Lincar growth of quantum complexity

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

NICOLE YUNGER HALPERN

Quantum complexity

Quantum complexity

- What it is: the difficulty of implementing a unitary on n qubits

Quantum complexity

- What it is: the difficulty of implementing a unitary on n qubits
- Ex.: complexity of $\mathbf{1}=0$

Quantum complexity

- What it is: the difficulty of implementing a unitary on n qubits
- Ex.: complexity of $\mathbf{1}=0$
- Maximum: $\sim 4^{n}$
- Counting argument: Susskind, arXiv:1810.11563 (2018).

Quantum complexity

- What it is: the difficulty of implementing a unitary on n qubits
- Ex.: complexity of $\mathbf{1}=0$
- Maximum: $\sim 4^{n}$
- Counting argument: Susskind, arXiv:1810.11563 (2018).
- Multiplicity of quantifications

Quantum complexity has been echoing across many-body physics.

Quantum complexity has been echoing across many-body physics.

(1) Quantum computation

Quantum complexity has been echoing across many-body physics.

(1) Quantum computation \longrightarrow quantum advantage/supremacy

- Ex.: Arute et al., Nature 574, 505 (2019).

Quantum complexity has been echoing across many-body physics.

(1) Quantum computation \longrightarrow quantum advantage/supremacy

- Ex.: Arute et al., Nature 574, 505 (2019).
- Quantum computer achieves advantage upon preparing a sufficiently complex state

Quantum complexity has been echoing across many-body physics.

(1) Quantum computation \longrightarrow quantum advantage/supremacy

- Ex.: Arute et al., Nature 574, 505 (2019).
- Quantum computer achieves advantage upon preparing a sufficiently complex state
(2) Condensed matter

Quantum complexity has been echoing across many-body physics.

(1) Quantum computation \longrightarrow quantum advantage/supremacy

- Ex.: Arute et al., Nature 574, 505 (2019).
- Quantum computer achieves advantage upon preparing a sufficiently complex state
(2) Condensed matter
- Gapped Hamiltonian is in nontrivial topological phase only if the ground state has a complexity > constant in the system size
- Chen, Gu, and Wen, Phys. Rev. B 83 (3) (2011).

Quantum complexity has been echoing across many-body physics.
(3) Wormhole-growth paradox in AdS/CFT

- Hartman and Maldacena, JHEP 5, 014 (2013). • Susskind, Fort. Phys. 64, 24 (2016).

Quantum complexity has been echoing across many-body physics.
(3) Wormhole-growth paradox in AdS/CFT

- Hartman and Maldacena, JHEP 5, 014 (2013). • Susskind, Fort. Phys. 64, 24 (2016).

Quantum complexity has been echoing across many-body physics.
(3) Wormhole-growth paradox in AdS/CFT

- Hartman and Maldacena, JHEP 5, 014 (2013). • Susskind, Fort. Phys. 64, 24 (2016).

Quantum complexity has been echoing across many-body physics.
(3) Wormhole-growth paradox in AdS/CFT

- Hartman and Maldacena, JHEP 5, 014 (2013). • Susskind, Fort. Phys. 64, 24 (2016).

Quantum complexity has been echoing across many-body physics.
(3) Wormhole-growth paradox in AdS/CFT

- Hartman and Maldacena, JHEP 5, 014 (2013). • Susskind, Fort. Phys. 64, 24 (2016).

Quantum complexity has been echoing across many-body physics.
(3) Wormhole-growth paradox in AdS/CFT

- Hartman and Maldacena, JHEP 5, 014 (2013). • Susskind, Fort. Phys. 64, 24 (2016).

Quantum complexity has been echoing across many-body physics.
(3) Wormhole-growth paradox in AdS/CFT

- Hartman and Maldacena, JHEP 5, 014 (2013). • Susskind, Fort. Phys. 64, 24 (2016).

$$
\frac{\mathrm{CFT}}{|\psi\rangle}
$$

Local observables \& out-of-time-ordered correlators equilibrate more quickly.

- Proposed resolution: complexity = volume
- Susskind, arXiv:1402.5674 (2014). • Susskind, Fort. Phys. 64, 24 (2016).
- Stanford and Susskind, Phys. Rev. D 90, 126007 (2014).

Quantum complexity has been echoing across many-body physics.
(3) Wormhole-growth paradox in AdS/CFT

- Hartman and Maldacena, JHEP 5, 014 (2013). • Susskind, Fort. Phys. 64, 24 (2016).

$$
\frac{\mathrm{CFT}}{|\psi\rangle}
$$

Local observables \& out-of-time-ordered correlators equilibrate more quickly.

- Proposed resolution: complexity = volume
- Susskind, arXiv:1402.5674 (2014). • Susskind, Fort. Phys. 64, 24 (2016).
- Stanford and Susskind, Phys. Rev. D 90, 126007 (2014).
- Complexity $=$ other stuff

A quantification of quantum complexity:

A quantification of quantum complexity: exact circuit complexity

A quantification of quantum complexity: exact circuit complexity

- Useful in the context of quantum complexity

A quantification of quantum complexity: exact circuit complexity

- Useful in the context of quantum complexity
- $\mathscr{C}(U)=$ least number of 2-qubit gates required to effect U

A quantification of quantum complexity: exact circuit complexity

- Useful in the context of quantum complexity
- $\mathscr{C}(U)=$ least number of $\underset{\text { Needn't be }}{2 \text {-qubit gates }}$ required to effect U
geometrically local

2 complexity conjectures by Brown and Susskind
Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

2 complexity conjectures by Brown and Susskind
Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

How does your complexity grow?

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).

How does your complexity grow?

Quantum complexity generically grows linearly in time for a time exponential in the system size.

2 complexity conjectures by Brown and Susskind
Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

2 complexity conjectures by Brown and Susskind
Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is useful.

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is useful. $\longrightarrow|0\rangle^{\otimes n}$ as input to quantum computation

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is useful. $\longrightarrow|0\rangle^{\otimes n}$ as input to quantum computation ~ clean scrap paper

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is, useful $\longrightarrow|0\rangle^{\otimes n}$ as input to quantum computation a resource $\quad \sim$ clean scrap paper

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is,useful $\longrightarrow|0\rangle^{\otimes n}$ as input to quantum computation

$$
\text { a resource } \quad \sim \text { clean scrap paper }
$$

- Resource theory: simple quantum-information-theoretic model for constrained operations
- Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is, useful $\longrightarrow|0\rangle^{\otimes n}$ as input to quantum computation a resource \quad clean scrap paper
- Resource theory: simple quantum-information-theoretic model for constrained operations

- Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is,useful $\longrightarrow|0\rangle^{\otimes n}$ as input to quantum computation a resource $\quad \sim$ clean scrap paper
- Resource theory: simple quantum-information-theoretic model for constrained operations

- Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).
- Uses: formalize, and calculate optimal efficiencies of, operational tasks

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is,useful $\longrightarrow|0\rangle^{\otimes n}$ as input to quantum computation

$$
\text { a resource } \quad \sim \text { clean scrap paper }
$$

- Resource theory: simple quantum-information-theoretic model for constrained operations

- Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).
- Uses: formalize, and calculate optimal efficiencies of, operational tasks

Example: distill
high-quality entanglement

2 complexity conjectures by Brown and Susskind Brown and Susskind, Phys. Rev. D 97, 086015 (2018).
(2) A resource theory for uncomplexity can be defined.

- State complexity: difficulty of preparing a desired state from $|0\rangle^{\otimes n}$
- Uncomplexity: (maximal complexity) - (actual complexity)
- Uncomplexity is,useful $\longrightarrow|0\rangle^{\otimes n}$ as input to quantum computation

$$
\text { a resource } \quad \sim \text { clean scrap paper }
$$

- Resource theory: simple quantum-information-theoretic model for constrained operations

- Review: Chitambar and Gour, Rev. Mod. Phys. 91, 025001 (2019).
- Uses: formalize, and calculate optimal efficiencies of, operational tasks

Example: distill
high-quality entanglement

Proofs of
 2 complexity conjectures by Brown and Susskind

(1) Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
(2) NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Proofs of
 2 complexity conjectures by Brown and Susskind

\longrightarrow (1) Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
(2) NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Where we're headed

Where we're headed

- Why is the problem hard?

Where we're headed

-Why is the problem hard?

- Setting the stage

Where we're headed

-Why is the problem hard?

- Setting the stage
- Introduce terminology + mindset

Where we're headed

-Why is the problem hard?

- Setting the stage
- Introduce terminology + mindset
- Main theorem

Where we're headed

- Why is the problem hard?
- Setting the stage
- Introduce terminology + mindset
- Main theorem
- Proof sketch

Where we're headed

-Why is the problem hard?

- Setting the stage
- Introduce terminology + mindset
- Main theorem
- Proof sketch
- Opportunities

Lower-bounding quantum complexity for an exponentially long time is difficult.

Lower-bounding quantum complexity for an exponentially long time is difficult.

- Knill, arXiv:9508006 (1995).

Nielsen, arXiv:0502070 (2005). Gosset et al., Quant. Inf. Comp. 14, 1277 (2014).
Roberts and Yoshida, JHEP 121, 121 (2017).
Brandão et al., PRX Quantum 2, 030316 (2021).
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 170502 (2016).
Eisert, Phys. Rev. Lett. 127, 020501 (2021).

Lower-bounding quantum complexity

 for an exponentially long time is difficult.- Knill, arXiv:9508006(1995).

Nielsen, arXiv:0502070 (2005). Gosset et al., Quant. Inf. Comp. 14, 1277 (2014).
Roberts and Yoshida, JHEP 121, 121 (2017).
Brandão et al., PRX Quantum 2, 030316 (2021).
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 170502 (2016).
Eisert, Phys. Rev. Lett. 127, 020501 (2021).

- Workarounds, earlier approaches

Lower-bounding quantum complexity

 for an exponentially long time is difficult.- Knill, arXiv:9508006 (1995).

Nielsen, arXiv:0502070 (2005). Gosset et al., Quant. Inf. Comp. 14, 1277 (2014).
Roberts and Yoshida, JHEP 121, 121 (2017).
Brandão et al., PRX Quantum 2, 030316 (2021).
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 170502 (2016).
Eisert, Phys. Rev. Lett. 127, 020501 (2021).

- Workarounds, earlier approaches
- Focus on short times.

