitary implemented by any random quantum circuit in architecture U A

each block containing a backward light cone.

• Unitary’s exact complexity:   𝒞(U) ≥
R
9L

−
n
3

, for all .T ≤ 4n − 1

•  = any architecture formed by concatenatingA

n

1
2

⋮

 gates≤ L  copiesT

 blocks of  gates each,T ≤ L
•  = total number of gatesR



Theorem: Linear growth of complexity

•  = unitary implemented by any random quantum circuit in architecture U A

each block containing a backward light cone.

• Unitary’s exact complexity:   𝒞(U) ≥
R
9L

−
n
3

,

•  = any architecture formed by concatenatingA

n

1
2

⋮

 gates≤ L  copiesT

 blocks of  gates each,T ≤ L
•  = total number of gatesR

for all .T ≤ 4n − 1



Theorem: Linear growth of complexity

•  = unitary implemented by any random quantum circuit in architecture U A

each block containing a backward light cone.

• Unitary’s exact complexity:   𝒞(U) ≥
R
9L

−
n
3

,

Negligible at 
exponential times
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G4,5
G′ n−1,n

G′ 4,5
G′ ′ n−1,n

• Slot in gates + contract (apply )FA unitary
• Set of all such unitaries (image of ): FA 𝒰(A)
• Accessible dimension, :dA number of degrees of freedom  

needed to describe  locally𝒰(A)
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• Rigorous definition rooted in algebraic geometry

the set of solutions to   a set of equations and inequalities

• Example: SU(4)×R

Set of equations: {U†U = 1, det(U) = 1}

• Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, 
Springer Science & Business Media (2013).

• Algebraic set: the set of solutions to   a set of equations

• Generalization: semialgebraic set:
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Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn

then  is a semialgebraic set.F(W ) =: W′ 



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn

then  is a semialgebraic set.F(W ) =: W′ 

SU(4)×R



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn

then  is a semialgebraic set.F(W ) =: W′ 

SU(4)×R

contraction map FA



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn

then  is a semialgebraic set.F(W ) =: W′ 

SU(4)×R

contraction map FA

• Why  is a polynomial function: multiplies matrix elements togetherFA



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn

then  is a semialgebraic set.F(W ) =: W′ 

SU(4)×R

contraction map FA

𝒰(A)
• Why  is a polynomial function: multiplies matrix elements togetherFA



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn

then  is a semialgebraic set.F(W ) =: W′ 

SU(4)×R

contraction map FA

𝒰(A)

• Every semialgebraic set  decomposes into a union of manifolds:W′ W′ = ⋃
j

Mj .

• Why  is a polynomial function: multiplies matrix elements togetherFA



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn

then  is a semialgebraic set.F(W ) =: W′ 

SU(4)×R

contraction map FA

𝒰(A)

• Every semialgebraic set  decomposes into a union of manifolds:W′ W′ = ⋃
j

Mj .
• Dimension of semialgebraic set : the greatest dimension of  

   any manifold in the decomposition

• dim(W′ ) := max
j

{dim(Mj)}

• Why  is a polynomial function: multiplies matrix elements togetherFA



Key proof idea: architecture’s accessible dimension

• Tarski-Seidenberg principle : If  is a semialgebraic setW
and  is a polynomial map,F : ℝm → ℝn

then  is a semialgebraic set.F(W ) =: W′ 

SU(4)×R

contraction map FA

𝒰(A)
• Why  is a polynomial function: multiplies matrix elements togetherFA

• Every semialgebraic set  decomposes into a union of manifolds:W′ W′ = ⋃
j

Mj .
• Dimension of semialgebraic set : the greatest dimension of  

   any manifold in the decomposition

• dim(W′ ) := max
j

{dim(Mj)}

• accessible dimension of architecture dim(𝒰(A)) = A
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• Key proof 
elements:

(1) Lower bound on accessible dimension (the toughest step):

Transform the Pauli operators to  
the Pauli operators (to within phases)

✦ Arbitrary nontrivial -qubit Pauli string n P ↦

✦ Construction of Clifford circuit

 via Clifford circuitZn
• Cleve et al., Quant. Inf. Comp. 16, 0721 (2016). 

Webb, arXiv:1510.02769 (2015). 
Zhu, Phys. Rev. A 96, 062336 (2017).