Lower-bounding quantum complexity

 for an exponentially long time is difficult.- Knill, arXiv:9508006 (1995). Nielsen, arXiv:0502070 (2005). Gosset et al., Quant. Inf. Comp. 14, 1277 (2014).
Roberts and Yoshida, JHEP 121, 121 (2017).
Brandão et al., PRX Quantum 2, 030316 (2021).
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 170502 (2016).
Eisert, Phys. Rev. Lett. 127, 020501 (2021).
- Workarounds, earlier approaches
- Focus on short times.
- Focus on high-dimensional subsystems.

Lower-bounding quantum complexity

 for an exponentially long time is difficult.- Knill, arXiv:9508006 (1995). Nielsen, arXiv:0502070 (2005). Gosset et al., Quant. Inf. Comp. 14, 1277 (2014).
Roberts and Yoshida, JHEP 121, 121 (2017).
Brandão et al., PRX Quantum 2, 030316 (2021).
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 170502 (2016).
Eisert, Phys. Rev. Lett. 127, 020501 (2021).
- Workarounds, earlier approaches
- Focus on short times.
- Focus on high-dimensional subsystems.
- Use unitary t-designs.

Lower-bounding quantum complexity

 for an exponentially long time is difficult.- Knill, arXiv:9508006 (1995). Nielsen, arXiv:0502070 (2005). Gosset et al., Quant. Inf. Comp. 14, 1277 (2014).
Roberts and Yoshida, JHEP 121, 121 (2017).
Brandão et al., PRX Quantum 2, 030316 (2021).
Brandão, Harrow, and Horodecki, Phys. Rev. Lett. 116, 170502 (2016).
Eisert, Phys. Rev. Lett. 127, 020501 (2021).
- Workarounds, earlier approaches
- Focus on short times.
- Focus on high-dimensional subsystems.
- Use unitary t-designs.
- Assume a lack of collisions.

Lower-bounding quantum complexity is difficult. \longrightarrow Why:

Lower-bounding quantum complexity is difficult. \longrightarrow Why:

- Later gates can cancel earlier gates

Lower-bounding quantum complexity is difficult. \longrightarrow Why:

- Later gates can cancel earlier gates \longrightarrow complexity can conceivably decrease

Lower-bounding quantum complexity is difficult. \longrightarrow Why:

- Later gates can cancel earlier gates \longrightarrow complexity can conceivably decrease

Lower-bounding quantum complexity is difficult. \rightarrow Why:

- Later gates can cancel earlier gates \longrightarrow complexity can conceivably decrease

Collision

Lower-bounding quantum complexity is difficult.
\longrightarrow Why:

- Later gates can cancel earlier gates \longrightarrow complexity can conceivably decrease
- Common assumption: Collisions almost never happen.

Collision

Lower-bounding quantum complexity is difficult.
\rightarrow Why:

- Later gates can cancel earlier gates \longrightarrow complexity can conceivably decrease
- Common assumption: Collisions almost never happen.
- Difficult to prove

Collision

Setting the stage

Setting the stage

- n qubits

Setting the stage

- n qubits

Assume even, for simplicity

Setting the stage

- n qubits

Assume even, for simplicity

- Circuit of Haar-random 2-qubit unitary gates $\in \mathrm{SU}(4)$

Setting the stage

- n qubits

Assume even, for simplicity

- Circuit of Haar-random 2-qubit unitary gates $\in \mathrm{SU}(4)$
- Needn't be geometrically local

Setting the stage

- n qubits

Assume even, for simplicity

- Circuit of Haar-random 2-qubit unitary gates $\in \mathrm{SU}(4)$
- Needn't be geometrically local
- Captures features of chaos

Setting the stage

- n qubits

Assume even, for simplicity

- Circuit of Haar-random 2-qubit unitary gates $\in \mathrm{SU}(4)$
- Needn't be geometrically local
- Captures features of chaos
- $\sigma_{z}=|0\rangle\langle 0|-|1\rangle\langle 1|$

Setting the stage

- n qubits

Assume even, for simplicity

- Circuit of Haar-random 2-qubit unitary gates $\in \mathrm{SU}(4)$
- Needn't be geometrically local
- Captures features of chaos
- $\sigma_{z}=|0\rangle\langle 0|-|1\rangle\langle 1|$
- $\left|\psi^{k}\right\rangle:=|\psi\rangle^{\otimes k}$

Terminology + mindset

Terminology + mindset

- Architecture (A) : arrangement of a fixed number of gates

Terminology + mindset

- Architecture (A) : arrangement of a fixed number of gates

Terminology + mindset

- Architecture (A) : arrangement of a fixed number of gates
- Example: brickwork architecture

Terminology + mindset

- Architecture (A) : arrangement of a fixed number of gates
- Example: brickwork architecture

- Slot particular gates into architecture

Terminology + mindset

- Architecture (A) : arrangement of a fixed number of gates
- Example: brickwork architecture

- Slot particular gates into architecture \longrightarrow circuit

Terminology + mindset

- Architecture (A) : arrangement of a fixed number of gates
- Example: brickwork architecture

- Slot particular gates into architecture \longrightarrow circuit
- Contract the gates in the circuit \longrightarrow unitary $U \in \operatorname{SU}\left(2^{n}\right)$

Terminology + mindset

- Architecture (A) : arrangement of a fixed number of gates
- Example: brickwork architecture

- Slot particular gates into architecture \longrightarrow circuit

Contraction map

$$
F^{A}
$$

Terminology + mindset

- Block: the gates between 2 vertical cuts

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.
- Gates in paths form backward light cone

Terminology + mindset

- Block: the gates between 2 vertical cuts
- Backward light cone
- Suppose that there exists a qubit t that connects, via a path of gates, to each beginning-of-block qubit t^{\prime}.
- Gates in paths form backward light cone
\longrightarrow Block is well-connected

Theorem: Linear growth of complexity

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating T blocks of $\leq L$ gates each,

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating
T blocks of $\leq L$ gates each, each block containing a backward light cone.

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating T blocks of $\leq L$ gates each, each block containing a backward light cone.

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating T blocks of $\leq L$ gates each, each block containing a backward light cone.

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating T blocks of $\leq L$ gates each, each block containing a backward light cone.

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating
- $R=$ total number of gates T blocks of $\leq L$ gates each, each block containing a backward light cone.

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating
- $R=$ total number of gates T blocks of $\leq L$ gates each, each block containing a backward light cone.
- $U=$ unitary implemented by any random quantum circuit in architecture A

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating
- $R=$ total number of gates T blocks of $\leq L$ gates each, each block containing a backward light cone.
- $U=$ unitary implemented by any random quantum circuit in architecture A
- Unitary's exact complexity:

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating
- $R=$ total number of gates T blocks of $\leq L$ gates each, each block containing a backward light cone.
- $U=$ unitary implemented by any random quantum circuit in architecture A
- Unitary's exact complexity: $\mathscr{C}(U) \geq \frac{R}{9 L}-\frac{n}{3}$, for all $T \leq 4^{n}-1$.

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating
- $R=$ total number of gates T blocks of $\leq L$ gates each, each block containing a backward light cone.
- $U=$ unitary implemented by any random quantum circuit in architecture A
- Unitary's exact complexity: $\mathscr{C}(U) \geq \frac{R}{9 L}-\frac{n}{3}$, for all $T \leq 4^{n}-1$.

Theorem: Linear growth of complexity

- $A=$ any architecture formed by concatenating
- $R=$ total number of gates T blocks of $\leq L$ gates each, each block containing a backward light cone.
- $U=$ unitary implemented by any random quantum circuit in architecture A
 exponential times

Key proof idea: architecture's accessible dimension

Key proof idea: architecture's accessible dimension

- Architecture A :

Key proof idea: architecture's accessible dimension

- Architecture A :

- Slot in gates + contract (apply F^{A})

Key proof idea: architecture's accessible dimension

- Architecture A :

- Slot in gates + contract (apply F^{A}) \longrightarrow unitary

Key proof idea: architecture's accessible dimension

- Architecture A :

- Slot in gates + contract (apply F^{A}) \longrightarrow unitary
- Set of all such unitaries (image of F^{A}): $\mathscr{U}(A)$

Key proof idea: architecture's accessible dimension

- Architecture A :

- Slot in gates + contract (apply F^{A}) \longrightarrow unitary
- Set of all such unitaries (image of F^{A}): $\mathscr{U}(A)$
- Accessible dimension, d_{A} :

Key proof idea: architecture's accessible dimension

- Architecture A :

- Slot in gates + contract (apply F^{A}) \longrightarrow unitary
- Set of all such unitaries (image of F^{A}): $\mathscr{U}(A)$
- Accessible dimension, d_{A} : number of degrees of freedom needed to describe $\mathscr{U}(A)$ locally

Key proof idea: architecture's accessible dimension

- Rigorous definition rooted in algebraic geometry
- Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, Springer Science \& Business Media (2013).

Key proof idea: architecture's accessible dimension

- Rigorous definition rooted in algebraic geometry
- Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, Springer Science \& Business Media (2013).
- Contrast: Nielsen's geometry, unitary t-designs

Key proof idea: architecture's accessible dimension

- Rigorous definition rooted in algebraic geometry
- Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, Springer Science \& Business Media (2013).
- Contrast: Nielsen's geometry, unitary t-designs

Key proof idea: architecture's accessible dimension

- Rigorous definition rooted in algebraic geometry
- Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, Springer Science \& Business Media (2013).
- Contrast: Nielsen's geometry, unitary t-designs
- Algebraic set: the set of solutions to a set of equations

Key proof idea: architecture's accessible dimension

- Rigorous definition rooted in algebraic geometry
- Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, Springer Science \& Business Media (2013).
- Contrast: Nielsen's geometry, unitary t-designs
- Algebraic set: the set of solutions to a set of equations
- Example: $\mathrm{SU}(4)^{\times R}$

Key proof idea: architecture's accessible dimension

- Rigorous definition rooted in algebraic geometry
- Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, Springer Science \& Business Media (2013).
- Contrast: Nielsen's geometry, unitary t-designs
- Algebraic set: the set of solutions to a set of equations
- Example: $\mathrm{SU}(4)^{\times R}$
\rightarrow Set of equations: $\left\{U^{\dagger} U=\mathbf{1}, \operatorname{det}(U)=1\right\}$

Key proof idea: architecture's accessible dimension

- Rigorous definition rooted in algebraic geometry
- Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, Springer Science \& Business Media (2013).
- Contrast: Nielsen's geometry, unitary t-designs
- Algebraic set: the set of solutions to a set of equations
- Example: $\mathrm{SU}(4)^{\times R}$
\rightarrow Set of equations: $\left\{U^{\dagger} U=\mathbf{1}, \operatorname{det}(U)=1\right\}$
- Generalization: semialgebraic set:

Key proof idea: architecture's accessible dimension

- Rigorous definition rooted in algebraic geometry
- Bochnak, Coste, and Roy, Real algebraic geometry, volume 36, Springer Science \& Business Media (2013).
- Contrast: Nielsen's geometry, unitary t-designs
- Algebraic set: the set of solutions to a set of equations
- Example: $\mathrm{SU}(4)^{\times R}$
\rightarrow Set of equations: $\left\{U^{\dagger} U=\mathbf{1}, \operatorname{det}(U)=1\right\}$
- Generalization: semialgebraic set: the set of solutions to a set of equations and inequalities

Key proof idea: architecture's accessible dimension

- Tarski-Seidenberg principle

Key proof idea: architecture's accessible dimension

- Tarski-Seidenberg principle : If W is a semialgebraic set

Key proof idea: architecture's accessible dimension

- Tarski-Seidenberg principle : If W is a semialgebraic set and $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a polynomial map,

Key proof idea: architecture's accessible dimension

- Tarski-Seidenberg principle : If W is a semialgebraic set
and $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a polynomial map, then $F(W)=$: W^{\prime} is a semialgebraic set.