Our bound holds for .T ≤ 4n − 1

✦ The -qubit Pauli strings form a basis for 
the space of -qubit Hermitian operators.

n
n

✦ Number of nontrivial -qubit Pauli strings: n 4n − 1

✦ Algebraic geometry, differential topology
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(2) Upper bound on accessible dimension

• dA ≤ 9R + 3n

• Proof strategy: parameter counting Ask during Q&A

Proof sketch
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• Sample a unitary  from  uniformly randomly.U 𝒰(A)

•  = architecture formed from  blocks,A T
each containing a backward light cone and  gates≤ L

• Total number of gates: R ≤ TL

• Assume the theorem’s assumptions.

• Set of corresponding unitaries: 𝒰(A)

• With what probability can  be implemented with  gates?U R′ <
R
9L

−
n
3

does ?𝒞(U) <
R
9L

−
n
3

Show that the probability = 0, using lemmata (1) and (2).
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• Lemma:  forms a measure-0 subset of .𝒰(A′ ) 𝒰(A)
• Proof tool: dimension theory of real algebraic sets

  If you randomly pick a  effected with  
      a sufficiently connected -gate circuit,
∴ U

R
you can implement  with a smaller -gate circuitU R′ 

with probability 0.👍

  ∴ dA′ < dA
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• Applications to resource theory: 
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1
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Lower bound on complexity High probability 
of being obeyed
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• Key proof tool: Chebyshev’s/Markov’s inequality
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• We’re extending  to include all the unitaries 
close in some matrix norm.

𝒰(A′ )

• The set grows in all directions in unitary space.

 The accessible dimension leaps to its maximum, .⇒ 4n

 The accessible dimension is too crude a tool.⇒

Extensions
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•  = architecture formed from  blocks,A T
each containing a backward light cone and  gates≤ L

• Total number of gates: R ≤ TL

Setup

• Rank of the Jacobian of FA

Recasting

Complexity accessible dimension rank of FA

• Defined at a point x ∈ SU(4)×R

• If you perturb , along how many  
directions can  spread?

x
U
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= exp (iϵH) Ũj
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= exp (iϵH) Ũj
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Figure 4. Our core technical result is a lower bound on the accessible dimension (see Fig. 3). We prove this bound using a construction based
on Clifford circuits. (a) Each gate Uj is perturbed with a unitary ei✏j,kSk , generated by a 2-qubit Pauli operator Sk and parameterized with
an infinitesimal ✏j,k 2 R. Perturbing the gate perturbs the n-qubit unitary, turning U into Ũ ⇡ U . (b) A key quantity is the derivative of Ũ
with respect to a parameter ✏j,k, evaluated at U . Taking this derivative is equivalent to inserting the Pauli string Sk immediately after the gate
Uj . (c) The derivative depicted in panel (b) is equivalent to following the circuit with a Hermitian operator Kj,k [Eq. (1)]. The operator Kj,k

results from conjugating Sk with the gates after Uj . If the circuit consists of Clifford gates, then Kj,k is a Pauli string, since Clifford gates
map the Pauli strings to Pauli strings. Therefore, a perturbation of Uj in the direction of Sk results in a perturbation of the resulting unitary
U in the direction of Kj,k in SU(2n). (d) The following is true of every backwards-light-cone–containing block and every Pauli string P
(leftmost green squares): The block’s gates can be chosen to be Cliffords that map P to a single-site Z. The Clifford gates first map P to a
Pauli string that acts nontrivially on fewer qubits (pale green squares), then to a Pauli string on fewer qubits, and so on until the Pauli string
dwindles to one qubit (rightmost green square). (e) Our lower bound is proven by recursion. Consider an architecture AT 0 , formed from T 0

backwards-light-cone–containing blocks, whose accessible dimension is � T 0. There exist gates U1, U2, . . . , UR0 such that that T 0 linearly
independent Pauli operators K0

jm,km
(wherein m = 1, 2, . . . , T 0) result from perturbing the gates, as described in (a)–(c). Consider a Pauli

operator P that is not in {K0
jm,km

}. We can append to AT 0 a backwards-light-cone–containing block, formed from Clifford gates, that maps
P to a single-site Z, as depicted in panel (d). This Z is an important direction in SU(2n): Consider perturbing the block’s final gate via
the procedure in (a)–(c). The image U(AT 0) is perturbed, as a result, in the direction Z. Thus, T 0 + 1 linearly independent Pauli operators
(the operators K0

jm,km
and P ) result from perturbing gates in the extended circuit. Therefore, the extended circuit’s accessible dimension is

� T 0 + 1.

construct a Clifford unitary that reduces the Pauli string’s weight until producing a single-qubit operator. See Appendix B for
details.

We now prove Proposition 1 by recursion. Consider an R0-gate architecture AT 0 formed from T 0 blocks, each containing a
backwards light cone and each of  L gates. Let x0 denote a list of Clifford gates slotted into AT 0 . Assume that FAT 0 (x0) has a
rank � T 0. Consider appending a block containing a light cone to AT 0 . The resulting architecture corresponds to a contraction
map whose rank is � T 0 + 1, we show.

By assumption, we can perturb x0 such that its image FAT 0 (x0) is perturbed in � T 0 independent directions in SU(2n). These
directions can be represented by Pauli operators K 0

jm,km
, wherein m = 1, 2, . . . , T 0, by Eq. (1). Let P denote any Pauli operator

absent from {K 0
jm,km

}. We can append to AT 0 a backwards-light-cone–containing block, forming an architecture AT 0+1 of
T 0+1 backwards light cones. We design the new block from Clifford gates such that two operations are equivalent: (i) applying
P to the input qubits before the extended blocks and (ii) applying the extended block, then a single-site Z. We denote by x00 the
list of gates in x0 augmented with the gates in the extended block. Conjugating the K 0

jm,km
with the new block yields operators

K 00
jm,km

, for m = 1, 2, . . . , T 0. They represent the directions in which the image FAT 0+1(x00) is perturbed by the original
perturbations of AT 0 . The K 00

jm,km
are still linearly independent Pauli operators. Also, the K 00

jm,km
and the single-site Z form

an independent set, because P is not in {K 0
jm,km

}. Meanwhile, the single-site Z is a direction in which the block’s final gate
can be perturbed. The operators Kjm,km , augmented with the single-site Z, therefore span T 0 + 1 independent directions along
which FAT 0+1(x00) can be perturbed. Therefore, T 0 + 1 lower-bounds the rank of FAT 0+1 .

We apply the above argument recursively, starting from an architecture that contains no gates. The following result emerges:
Consider any architecture AT that consists of T backwards-light-cone–containing blocks. At some point x, the map FAT has a
rank lower-bounded by T . Lemma 1 ensures that the same bound applies to dAT .

To conclude the proof of Theorem 1, we address an architecture A0 whose accessible dimension satisfies dA0 < dAT . Consider
sampling a random circuit with the architecture AT . We must show that the circuit has a zero probability of implementing a
unitary in U(A0). To prove this claim, we invoke the constant-rank theorem: Consider any map whose rank is constant locally—
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with respect to a parameter ✏j,k, evaluated at U . Taking this derivative is equivalent to inserting the Pauli string Sk immediately after the gate
Uj . (c) The derivative depicted in panel (b) is equivalent to following the circuit with a Hermitian operator Kj,k [Eq. (1)]. The operator Kj,k

results from conjugating Sk with the gates after Uj . If the circuit consists of Clifford gates, then Kj,k is a Pauli string, since Clifford gates
map the Pauli strings to Pauli strings. Therefore, a perturbation of Uj in the direction of Sk results in a perturbation of the resulting unitary
U in the direction of Kj,k in SU(2n). (d) The following is true of every backwards-light-cone–containing block and every Pauli string P
(leftmost green squares): The block’s gates can be chosen to be Cliffords that map P to a single-site Z. The Clifford gates first map P to a
Pauli string that acts nontrivially on fewer qubits (pale green squares), then to a Pauli string on fewer qubits, and so on until the Pauli string
dwindles to one qubit (rightmost green square). (e) Our lower bound is proven by recursion. Consider an architecture AT 0 , formed from T 0

backwards-light-cone–containing blocks, whose accessible dimension is � T 0. There exist gates U1, U2, . . . , UR0 such that that T 0 linearly
independent Pauli operators K0

jm,km
(wherein m = 1, 2, . . . , T 0) result from perturbing the gates, as described in (a)–(c). Consider a Pauli

operator P that is not in {K0
jm,km

}. We can append to AT 0 a backwards-light-cone–containing block, formed from Clifford gates, that maps
P to a single-site Z, as depicted in panel (d). This Z is an important direction in SU(2n): Consider perturbing the block’s final gate via
the procedure in (a)–(c). The image U(AT 0) is perturbed, as a result, in the direction Z. Thus, T 0 + 1 linearly independent Pauli operators
(the operators K0

jm,km
and P ) result from perturbing gates in the extended circuit. Therefore, the extended circuit’s accessible dimension is