Key proof idea: architecture's accessible dimension

$\mathrm{SU}(4)^{\times R}$

- Tarski-Seidenberg principle : If W is a semialgebraic set
and $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a polynomial map, then $F(W)=$: W^{\prime} is a semialgebraic set.

Key proof idea: architecture's accessible dimension

$\mathrm{SU}(4)^{\times R}$

- Tarski-Seidenberg principle : If W is a semialgebraic set
contraction map $F_{\text {then } F(W)=: W^{\prime} \text { is a semialgebraic set. }}^{F^{A} \text { and } F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \text { is a polynomial map, }}$

Key proof idea: architecture's accessible dimension

$\mathrm{SU}(4)^{\times R}$

- Tarski-Seidenberg principle : If W is a semialgebraic set
contraction map $F^{A \quad \text { and } F} F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a polynomial map,
- Why F^{A} is a polynomial function: multiplies matrix elements together

Key proof idea: architecture's accessible dimension

$\mathrm{SU}(4)^{\times R}$

- Tarski-Seidenberg principle : If W is a semialgebraic set

$$
\mathscr{U}(A)
$$

- Why F^{A} is a polynomial function: multiplies matrix elements together

Key proof idea: architecture's accessible dimension

$\mathrm{SU}(4)^{\times R}$

- Tarski-Seidenberg principle : If W is a semialgebraic set

$$
\mathscr{U}(A)
$$

- Why F^{A} is a polynomial function: multiplies matrix elements together
- Every semialgebraic set W^{\prime} decomposes into a union of manifolds: $W^{\prime}=\bigcup_{j} M_{j}$.

Key proof idea: architecture's accessible dimension

$\mathrm{SU}(4)^{\times R}$

- Tarski-Seidenberg principle : If W is a semialgebraic set

- Why F^{A} is a polynomial function: multiplies matrix elements together
- Every semialgebraic set W^{\prime} decomposes into a union of manifolds: $W^{\prime}=\bigcup_{j} M_{j}$.
- Dimension of semialgebraic set: the greatest dimension of any manifold in the decomposition
- $\operatorname{dim}\left(W^{\prime}\right):=\max _{j}\left\{\operatorname{dim}\left(M_{j}\right)\right\}$

Key proof idea: architecture's accessible dimension

$\mathrm{SU}(4)^{\times R}$

- Tarski-Seidenberg principle : If W is a semialgebraic set

- Why F^{A} is a polynomial function: multiplies matrix elements together
- Every semialgebraic set W^{\prime} decomposes into a union of manifolds: $W^{\prime}=\bigcup_{j} M_{j}$.
- Dimension of semialgebraic set: the greatest dimension of any manifold in the decomposition
- $\operatorname{dim}\left(W^{\prime}\right):=\max _{j}\left\{\operatorname{dim}\left(M_{j}\right)\right\}$
- $\operatorname{dim}(\mathscr{U}(A))=$ accessible dimension of architecture A

Key proof idea: architecture's accessible dimension

$$
\begin{aligned}
& \text { Learn about } d_{A} \text { from } \\
& \text { algebraic geometry and differential topology } \\
& \Rightarrow \text { infer about complexity }
\end{aligned}
$$

Proof sketch

Proof sketch

(1) Lower bound on accessible dimension

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof elements:

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof + Algebraic geometry, differential topology elements:

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof + Algebraic geometry, differential topology elements: + Construction of Clifford circuit

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof + Algebraic geometry, differential topology elements: + Construction of Clifford circuit

Transform the Pauli operators to the Pauli operators (to within phases)

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof + Algebraic geometry, differential topology elements: - Construction of Clifford circuit

Transform the Pauli operators to the Pauli operators (to within phases)

+ Arbitrary nontrivial $\underline{n \text {-qubit Pauli string }} P$

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof + Algebraic geometry, differential topology
elements: + Construction of Clifford circuit
Transform the Pauli operators to the Pauli operators (to within phases)
+ Arbitrary nontrivial n-qubit Pauli string $P \mapsto Z_{n}$ via Clifford circuit
- Cleve et al., Quant. Inf. Comp. 16, 0721 (2016).

Webb, arXiv:1510.02769 (2015).
Zhu, Phys. Rev. A 96, 062336 (2017).

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof + Algebraic geometry, differential topology
elements: + Construction of Clifford circuit
Transform the Pauli operators to the Pauli operators (to within phases)
+ Arbitrary nontrivial n-qubit Pauli string $P \mapsto Z_{n}$ via Clifford circuit
- Cleve et al., Quant. Inf. Comp. 16, 0721 (2016).

Webb, arXiv:1510.02769 (2015).
Zhu, Phys. Rev. A 96, 062336 (2017).

+ The n-qubit Pauli strings form a basis for the space of n-qubit Hermitian operators.

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof + Algebraic geometry, differential topology
elements: - Construction of Clifford circuit
Transform the Pauli operators to the Pauli operators (to within phases)
+ Arbitrary nontrivial $\underline{n-q u b i t ~ P a u l i ~ s t r i n g ~} P \mapsto Z_{n}$ via Clifford circuit
- Cleve et al., Quant. Inf. Comp. 16, 0721 (2016).

Webb, arXiv:1510.02769 (2015).
Zhu, Phys. Rev. A 96, 062336 (2017).

- The n-qubit Pauli strings form a basis for the space of n-qubit Hermitian operators.
+ Number of nontrivial n-qubit Pauli strings: $4^{n}-1$

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$

- Key proof + Algebraic geometry, differential topology
elements: - Construction of Clifford circuit
Transform the Pauli operators to the Pauli operators (to within phases)
+ Arbitrary nontrivial \underline{n}-qubit Pauli string $P \mapsto Z_{n}$ via Clifford circuit
- Cleve et al., Quant. Inf. Comp. 16, 0721 (2016).

Webb, arXiv:1510.02769 (2015).
Zhu, Phys. Rev. A 96, 062336 (2017).

- The n-qubit Pauli strings form a basis for the space of n-qubit Hermitian operators.
+ Number of nontrivial n-qubit Pauli strings: $4^{n}-1 \rightarrow$ Our bound holds for $T \leq 4^{n}-1$.

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$
(2) Upper bound on accessible dimension

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$
(2) Upper bound on accessible dimension

- $d_{A} \leq 9 R+3 n$

Proof sketch

(1) Lower bound on accessible dimension (the toughest step): $d_{A} \geq T$
(2) Upper bound on accessible dimension

- $d_{A} \leq 9 R+3 n$
- Proof strategy: parameter counting \rightarrow Ask during Q\&A
(3) Putting it all together

(3) Putting it all together

- Assume the theorem's assumptions.
(3) Putting it all together

- Assume the theorem's assumptions.
- $A=$ architecture formed from T blocks,

(3) Putting it all together

- Assume the theorem's assumptions.
- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates

(3) Putting it all together

- Assume the theorem's assumptions.
- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

(3) Putting it all together

- Assume the theorem's assumptions.
- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$
- Set of corresponding unitaries: $\mathscr{U}(A)$

(3) Putting it all together

- Assume the theorem's assumptions.
- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$
- Set of corresponding unitaries: $\mathscr{U}(A)$
- Sample a unitary U from $\mathscr{U}(A)$ uniformly randomly.

(3) Putting it all together

- Assume the theorem's assumptions.
- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$
- Set of corresponding unitaries: $\mathscr{U}(A)$
- Sample a unitary U from $\mathscr{U}(A)$ uniformly randomly.
- With what probability can U be implemented with $R^{\prime}<\frac{R}{9 L}-\frac{n}{3}$ gates?

(3) Putting it all together

- Assume the theorem's assumptions.
- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$
- Set of corresponding unitaries: $\mathscr{U}(A)$
- Sample a unitary U from $\mathscr{U}(A)$ uniformly randomly.
- With what probability can U be implemented with $R^{\prime}<\frac{R}{9 L}-\frac{n}{3}$ gates?

$$
\operatorname{does} \mathscr{C}(U)<\frac{R}{9 L}-\frac{n}{3} ?
$$

(3) Putting it all together

- Assume the theorem's assumptions.
- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$
- Set of corresponding unitaries: $\mathscr{U}(A)$
- Sample a unitary U from $\mathscr{U}(A)$ uniformly randomly.
- With what probability can U be implemented with $R^{\prime}<\frac{R}{9 L}-\frac{n}{3}$ gates?

$$
\operatorname{does} \mathscr{C}(U)<\frac{R}{9 L}-\frac{n}{3} ?
$$

Show that the probability $=0$, using lemmata (1) and (2).
(3) Putting it all together

$R^{\prime}<\frac{R}{9 L}-\frac{n}{3}$
(3) Putting it all together

$R^{\prime}<\frac{\frac{R}{9 L}}{1 \wedge}-\frac{n}{3}$
$T / 9$
(3) Putting it all together

- $R^{\prime}<\frac{R}{9 L}-\frac{n}{3} \rightarrow$ Solve for T.

I^
T/9
(3) Putting it all together

$\begin{aligned} & R^{\prime}<$| $\frac{\frac{R}{9 L}}{\frac{I}{}}$ |
| :---: |
| |
| |
| |
| $T / 9$ |\(-\frac{n}{3} \rightarrow Solve for T \rightarrow(3 A) T>9 R^{\prime}+3 n

\&\end{aligned}\)
(3) Putting it all together

. $R^{\prime}<\frac{R}{9 L}-\frac{n}{3} \rightarrow$ Solve for $T . \rightarrow(3 A) T>9 R^{\prime}+3 n$
I^
T/9

- (1) Lower bound on accessible dimension: $d_{A} \geq T$
(3) Putting it all together

$. R^{\prime}<\frac{\bar{R}}{9 L}-\frac{n}{3} \rightarrow$ Solve for $T . \rightarrow(3 A) T>9 R^{\prime}+3 n$
$\begin{gathered}\wedge \\ T / 9\end{gathered}$
- (1) Lower bound on accessible dimension: $d_{A} \geq T$
(3) Putting it all together

• $\left.R^{\prime}<\begin{array}{|c|c|}\hline \frac{R}{9 L} \\ & -\frac{n}{3} \rightarrow \text { Solve for } T \rightarrow(3 A) T>9 R^{\prime}+3 n \\ & T / 9\end{array}\right]$
- (1) Lower bound on accessible dimension: $d_{A} \geq T$
$\therefore(1)+(3 A) \Rightarrow d_{A}>9 R^{\prime}+3 n$
(3) Putting it all together

- (1) Lower bound on accessible dimension: $d_{A} \geq T$
$\therefore(1)+(3 A) \Rightarrow d_{A}>9 R^{\prime}+3 n$
- Consider any architecture A^{\prime} of R^{\prime} gates.
(3) Putting it all together

• $\left.R^{\prime}<\frac{\bar{R}}{\frac{R}{9 L}}\right]$
I^
$T / 9$
- (1) Lower bound on accessible dimension: $d_{A} \geq T$
$\therefore(1)+(3 A) \Rightarrow d_{A}>9 R^{\prime}+3 n$
- Consider any architecture A^{\prime} of R^{\prime} gates. \longrightarrow

Accessible dimension from (2): $d_{A^{\prime}} \leq 9 R^{\prime}+3 n$
(3) Putting it all together

. $R^{\prime}<\frac{\left\lvert\, \frac{R}{9 L}\right.}{\frac{2}{\text { I^ }}}-\frac{n}{3} \rightarrow$ Solve for $T \rightarrow(3 \mathrm{~A}) T>9 R^{\prime}+3 n$
$T / 9$

- (1) Lower bound on accessible dimension: $d_{A} \geq T$
$\therefore(1)+(3 A) \Rightarrow d_{A}>9 R^{\prime}+3 n$
- Consider any architecture A^{\prime} of R^{\prime} gates. \longrightarrow Accessible dimension from (2): $d_{A^{\prime}} \leq 9 R^{\prime}+3 n$
(3) Putting it all together

$\begin{gathered}\left.\text { • } R^{\prime}<\frac{\bar{R}}{\frac{R}{9 L}}\right] \\ \text { I^ } \\ T / 9\end{gathered}-\frac{n}{3} \rightarrow$ Solve for $T . \rightarrow(3 A) T>9 R^{\prime}+3 n$
- (1) Lower bound on accessible dimension: $d_{A} \geq T$
$\therefore(1)+(3 A) \Rightarrow d_{A}>9 R^{\prime}+3 n$
- Consider any architecture A^{\prime} of R^{\prime} gates. \longrightarrow Accessible dimension from (2): $d_{A^{\prime}} \leq 9 R^{\prime}+3 n$
$\therefore d_{A^{\prime}}<d_{A}$
(3) Putting it all together

$\therefore d_{A^{\prime}}<d_{A} \rightarrow$
(3) Putting it all together

$\therefore d_{A^{\prime}}<d_{A} \longrightarrow$
- Lemma: $\mathscr{U}\left(A^{\prime}\right)$ forms a measure-0 subset of $\mathscr{U}(A)$.
(3) Putting it all together

$\therefore d_{A^{\prime}}<d_{A} \longrightarrow$
- Lemma: $\mathscr{U}\left(A^{\prime}\right)$ forms a measure-0 subset of $\mathscr{U}(A)$.
- Proof tool: dimension theory of real algebraic sets
(3) Putting it all together

$\therefore d_{A^{\prime}}<d_{A} \longrightarrow$
- Lemma: $\mathscr{U}\left(A^{\prime}\right)$ forms a measure-0 subset of $\mathscr{U}(A)$.
- Proof tool: dimension theory of real algebraic sets
\therefore If you randomly pick a U effected with a sufficiently connected R-gate circuit,
(3) Putting it all together

$\therefore d_{A^{\prime}}<d_{A} \longrightarrow$
- Lemma: $\mathscr{U}\left(A^{\prime}\right)$ forms a measure-0 subset of $\mathscr{U}(A)$.
- Proof tool: dimension theory of real algebraic sets
\therefore If you randomly pick a U effected with a sufficiently connected R-gate circuit, you can implement U with a smaller R^{\prime}-gate circuit with probability 0 .
(3) Putting it all together

$\therefore d_{A^{\prime}}<d_{A} \longrightarrow$
- Lemma: $\mathscr{U}\left(A^{\prime}\right)$ forms a measure-0 subset of $\mathscr{U}(A)$.
- Proof tool: dimension theory of real algebraic sets
\therefore If you randomly pick a U effected with a sufficiently connected R-gate circuit, you can implement U with a smaller R^{\prime}-gate circuit with probability 0.

Extensions

Extensions

(1) Lower bound on exact state complexity

Extensions

(1) Lower bound on exact state complexity

- $|\psi\rangle=n$-qubit pure state

Extensions

(1) Lower bound on exact state complexity

- $|\psi\rangle=n$-qubit pure state
- $\mathscr{C}_{\mathrm{s}}(|\psi\rangle)=$ least number of two-qubit gates required to prepare $|\psi\rangle$ from $\left|0^{n}\right\rangle$

Extensions

(1) Lower bound on exact state complexity

- $|\psi\rangle=n$-qubit pure state
- $\mathscr{C}_{\mathrm{s}}(|\psi\rangle)=$ least number of two-qubit gates required to prepare $|\psi\rangle$ from $\left|0^{n}\right\rangle$
- If $|\psi\rangle=U\left|0^{n}\right\rangle$, for some U that satisfies our theorem's assumptions, then

Extensions

(1) Lower bound on exact state complexity

- $|\psi\rangle=n$-qubit pure state
- $\mathscr{C}_{\mathrm{s}}(|\psi\rangle)=$ least number of two-qubit gates required to prepare $|\psi\rangle$ from $\left|0^{n}\right\rangle$
- If $|\psi\rangle=U\left|0^{n}\right\rangle$, for some U that satisfies our theorem's assumptions, then
$\mathscr{C}_{\mathrm{s}}(|\psi\rangle) \geq \frac{R}{9 L}-\frac{n}{3}$, until $T \leq 2^{n+1}-1$.

Extensions

(1) Lower bound on exact state complexity

- $|\psi\rangle=n$-qubit pure state
- $\mathscr{C}_{\mathrm{S}}(|\psi\rangle)=$ least number of two-qubit gates required to prepare $|\psi\rangle$ from $\left|0^{n}\right\rangle$
- If $|\psi\rangle=U\left|0^{n}\right\rangle$, for some U that satisfies our theorem's assumptions, then $\mathscr{C}_{\mathrm{s}}(|\psi\rangle) \geq \frac{R}{9 L}-\frac{n}{3}$, until $T \leq 2^{n+1}-1$.
- Applications to resource theory:

NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Extensions

(2) Random architecture

Extensions

(2) Random architecture

Remove backward light cone from assumptions

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

Remove backward light cone from assumptions

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

Remove backward light cone from assumptions

- Example: At each time step, randomly pick a nearest-neighbor pair and a gate.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

Remove backward light cone from assumptions

- Example: At each time step, randomly pick a nearest-neighbor pair and a gate.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

Remove backward light cone from assumptions

- Example: At each time step, randomly pick a nearest-neighbor pair and a gate.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

Remove backward light cone from assumptions

- Example: At each time step, randomly pick a nearest-neighbor pair and a gate.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

Remove backward light cone from assumptions

- Example: At each time step, randomly pick a nearest-neighbor pair and a gate.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

Remove backward light cone from assumptions

- Example: At each time step, randomly pick a nearest-neighbor pair and a gate.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity Remove backward light cone from assumptions

- Example: At each time step, randomly pick a nearest-neighbor pair and a gate.

- With high probability, the gates form backward light cones.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity Remove backward light cone from assumptions

- Example: At each time step, randomly pick a nearest-neighbor pair and a gate.

- With high probability, the gates form backward light cones. \longrightarrow $\mathscr{C}(U)$ obeys a linear lower bound.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity
. $\operatorname{Pr}\left(\mathscr{C}(U) \geq \alpha \frac{R}{9 n(n-1)^{2}}-\frac{n}{3}\right) \geq 1-\frac{1}{1-\alpha}(n-1) e^{-n}$
$\forall \alpha \in[0,1)$.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

- $\operatorname{Pr}\left(\underset{\text { Lower bound on complexity }}{\left.\mathscr{C}(U) \geq \alpha \frac{R}{9 n(n-1)^{2}}-\frac{n}{3}\right)} \geq 1-\frac{1}{1-\alpha}(n-1) e^{-n}\right.$
$\forall \alpha \in[0,1)$.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

- $\operatorname{Pr}(\underbrace{\left.\mathscr{C}(U) \geq \alpha \frac{R}{9 n(n-1)^{2}}-\frac{n}{3}\right)}_{\text {Lower bound on complexity }} \geq 1-\frac{1}{1-\alpha}(n-1) e^{-n}$
$\forall \alpha \in[0,1)$.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

$$
\underbrace{\operatorname{Pr}\left(\mathscr{C}(U) \geq \alpha \frac{R}{9 n(n-1)^{2}}-\frac{n}{3}\right)}_{\text {Lower bound on complexity }} \geq 1-\frac{1-\frac{1}{1-\alpha}(n-1) e^{-n}}{\begin{array}{c}
\text { High probability } \\
\text { of being obeyed }
\end{array}}
$$

$\forall \alpha \in[0,1)$.