� T 0 + 1.

construct a Clifford unitary that reduces the Pauli string’s weight until producing a single-qubit operator. See Appendix B for
details.

We now prove Proposition 1 by recursion. Consider an R0-gate architecture AT 0 formed from T 0 blocks, each containing a
backwards light cone and each of  L gates. Let x0 denote a list of Clifford gates slotted into AT 0 . Assume that FAT 0 (x0) has a
rank � T 0. Consider appending a block containing a light cone to AT 0 . The resulting architecture corresponds to a contraction
map whose rank is � T 0 + 1, we show.

By assumption, we can perturb x0 such that its image FAT 0 (x0) is perturbed in � T 0 independent directions in SU(2n). These
directions can be represented by Pauli operators K 0

jm,km
, wherein m = 1, 2, . . . , T 0, by Eq. (1). Let P denote any Pauli operator

absent from {K 0
jm,km

}. We can append to AT 0 a backwards-light-cone–containing block, forming an architecture AT 0+1 of
T 0+1 backwards light cones. We design the new block from Clifford gates such that two operations are equivalent: (i) applying
P to the input qubits before the extended blocks and (ii) applying the extended block, then a single-site Z. We denote by x00 the
list of gates in x0 augmented with the gates in the extended block. Conjugating the K 0

jm,km
with the new block yields operators

K 00
jm,km

, for m = 1, 2, . . . , T 0. They represent the directions in which the image FAT 0+1(x00) is perturbed by the original
perturbations of AT 0 . The K 00

jm,km
are still linearly independent Pauli operators. Also, the K 00

jm,km
and the single-site Z form

an independent set, because P is not in {K 0
jm,km

}. Meanwhile, the single-site Z is a direction in which the block’s final gate
can be perturbed. The operators Kjm,km , augmented with the single-site Z, therefore span T 0 + 1 independent directions along
which FAT 0+1(x00) can be perturbed. Therefore, T 0 + 1 lower-bounds the rank of FAT 0+1 .

We apply the above argument recursively, starting from an architecture that contains no gates. The following result emerges:
Consider any architecture AT that consists of T backwards-light-cone–containing blocks. At some point x, the map FAT has a
rank lower-bounded by T . Lemma 1 ensures that the same bound applies to dAT .

To conclude the proof of Theorem 1, we address an architecture A0 whose accessible dimension satisfies dA0 < dAT . Consider
sampling a random circuit with the architecture AT . We must show that the circuit has a zero probability of implementing a
unitary in U(A0). To prove this claim, we invoke the constant-rank theorem: Consider any map whose rank is constant locally—



Construction of  for which x ∈ SU(4)×R r ≥ T

FA(x̃)∂ϵj,k ϵj,k=0
= Kj,k FA(x)

• Hermitian operator

• Say that we perturb gate  in the “direction”  by an amount Uj Sk , ϵj,k .
• Resulting perturbation to the whole unitary:

2

(a) (b)

(c)
(e)

1

2
j j

causal slices

causal slices

(d)

Figure 4. Our core technical result is a lower bound on the accessible dimension (see Fig. 3). We prove this bound using a construction based
on Clifford circuits. (a) Each gate Uj is perturbed with a unitary ei✏j,kSk , generated by a 2-qubit Pauli operator Sk and parameterized with
an infinitesimal ✏j,k 2 R. Perturbing the gate perturbs the n-qubit unitary, turning U into Ũ ⇡ U . (b) A key quantity is the derivative of Ũ
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 will spread in that direction.FA′ ′ (x′ ′ )
• Proof tools:

(2) We can construct a Clifford circuit :  P ↦ Zn .
• Cleve et al., Quant. Inf. Comp. 16, 0721 (2016). 