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

$$
\underbrace{\operatorname{Pr}\left(\mathscr{C}(U) \geq \alpha \frac{R}{9 n(n-1)^{2}}-\frac{n}{3}\right)}_{\text {Lower bound on complexity }} \geq \underbrace{\longmapsto 1-\frac{1}{1-\alpha}(n-1) e^{-n}}_{\begin{array}{c}
\text { High probability } \\
\text { of being obeyed }
\end{array}}
$$

$\forall \alpha \in[0,1)$.
α large

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

$$
\text { . } \operatorname{Pr}(\mathscr{C}(U) \geq \alpha \frac{R}{\left.\longmapsto_{\text {Lower bound on complexity }}^{9 n(n-1)^{2}}-\frac{n}{3}\right)} \geq \underbrace{1-\frac{1}{1-\alpha}(n-1) e^{-n}}_{\begin{array}{c}
\text { High probability } \\
\text { of being obeyed }
\end{array}}
$$

$\forall \alpha \in[0,1)$.
α large \Rightarrow lower bound not suppressed

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

$$
\text { . } \operatorname{Pr}\left(\mathscr{C}(U) \geq \alpha \frac{R}{9 n(n-1)^{2}}-\frac{n}{3}\right) \geq 1-\frac{1}{1-\alpha}(n-1) e^{-n}
$$

$\forall \alpha \in[0,1)$.
α large \Rightarrow lower bound not suppressed \Rightarrow probability bound is low

Extensions

(2) Random architecture \longrightarrow probabilistic lower bound on exact circuit complexity

$$
\text { . } \operatorname{Pr}(\mathscr{C}(U) \geq \alpha \frac{R}{\left.\longmapsto_{\text {Lower bound on complexity }}^{9 n(n-1)^{2}}-\frac{n}{3}\right)} \geq \underbrace{1-\frac{1}{1-\alpha}(n-1) e^{-n}}_{\begin{array}{c}
\text { High probability } \\
\text { of being obeyed }
\end{array}}
$$

$\forall \alpha \in[0,1)$.
α large \Rightarrow lower bound not suppressed \Rightarrow probability bound is low

- Key proof tool: Chebyshev's/Markov's inequality

Extensions

(3) Lower bound on approximate circuit complexity

Extensions

(3) Lower bound on approximate circuit complexity

- Synopsis
- Suppose that U satisfies our theorem's assumptions.

Extensions

(3) Lower bound on approximate circuit complexity

- Synopsis
- Suppose that U satisfies our theorem's assumptions.
- Consider trying to approximate U with a U^{\prime} implemented by a short, bound-violating circuit.

Extensions

(3) Lower bound on approximate circuit complexity

- Synopsis
- Suppose that U satisfies our theorem's assumptions.
- Consider trying to approximate U with
a U^{\prime} implemented by a short, bound-violating circuit.
- U^{\prime} probably has a large Frobenius distance from U :

Extensions

(3) Lower bound on approximate circuit complexity

- Synopsis
- Suppose that U satisfies our theorem's assumptions.
- Consider trying to approximate U with
a U^{\prime} implemented by a short, bound-violating circuit.
- U^{\prime} probably has a large Frobenius distance from U :
$\forall \delta \in(0,1]$,

Extensions

(3) Lower bound on approximate circuit complexity

- Synopsis
- Suppose that U satisfies our theorem's assumptions.
- Consider trying to approximate U with
a U^{\prime} implemented by a short, bound-violating circuit.
- U^{\prime} probably has a large Frobenius distance from U :
$\forall \delta \in(0,1]$, there exists an $\varepsilon:=\varepsilon(A, \delta)>0$

Extensions

(3) Lower bound on approximate circuit complexity

- Synopsis
- Suppose that U satisfies our theorem's assumptions.
- Consider trying to approximate U with
a U^{\prime} implemented by a short, bound-violating circuit.
- U^{\prime} probably has a large Frobenius distance from U :
$\forall \delta \in(0,1]$, there exists an $\varepsilon:=\varepsilon(A, \delta)>0$ such that, with probability $1-\delta$,

Extensions

(3) Lower bound on approximate circuit complexity

- Synopsis
- Suppose that U satisfies our theorem's assumptions.
- Consider trying to approximate U with
a U^{\prime} implemented by a short, bound-violating circuit.
- U^{\prime} probably has a large Frobenius distance from U :
$\forall \delta \in(0,1]$, there exists an $\varepsilon:=\varepsilon(A, \delta)>0$ such that, with probability $1-\delta,\left|\left|U-U^{\prime}\right| \|_{\mathrm{F}} \geq \varepsilon\right.$.

Extensions

(3) Lower bound on approximate circuit complexity

- Synopsis
- Suppose that U satisfies our theorem's assumptions.
- Consider trying to approximate U with
a U^{\prime} implemented by a short, bound-violating circuit.
- U^{\prime} probably has a large Frobenius distance from U :
$\forall \delta \in(0,1]$, there exists an $\varepsilon:=\varepsilon(A, \delta)>0$ such that, with probability $1-\delta,\left\|U-U^{\prime}\right\|_{\mathrm{F}} \geq \varepsilon$.
- Shortcoming: ε can be uncontrollably small.

Extensions

(3) Lower bound on approximate circuit complexity

Why ε can be uncontrollably small

Extensions

(3) Lower bound on approximate circuit complexity

Why ε can be uncontrollably small

- We're extending $\mathscr{U}\left(A^{\prime}\right)$ to include all the unitaries close in some matrix norm.

Extensions

(3) Lower bound on approximate circuit complexity

Why ε can be uncontrollably small

- We're extending $\mathscr{U}\left(A^{\prime}\right)$ to include all the unitaries close in some matrix norm.

- The set grows in all directions in unitary space.
\leftarrow

Extensions

(3) Lower bound on approximate circuit complexity

Why ε can be uncontrollably small

- We're extending $\mathscr{U}\left(A^{\prime}\right)$ to include all the unitaries close in some matrix norm.
- The set grows in all directions in unitary space.
\sim

\Rightarrow The accessible dimension leaps to its maximum, 4^{n}.

Extensions

(3) Lower bound on approximate circuit complexity

Why ε can be uncontrollably small

- We're extending $\mathscr{U}\left(A^{\prime}\right)$ to include all the unitaries close in some matrix norm.
- The set grows in all directions in unitary space.
\sim

\Rightarrow The accessible dimension leaps to its maximum, 4^{n}.
$\Rightarrow d_{A^{\prime}}<d_{A}$ not generally satisfied

Extensions

(3) Lower bound on approximate circuit complexity

Why ε can be uncontrollably small

- We're extending $\mathscr{U}\left(A^{\prime}\right)$ to include all the unitaries close in some matrix norm.
- The set grows in all directions in unitary space.
\leftarrow

\Rightarrow The accessible dimension leaps to its maximum, 4^{n}.
$\Rightarrow d_{A^{\prime}}<d_{A}$ not generally satisfied
\Rightarrow The accessible dimension is too crude a tool.
(1) Strongly lower-bound approximate circuit complexity.

(1) Strongly lower-bound approximate circuit complexity.
- Strategy: try to prove conjectures about $\mathscr{U}(A)$ and overlapping $\mathscr{U}\left(A^{\prime}\right)$

(1) Strongly lower-bound approximate circuit complexity.
- Strategy: try to prove conjectures about $\mathscr{U}(A)$ and overlapping $\mathscr{U}\left(A^{\prime}\right) \longrightarrow$

```
OPPORTUNITY
```

(1) Strongly lower-bound approximate circuit complexity.

- Strategy: try to prove conjectures about $\mathscr{U}(A)$ and overlapping $\mathscr{U}\left(A^{\prime}\right) \longrightarrow$
(2) Lower-bound Nielsen's complexity.

OPPORTUNITY

(1) Strongly lower-bound approximate circuit complexity.

- Strategy: try to prove conjectures about $\mathscr{U}(A)$ and overlapping $\mathscr{U}\left(A^{\prime}\right) \longrightarrow$
(2) Lower-bound Nielsen's complexity.
- Nielsen's complexity \geq approximate circuit complexity

Nielsen et al., Science 311, 1133 (2006).
Nielsen et al., Phys. Rev. A 73, 062323 (2006).

OPPORTUNITY

(1) Strongly lower-bound approximate circuit complexity.

- Strategy: try to prove conjectures about $\mathscr{U}(A)$ and overlapping $\mathscr{U}\left(A^{\prime}\right) \longrightarrow$
(2) Lower-bound Nielsen's complexity.
- Nielsen's complexity \geq approximate circuit complexity \geq lower bound (1)

(3) Accessible dimension as a new mathematical tool in many-body quantum physics

(3) Accessible dimension as a new mathematical tool in many-body quantum physics
- Distinct from Nielsen's geometry, t-designs

(3) Accessible dimension as a new mathematical tool in many-body quantum physics
- Distinct from Nielsen's geometry, t-designs
- Possible applications: Brownian circuits, hybrid circuits, ...

OPPORTUNITY

(3) Accessible dimension as a new mathematical tool in many-body quantum physics

- Distinct from Nielsen's geometry, t-designs
- Possible applications: Brownian circuits, hybrid circuits, ...
(4) Resource-theory opportunities
- NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist,
arXiv:2110.11371 (2021).

Recap

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Recap

- Quantum complexity as a relevant tool across many-body physics

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Recap

- Quantum complexity as a relevant tool across many-body physics
- Two 2017/2018 complexity conjectures by Brown and Susskind

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Recap

- Quantum complexity as a relevant tool across many-body physics
- Two 2017/2018 complexity conjectures by Brown and Susskind

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys.
(in press) arXiv:2106.05305.

NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Recap

- Quantum complexity as a relevant tool across many-body physics
- Two 2017/2018 complexity conjectures by Brown and Susskind

(2) Can define a resource theory for quantum uncomplexity

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Recap

- Quantum complexity as a relevant tool across many-body physics
- Two 2017/2018 complexity conjectures by Brown and Susskind

(2) Can define a resource theory for quantum uncomplexity
- 2 proofs

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys.
(in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Recap

- Quantum complexity as a relevant tool across many-body physics
- Two 2017/2018 complexity conjectures by Brown and Susskind
(2) Can define a resource theory for quantum uncomplexity
- 2 proofs
- Toolkits: algebraic geometry, differential topology

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Recap

- Quantum complexity as a relevant tool across many-body physics
- Two 2017/2018 complexity conjectures by Brown and Susskind
(2) Can define a resource theory for quantum uncomplexity
- 2 proofs
- Toolkits: algebraic geometry, differential topology \longrightarrow accessible dimension

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Recap

- Quantum complexity as a relevant tool across many-body physics
- Two 2017/2018 complexity conjectures by Brown and Susskind
(2) Can define a resource theory for quantum uncomplexity
- 2 proofs
- Toolkits: algebraic geometry, differential topology \longrightarrow accessible dimension

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Thanks for your time!

Haferkamp, Faist, Kothakonda, Eisert, and NYH, accepted by Nat. Phys. (in press) arXiv:2106.05305.
NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).

- $U \in \operatorname{SU}\left(2^{n}\right)$

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).

- $U \in \operatorname{SU}\left(2^{n}\right)$
- $2^{n}=: N$

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).

- $U \in \operatorname{SU}\left(2^{n}\right)$
- $2^{n}=: N$

Strategy

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).

- $U \in \operatorname{SU}\left(2^{n}\right)$
- $2^{n}=: N$

Strategy
(1) "Count" the unitaries in $\operatorname{SU}(N)$.

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).

- $U \in \operatorname{SU}\left(2^{n}\right)$
- $2^{n}=: N$

Strategy

(1) "Count" the unitaries in $\mathrm{SU}(N)$.
(2) Maximal complexity $\sim \log$ (\# unitaries)

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Unitaries form continuous set \longrightarrow can't really count

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Unitaries form continuous set \longrightarrow can't really count
- But we might distinguish/implement unitaries only with finite precision.
- NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Unitaries form continuous set \longrightarrow can't really count
- But we might distinguish/implement unitaries only with finite precision.
- NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).
\rightarrow Regularize $\mathrm{SU}(N)$ - attribute to each U a radius- ϵ ball

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Unitaries form continuous set \longrightarrow can't really count
- But we might distinguish/implement unitaries only with finite precision.
- NYH, Kothakonda, Haferkamp, Munson, Eisert, and Faist, arXiv:2110.11371 (2021).
\rightarrow Regularize $\mathrm{SU}(N)$ - attribute to each U a radius- ϵ ball
- How many ϵ-balls in $\mathrm{SU}(N)$?

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Dimension of $\mathrm{SU}(N): N^{2}-1$

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Dimension of $\mathrm{SU}(N)$: $N^{2}-1$
- Volume of $\mathrm{SU}(N): V_{\mathrm{SU}(N)}=\frac{2 \pi^{(N+2)(N-1) / 2}}{1!2!\ldots(N-1)!}$
- Boya, Sudarshan, and Tilma, Rep. Math. Phys. 52, 3 (2003).

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Dimension of $\mathrm{SU}(N)$: $N^{2}-1$
- Volume of $\mathrm{SU}(N): V_{\mathrm{SU}(N)}=\frac{2 \pi^{(N+2)(N-1) / 2}}{1!2!\ldots(N-1)!}$
- Boya, Sudarshan, and Tilma, Rep. Math. Phys. 52, 3 (2003).
- Volume of ϵ-ball of dimension $N^{2}-1$: $V_{\text {ball }}=\frac{\pi^{\left(N^{2}-1\right) / 2} \epsilon^{N^{2}-1}}{\left[\left(N^{2}-1\right) / 2\right] \text { ! }}$

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Dimension of $\mathrm{SU}(N)$: $N^{2}-1$
- Volume of $\mathrm{SU}(N): V_{\mathrm{SU}(N)}=\frac{2 \pi^{(N+2)(N-1) / 2}}{1!2!\ldots(N-1)!}$
- Boya, Sudarshan, and Tilma, Rep. Math. Phys. 52, 3 (2003).
- Volume of ϵ-ball of dimension $N^{2}-1$: $V_{\text {ball }}=\frac{\pi^{\left(N^{2}-1\right) / 2} \epsilon^{N^{2}-1}}{\left[\left(N^{2}-1\right) / 2\right]!}$
- Number of ϵ-balls in $\mathrm{SU}(N): \frac{V_{\mathrm{SU}(N)}}{V_{\text {ball }}}$

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Dimension of $\mathrm{SU}(N)$: $N^{2}-1$
- Volume of $\mathrm{SU}(N): V_{\mathrm{SU}(N)}=\frac{2 \pi^{(N+2)(N-1) / 2}}{1!2!\ldots(N-1)!}$
- Boya, Sudarshan, and Tilma, Rep. Math. Phys. 52, 3 (2003).
- Volume of ϵ-ball of dimension $N^{2}-1$: $V_{\text {ball }}=\frac{\pi^{\left(N^{2}-1\right) / 2} \epsilon^{N^{2}-1}}{\left[\left(N^{2}-1\right) / 2\right]!}$
- Number of ϵ-balls in $\mathrm{SU}(N): \frac{V_{\mathrm{SU}(N)}}{V_{\text {ball }}} \underset{\sim}{\sim}$

Stirling's approximation

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(1) "Count" the unitaries in $\mathrm{SU}(N)$.

- Dimension of $\mathrm{SU}(N)$: $N^{2}-1$
- Volume of $\mathrm{SU}(N): V_{\mathrm{SU}(N)}=\frac{2 \pi^{(N+2)(N-1) / 2}}{1!2!\ldots(N-1)!}$
- Boya, Sudarshan, and Tilma, Rep. Math. Phys. 52, 3 (2003).
- Volume of ϵ-ball of dimension $N^{2}-1$: $V_{\text {ball }}=\frac{\pi^{\left(N^{2}-1\right) / 2} \epsilon^{N^{2}-1}}{\left[\left(N^{2}-1\right) / 2\right]!}$
- Number of ϵ-balls in $\mathrm{SU}(N): \frac{V_{\mathrm{SU}(N)}}{V_{\text {ball }}} \sim\left(\frac{2^{n}}{\epsilon^{2}}\right)^{4^{n / 2}}$

Stirling's approximation

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(2) Maximal complexity $=\log (\#$ unitaries)

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(2) Maximal complexity $=\log (\#$ unitaries)

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(2) Maximal complexity $=\log (\#$ unitaries)

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(2) Maximal complexity $=\log (\#$ unitaries)

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(2) Maximal complexity $=\log (\#$ unitaries)

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(2) Maximal complexity $=\log$ (\# unitaries)

- Assumption: No unitaries collide.

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(2) Maximal complexity $=\log$ (\# unitaries)

- Assumption: No unitaries collide.
- \# steps needed to reach edge from center: \log (\# dots)

Why an n-qubit unitary's maximal complexity $\sim 4^{n}$
Susskind, arXiv:1810.11563 (2018).
(2) Maximal complexity $=\log (\#$ unitaries)

- Assumption: No unitaries collide.
- \# steps needed to reach edge from center: \log (\# dots)

Complexity $=\log (\#$ unitaries $)$

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Proof of lower bound on accessible dimension, $d_{A} \geq T$
Setup

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks,

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

Recasting

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

Recasting
Complexity

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

Recasting
Complexity \longrightarrow accessible dimension

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

Recasting
Complexity \longrightarrow accessible dimension $\longrightarrow \operatorname{rank}$ of F^{A}

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

Recasting
Complexity \longrightarrow accessible dimension \longrightarrow rank of F^{A}

- Defined at a point $x \in \operatorname{SU}(4)^{\times R}$

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

Recasting
Complexity \longrightarrow accessible dimension \longrightarrow rank of F^{A}

- Defined at a point $x \in \operatorname{SU}(4)^{\times R}$
- Rank of the Jacobian of F^{A}

Proof of lower bound on accessible dimension, $d_{A} \geq T$

Setup

- $A=$ architecture formed from T blocks, each containing a backward light cone and $\leq L$ gates
- Total number of gates: $R \leq T L$

Recasting
Complexity \longrightarrow accessible dimension \longrightarrow rank of F^{A}

- Defined at a point $x \in \operatorname{SU}(4)^{\times R}$
- Rank of the Jacobian of F^{A}
- If you perturb x, along how many directions can U spread?

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$
- Proof toolkit: differential topology

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$
- Proof toolkit: differential topology
- $r_{\text {max }} \geq$ every possible r.

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$
- Proof toolkit: differential topology
- $r_{\text {max }} \geq$ every possible r.
- Lemma: For some set $x \in \operatorname{SU}(4)^{\times R}$ of gates, $r \geq T$.

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$
- Proof toolkit: differential topology
- $r_{\text {max }} \geq$ every possible r.
- Lemma: For some set $x \in \operatorname{SU}(4)^{\times R}$ of gates, $d_{A}=r_{\max } \geq r \geq T$.

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$
- Proof toolkit: differential topology
- $r_{\text {max }} \geq$ every possible r.
- Lemma: For some set $x \in \operatorname{SU}(4)^{\times R}$ of gates, $\quad d_{A}=r_{\max } \geq r \geq T$

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$
- Proof toolkit: differential topology
- $r_{\text {max }} \geq$ every possible r.
- Lemma: For some set $x \in \mathrm{SU}(4)^{\times R}$ of gates, $\quad d_{A}=r_{\max } \geq r \geq T$.

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$
- Proof toolkit: differential topology
- $r_{\text {max }} \geq$ every possible r.
- Lemma: For some set $x \in \mathrm{SU}(4)^{\times R}$ of gates, $d_{A}=r_{\text {max }} \geq r \geq T$,
- Proof: by construction of x from Clifford circuits

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\text {max }}=$ greatest rank achieved by F^{A} at any $x \in \mathrm{SU}(4)^{\times R}$
- Lemma: $d_{A}=r_{\text {max }}$
- Proof toolkit: differential topology
- $r_{\text {max }} \geq$ every possible r.
- Lemma: For some set $x \in \mathrm{SU}(4)^{\times R}$ of gates, $\quad d_{A}=r_{\text {max }} \geq r \geq T$
- Proof: by construction of x from Clifford circuits \longrightarrow

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $r=\operatorname{rank}$ of F^{A}

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $r=\operatorname{rank}$ of F^{A}
$=$ number of directions in which U spreads if x is perturbed

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $r=\operatorname{rank}$ of F^{A}
= number of directions in which U spreads if x is perturbed
$=$ number of parameters needed to parameterize the \tilde{U} that results from perturbing x

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $r=\operatorname{rank}$ of F^{A}
= number of directions in which U spreads if x is perturbed
$=$ number of parameters needed to parameterize the \tilde{U} that results from perturbing x

Goal: lower-bound

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right)$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: \tilde{U}_{j}