Webb, arXiv:1510.02769 (2015). 
Zhu, Phys. Rev. A 96, 062336 (2017).
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Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

•  = arbitrary -qubit architecture of  gatesA n R
• # of parameters needed to specify one 2-qubit gate

Naïve guess: # of parameters needed to specify circuit

1
2

⋮

n

= dimension of SU(4) = 42 − 1 = 15
 = 15R

G



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

1
2

⋮

n

G



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

This set of parameters contains redundancies.

1
2

⋮

n

G



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

• This description of  includes a rotation of qubit 2G

This set of parameters contains redundancies.

1
2

⋮

n

G



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

• This description of  includes a rotation of qubit 2G

This set of parameters contains redundancies.

1
2

⋮

n

G

3 parameters



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

• This description of  includes a rotation of qubit 2G

This set of parameters contains redundancies.

3 parameters
• This description of  includes a rotation of qubit 2G′ 

1
2

⋮

n

G
G′ 



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

• This description of  includes a rotation of qubit 2G

This set of parameters contains redundancies.

3 parameters
• This description of  includes a rotation of qubit 2G′ another 3 parameters

1
2

⋮

n

G
G′ 



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

• This description of  includes a rotation of qubit 2G

This set of parameters contains redundancies.

3 parameters
• This description of  includes a rotation of qubit 2G′ another 3 parameters
• (1st rotation) * (2nd rotation) = just 1 rotation

1
2

⋮

n

G
G′ 



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

• This description of  includes a rotation of qubit 2G

This set of parameters contains redundancies.

3 parameters
• This description of  includes a rotation of qubit 2G′ another 3 parameters

 We’re describing just 1 rotation of qubit 2 with 6 parameters∴
• (1st rotation) * (2nd rotation) = just 1 rotation

1
2

⋮

n

G
G′ 



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

• This description of  includes a rotation of qubit 2G

This set of parameters contains redundancies.

3 parameters
• This description of  includes a rotation of qubit 2G′ another 3 parameters

 We’re describing just 1 rotation of qubit 2 with 6 parameters∴
• (1st rotation) * (2nd rotation) = just 1 rotation

3 parameters more 
than necessary

1
2

⋮

n

G
G′ 



Proof of upper bound on accessible dimension, dA ≤ 9R + 3n

• This description of  includes a rotation of qubit 2G

This set of parameters contains redundancies.

3 parameters
• This description of  includes a rotation of qubit 2G′ another 3 parameters

 We’re describing just 1 rotation of qubit 2 with 6 parameters∴
• (1st rotation) * (2nd rotation) = just 1 rotation

3 parameters more 
than necessary Subtract off 3 parameters per shared qubit∴
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G
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 # of parameters needed to specify circuit∴

= 15R − 3(2R − n)
= 9R + 3n
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• Knot: https://falkonry.com/blog/historical-data-the-gordian-knot-of-machine-learning/

Image sources

• Mary, Mary: https://www.catsmeow.com/products/new-mother/mary-mary-quite-contrary
• Home: https://icon-icons.com/icon/house/99129
• Hamilton set: https://www.pinterest.de/pin/569072102906184687/
• Not-so-fast sloth: https://www.teepublic.com/sticker/2782891-not-so-fast
• Opportunity: https://www.moodyonthemarket.com/cornerstone-alliance-publishes-

opportunity-zone-prospectus-for-potential-projects/
• Complexity (“Thanks” slide): https://www.facebook.com/complexandchaos/
• Emptying glass: https://www.istockphoto.com/photos/half-full-glass 

https://www.catsmeow.com/products/new-mother/mary-mary-quite-contrary
https://icon-icons.com/icon/house/99129
https://www.teepublic.com/sticker/2782891-not-so-fast
https://www.istockphoto.com/photos/half-full-glass


• Lemma:  is an algebraic set of measure 0.E<rmax

•  = locus of points  where  achieves rank Ermax
x FA rmax

•  = greatest rank achieved by  at any rmax FA x ∈ SU(4)×R

•  = locus of points  where  achieves rankE<rmax
x FA < rmax

 is an open, measure-1 set.⇔ Ermax

     Accessible dimension = rank: ⇒ dA = rmax .

Proof of lower bound on accessible dimension, dA ≥ T