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
=\exp (i \epsilon H) \tilde{U}_{j}
$$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parametrization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
=\exp (i \epsilon \underbrace{H}_{i}) \tilde{U}_{j} \quad \begin{aligned}
& \text { Parameterized by } \\
& \text { the } 15 \text { nontrivial } \\
& \text { two-qubit Pauli strings } \\
& \\
& S_{k}=1 X, X 1, X X, \ldots
\end{aligned}
$$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
\begin{array}{ll}
=\exp (i \epsilon \underbrace{H}_{i}) \tilde{U}_{j} & \begin{array}{l}
\text { Parameterized by } \\
\text { the } 15 \text { nontrivial } \\
\text { two-qubit Pauli strings }
\end{array} \\
=\exp \left(i \sum_{k=1}^{15} \epsilon_{j, k} S_{k}\right) \tilde{U}_{j} & S_{k}=1 X, X 1, X X, \ldots
\end{array}
$$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
\begin{array}{ll}
=\exp (\underset{\sim}{i \epsilon} \underset{\sim}{H}) \tilde{U}_{j} & \begin{array}{l}
\text { Parameterized by } \\
\text { the } 15 \text { nontrivial } \\
\text { two-qubit Pauli strings }
\end{array} \\
=\exp \left(i \sum_{k=1}^{15} \epsilon_{j, k} S_{k}\right) \tilde{U}_{j} & S_{k}=1 X, X 1, X X, \ldots
\end{array}
$$

- Perturbation to input $x \Rightarrow$ perturbation to image

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
\begin{array}{ll}
=\exp (i \epsilon \underbrace{H}_{i}) \tilde{U}_{j} & \begin{array}{l}
\text { Parameterized by } \\
\text { the } 15 \text { nontrivial } \\
\text { two-qubit Pauli strings }
\end{array} \\
=\exp \left(i \sum_{k=1}^{15} \epsilon_{j, k} S_{k}\right) \tilde{U}_{j} & S_{k}=1 X, X 1, X X, \ldots
\end{array}
$$

- Perturbation to input $x \Rightarrow$ perturbation to image

$$
U=F^{A}(x) \quad \mapsto \quad \tilde{U}=F^{A}(\tilde{x})
$$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
\begin{array}{ll}
=\exp (i \epsilon \underbrace{H}_{i}) \tilde{U}_{j} & \begin{array}{l}
\text { Parameterized by } \\
\text { the } 15 \text { nontrivial } \\
\text { two-qubit Pauli strings }
\end{array} \\
=\exp \left(i \sum_{k=1}^{15} \epsilon_{j, k} S_{k}\right) \tilde{U}_{j} & S_{k}=1 X, X 1, X X, \ldots
\end{array}
$$

- Perturbation to input $x \Rightarrow$ perturbation to image

$$
U=F^{A}(x) \quad \mapsto \quad \tilde{U}=F^{A}(\tilde{x})
$$

- Perturbation to image:

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
\begin{array}{ll}
=\exp (i \epsilon \underset{\sim}{\operatorname{H}}) \tilde{U}_{j} & \begin{array}{l}
\text { Parameterized by } \\
\text { the } 15 \text { nontrivial } \\
\text { two-qubit Pauli strings }
\end{array} \\
=\exp \left(i \sum_{k=1}^{15} \epsilon_{j, k} S_{k}\right) \tilde{U}_{j} & S_{k}=1 X, X 1, X X, \ldots
\end{array}
$$

- Perturbation to input $x \Rightarrow$ perturbation to image

$$
U=F^{A}(x) \quad \mapsto \quad \tilde{U}=F^{A}(\tilde{x})
$$

- Perturbation to image: $\left.\partial_{\epsilon_{j, k}} F^{A}(\tilde{x})\right|_{\epsilon_{j, k}=0}$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
\begin{array}{ll}
=\exp (\underset{\sim}{i \epsilon} \underset{\sim}{H}) \tilde{U}_{j} & \begin{array}{l}
\text { Parameterized by } \\
\text { the } 15 \text { nontrivial } \\
\text { two-qubit Pauli strings }
\end{array} \\
=\exp \left(i \sum_{k=1}^{15} \epsilon_{j, k} S_{k}\right) \tilde{U}_{j} & S_{k}=1 X, X 1, X X, \ldots
\end{array}
$$

- Perturbation to input $x \Rightarrow$ perturbation to image

$$
U=F^{A}(x) \quad \mapsto \quad \tilde{U}=F^{A}(\tilde{x})
$$

- Perturbation to image: $\left.\partial_{\epsilon_{j, k}} F^{A}(\tilde{x})\right|_{\epsilon_{j, k}=0}=\underbrace{K_{j, k}}_{\text {Hermitian }} F^{A}(x)$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Parameterization
- $x=\left(U_{1}, U_{2}, \ldots, U_{R}\right) \quad \mapsto \quad \tilde{x}=\left(\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{R}\right)$
- Perturbed gate: $\tilde{U}_{j}=$ (infinitesimal unitary) U_{j}

$$
\begin{array}{ll}
=\exp (i \epsilon \underbrace{H}_{i}) \tilde{U}_{j} & \begin{array}{l}
\text { Parameterized by } \\
\text { the } 15 \text { nontrivial } \\
\text { two-qubit Pauli strings }
\end{array} \\
=\exp \left(i \sum_{k=1}^{15} \epsilon_{j, k} S_{k}\right) \tilde{U}_{j} & S_{k}=1 X, X 1, X X, \ldots
\end{array}
$$

- Perturbation to input $x \Rightarrow$ perturbation to image

$$
U=F^{A}(x) \quad \mapsto \quad \tilde{U}=F^{A}(\tilde{x})
$$

- Perturbation to image: $\left.\partial_{\epsilon_{j, k}} F^{A}(\tilde{x})\right|_{\epsilon_{j, k}=0}=\underset{\substack{\text { Hermitian }}}{K_{j, k}} F^{A}(x) \longrightarrow$ Closer look operator

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Say that we perturb gate U_{j} in the "direction" S_{k}, by an amount $\epsilon_{j, k}$.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Say that we perturb gate U_{j} in the "direction" S_{k}, by an amount $\epsilon_{j, k}$.
- Resulting perturbation to the whole unitary:

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Say that we perturb gate U_{j} in the "direction" S_{k}, by an amount $\epsilon_{j, k}$.
- Resulting perturbation to the whole unitary:

$$
\left.\partial_{\epsilon_{j, k}} F^{A}(\tilde{x})\right|_{\epsilon_{j, k}=0}
$$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Say that we perturb gate U_{j} in the "direction" S_{k}, by an amount $\epsilon_{j, k}$.
- Resulting perturbation to the whole unitary:

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Say that we perturb gate U_{j} in the "direction" S_{k}, by an amount $\epsilon_{j, k}$.
- Resulting perturbation to the whole unitary:

$$
\left.\partial_{\epsilon_{j, k}} F^{A}(\tilde{x})\right|_{\epsilon_{j, k}=0}=K_{j, k} F^{A}(x)
$$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Say that we perturb gate U_{j} in the "direction" S_{k}, by an amount $\epsilon_{j, k}$.
- Resulting perturbation to the whole unitary:

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Say that we perturb gate U_{j} in the "direction" S_{k}, by an amount $\epsilon_{j, k}$.
- Resulting perturbation to the whole unitary:

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- Say that we perturb gate U_{j} in the "direction" S_{k}, by an amount $\epsilon_{j, k}$.
- Resulting perturbation to the whole unitary:

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- To lower-bound r, choose Clifford gates U_{j}.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- To lower-bound r, choose Clifford gates U_{j}.
- Clifford gates
- The gates that map the Pauli strings to the Pauli strings (to within a phase)

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- To lower-bound r, choose Clifford gates U_{j}.
- Clifford gates
- The gates that map the Pauli strings to the Pauli strings (to within a phase)
- $C P C^{\dagger}$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- To lower-bound r, choose Clifford gates U_{j}.
- Clifford gates
- The gates that map the Pauli strings to the Pauli strings (to within a phase)
- $C P C^{\dagger}=e^{i \phi} P^{\prime}$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- To lower-bound r, choose Clifford gates U_{j}.
- Clifford gates
- The gates that map the Pauli strings to the Pauli strings (to within a phase)
- $C P C^{\dagger}=e^{i \phi} P^{\prime}$
$\rightarrow K_{j, k}=$ (phase) (Pauli string)

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- To lower-bound r, choose Clifford gates U_{j}.
- Clifford gates
- The gates that map the Pauli strings to the Pauli strings (to within a phase)
- $C P C^{\dagger}=e^{i \phi} P^{\prime}$
$\rightarrow K_{j, k}=$ (phase) (Pauli string)
- The Pauli strings are linearly independent.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- To lower-bound r, choose Clifford gates U_{j}.
- Clifford gates
- The gates that map the Pauli strings to the Pauli strings (to within a phase)
- $C P C^{\dagger}=e^{i \phi} P^{\prime}$
$\rightarrow K_{j, k}=$ (phase) (Pauli string)
- The Pauli strings are linearly independent.
\rightarrow To show that $F^{A}(x)$ is perturbed in $\geq T$ directions, show that

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- To lower-bound r, choose Clifford gates U_{j}.
- Clifford gates
- The gates that map the Pauli strings to the Pauli strings (to within a phase)
- $C P C^{\dagger}=e^{i \phi} P^{\prime}$
$\rightarrow K_{j, k}=$ (phase) (Pauli string)
- The Pauli strings are linearly independent.
\rightarrow To show that $F^{A}(x)$ is perturbed in $\geq T$ directions, show that perturbations lead to $\geq T$ different Pauli strings $K_{j, k}$.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

Recursive argument

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

Recursive argument

- Begin with circuit of architecture A^{\prime}

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

Recursive argument

- Begin with circuit of architecture A^{\prime}
+ Consists of $T^{\prime}<4^{n}-1$ blocks

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

Recursive argument

- Begin with circuit of architecture A^{\prime}
+ Consists of $T^{\prime}<4^{n}-1$ blocks
+ Each block contains a backward light cone.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

Recursive argument

- Begin with circuit of architecture A^{\prime}
+ Consists of $T^{\prime}<4^{n}-1$ blocks
+ Each block contains a backward light cone.
- Assumption: There exists a list x^{\prime} of Clifford gates

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

Recursive argument

- Begin with circuit of architecture A^{\prime}
+ Consists of $T^{\prime}<4^{n}-1$ blocks
+ Each block contains a backward light cone.
- Assumption: There exists a list x^{\prime} of Clifford gates
such that $F^{A^{\prime}}$ has a rank $r^{\prime} \geq T^{\prime}$ at $x^{\prime} . \Rightarrow$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

Recursive argument

- Begin with circuit of architecture A^{\prime}
+ Consists of $T^{\prime}<4^{n}-1$ blocks
+ Each block contains a backward light cone.
- Assumption: There exists a list x^{\prime} of Clifford gates
such that $F^{A^{\prime}}$ has a rank $r^{\prime} \geq T^{\prime}$ at $x^{\prime} . \Rightarrow$
- Perturb x^{\prime}. $\rightarrow F^{A^{\prime}}$ perturbed in $\geq T^{\prime}$ directions,

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

Recursive argument

- Begin with circuit of architecture A^{\prime}
+ Consists of $T^{\prime}<4^{n}-1$ blocks
+ Each block contains a backward light cone.
- Assumption: There exists a list x^{\prime} of Clifford gates
such that $F^{A^{\prime}}$ has a rank $r^{\prime} \geq T^{\prime}$ at $x^{\prime} . \Rightarrow$
- Perturb $x^{\prime} . \longrightarrow F^{A^{\prime}}$ perturbed in $\geq T^{\prime}$ directions, represented by Pauli strings $K_{j_{m}}^{\prime}, k_{m}$

$$
\left(m=1,2, \ldots, T^{\prime}\right)
$$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block,

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block, and choose Clifford gates to fill that block,

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block, and choose Clifford gates to fill that block, such that, if we perturb the augmented set $x^{\prime \prime}$ of gates,

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block, and choose Clifford gates to fill that block, such that, if we perturb the augmented set $x^{\prime \prime}$ of gates, $F^{A^{\prime \prime}}\left(x^{\prime \prime}\right)$ will spread in that direction.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block, and choose Clifford gates to fill that block, such that, if we perturb the augmented set $x^{\prime \prime}$ of gates, $F^{A^{\prime \prime}}\left(x^{\prime \prime}\right)$ will spread in that direction.
- Proof tools:

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block, and choose Clifford gates to fill that block, such that, if we perturb the augmented set $x^{\prime \prime}$ of gates, $F^{A^{\prime \prime}}\left(x^{\prime \prime}\right)$ will spread in that direction.
- Proof tools: (1) Backward light cone's structure

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block, and choose Clifford gates to fill that block, such that, if we perturb the augmented set $x^{\prime \prime}$ of gates, $F^{A^{\prime \prime}}\left(x^{\prime \prime}\right)$ will spread in that direction.
- Proof tools: (1) Backward light cone's structure
(2) We can construct a Clifford circuit : $P \mapsto Z_{n}$.
- Cleve et al., Quant. Inf. Comp. 16, 0721 (2016). Webb, arXiv:1510.02769 (2015). Zhu, Phys. Rev. A 96, 062336 (2017).

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block, and choose Clifford gates to fill that block, such that, if we perturb the augmented set $x^{\prime \prime}$ of gates, $F^{A^{\prime \prime}}\left(x^{\prime \prime}\right)$ will spread in that direction.
- Proof tools: (1) Backward light cone's structure
(2) We can construct a Clifford circuit : $P \mapsto Z_{n}$.
- Cleve et al., Quant. Inf. Comp. 16, 0721 (2016). Webb, arXiv:1510.02769 (2015). Zhu, Phys. Rev. A 96, 062336 (2017).

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- $\left\{K_{j_{m}, k_{m}}^{\prime}\right\}$ lacks some Pauli string P.
- Reason: $T^{\prime}<4^{n}-1$
\Rightarrow The perturbation fails to spread $F^{A^{\prime}}\left(x^{\prime}\right)$ in some direction.
- We can augment the architecture with another block, and choose Clifford gates to fill that block, such that, if we perturb the augmented set $x^{\prime \prime}$ of gates, $F^{A^{\prime \prime}}\left(x^{\prime \prime}\right)$ will spread in that direction. $\Rightarrow A^{\prime \prime}$ has a rank $\geq T^{\prime}+1$.
- Proof tools: (1) Backward light cone's structure
(2) We can construct a Clifford circuit : $P \mapsto Z_{n}$.
- Cleve et al., Quant. Inf. Comp. 16, 0721 (2016). Webb, arXiv:1510.02769 (2015). Zhu, Phys. Rev. A 96, 062336 (2017).

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- We can keep growing (a lower bound on) the contraction map's rank

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- We can keep growing (a lower bound on) the contraction map's rank by appending blocks with backward light cones.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- We can keep growing (a lower bound on) the contraction map's rank by appending blocks with backward light cones.
- Start at $T^{\prime}=0$.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- We can keep growing (a lower bound on) the contraction map's rank by appending blocks with backward light cones.
- Start at $T^{\prime}=0$.
- Augment T times.

Construction of $x \in \mathrm{SU}(4)^{\times R}$ for which $r \geq T$

- We can keep growing (a lower bound on) the contraction map's rank by appending blocks with backward light cones.
- Start at $T^{\prime}=0$.
- Augment T times.

$$
\rightarrow r \geq T
$$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

- $A=$ arbitrary n-qubit architecture of R gates

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

- $A=$ arbitrary n-qubit architecture of R gates
- \# of parameters needed to specify one 2-qubit gate

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

- $A=$ arbitrary n-qubit architecture of R gates
- \# of parameters needed to specify one 2-qubit gate
= dimension of $S U(4)$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

- $A=$ arbitrary n-qubit architecture of R gates
- \# of parameters needed to specify one 2-qubit gate
$=$ dimension of $S U(4)=4^{2}-1$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

- $A=$ arbitrary n-qubit architecture of R gates
- \# of parameters needed to specify one 2-qubit gate
$=$ dimension of $S U(4)=4^{2}-1=15$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

- $A=$ arbitrary n-qubit architecture of R gates
- \# of parameters needed to specify one 2-qubit gate
$=$ dimension of $S U(4)=4^{2}-1=15$
\longrightarrow Naïve guess: \# of parameters needed to specify circuit $=15 R$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$ This set of parameters contains redundancies.

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- This description of G includes a rotation of qubit 2

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- This description of G includes a rotation of qubit $2 \longrightarrow 3$ parameters

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- This description of G includes a rotation of qubit $2 \longrightarrow 3$ parameters
- This description of G^{\prime} includes a rotation of qubit 2

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- This description of G includes a rotation of qubit $2 \longrightarrow 3$ parameters
- This description of G^{\prime} includes a rotation of qubit $2 \longrightarrow$ another 3 parameters

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- This description of G includes a rotation of qubit $2 \longrightarrow 3$ parameters
- This description of G^{\prime} includes a rotation of qubit $2 \longrightarrow$ another 3 parameters
- (1st rotation) * (2nd rotation) = just 1 rotation

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- This description of G includes a rotation of qubit $2 \longrightarrow 3$ parameters
- This description of G^{\prime} includes a rotation of qubit $2 \longrightarrow$ another 3 parameters
- $(1$ st rotation $)$ * $(2$ nd rotation $)=$ just 1 rotation
\therefore We're describing just 1 rotation of qubit 2 with 6 parameters

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- This description of G includes a rotation of qubit $2 \longrightarrow 3$ parameters
- This description of G^{\prime} includes a rotation of qubit $2 \longrightarrow$ another 3 parameters
- (1st rotation) * (2nd rotation) = just 1 rotation
\therefore We're describing just 1 rotation of qubit 2 with 6 parameters $\longrightarrow 3$ parameters more than necessary

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- This description of G includes a rotation of qubit $2 \longrightarrow 3$ parameters
- This description of G^{\prime} includes a rotation of qubit $2 \longrightarrow$ another 3 parameters
- (1st rotation) * (2nd rotation) = just 1 rotation
\therefore We're describing just 1 rotation of qubit 2 with 6 parameters $\longrightarrow 3$ parameters more
\therefore Subtract off 3 parameters per shared qubit than necessary

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- \# of shared qubits

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- \# of shared qubits

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- \# of shared qubits

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- \# of shared qubits $=2$ (\# gates) -2 (\# gates on right-hand boundary)

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- \# of shared qubits $=2$ (\# gates) -2 (\# gates on right-hand boundary)

$$
=2 R-2(n / 2)
$$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$

This set of parameters contains redundancies.

- \# of shared qubits $=2$ (\# gates) -2 (\# gates on right-hand boundary)

$$
\begin{aligned}
& =2 R-2(n / 2) \\
& =2 R-n
\end{aligned}
$$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$
\therefore \# of parameters needed to specify circuit

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$
\therefore \# of parameters needed to specify circuit \leq (naïve guess) -3 (\# shared qubits)

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$
\therefore \# of parameters needed to specify circuit
\leq (naïve guess) -3 (\# shared qubits)
$=15 R-3(2 R-n)$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$
\therefore \# of parameters needed to specify circuit
\leq (naïve guess) -3 (\# shared qubits)
$=15 R-3(2 R-n)$
$=9 R+3 n$

Proof of upper bound on accessible dimension, $d_{A} \leq 9 R+3 n$
\therefore \# of parameters needed to specify circuit
\leq (naïve guess) -3 (\# shared qubits)
$=15 R-3(2 R-n)$
$=9 R+3 n \checkmark$

- Knot: https://falkonry.com/blog/historical-data-the-gordian-knot-of-machine-learning/
- Mary, Mary: https://www.catsmeow.com/products/new-mother/mary-mary-quite-contrary
- Home: https://icon-icons.com/icon/house/99129
- Hamilton set: https://www.pinterest.de/pin/569072102906184687/
- Not-so-fast sloth: https://www.teepublic.com/sticker/2782891-not-so-fast
- Opportunity: https://www.moodyonthemarket.com/cornerstone-alliance-publishes-opportunity-zone-prospectus-for-potential-projects/
- Complexity ("Thanks" slide): https://www.facebook.com/complexandchaos/
- Emptying glass: $\underline{\text { https://www.istockphoto.com/photos/half-full-glass }}$

Proof of lower bound on accessible dimension, $d_{A} \geq T$

- $r_{\max }=$ greatest rank achieved by F^{A} at any $x \in \operatorname{SU}(4)^{\times R}$
- $E_{r_{\max }}=$ locus of points x where F^{A} achieves rank $r_{\text {max }}$
- $E_{<r_{\max }}=$ locus of points x where F^{A} achieves rank $<r_{\text {max }}$
- Lemma: $E_{<r_{\max }}$ is an algebraic set of measure 0 .
$\Leftrightarrow \quad E_{r_{\max }}$ is an open, measure- 1 set.
\Rightarrow Accessible dimension = rank: $d_{A}=r_{\max }$.

