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Introduction

* My main interest: boundary value problems for integrable PDEs
such as NLS, KdV,.., but also any linear (constant coefficients)
ones.

*Linear BVP on bounded domain involve linear differential
operators that may not be self-adjoint, such as

L=03d3on{f:1 =R, feS(),f satisfies given BC}

with
| =[0,00) or [=10,1].

*This talk is mainly about what the PDE approach can contribute
to the understanding of the spectral structure of the operators

*Main example: the Stokes, or Airy, equation

ur = Lu, u=u(xt), xel, t>0,
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Boundary value problems on [0, 1] - a question

on [0,1] x (0, c0):

Ut = Usex, u(x,0) = up(x), 3 homogeneous BC (?)

Separate variables, and use eigenfunctions of
d3
L= 53 onD = {f € C®([0,1]) : f satisfies 3 bc's}  L2[0,1]

L is not generally selfadjoint (because of BC), but may have
infinitely many real eigenvalues A, with eigenfunctions {¢,(x)}

Question: does it hold  u(x,t) = Z(uo,gf)n)ei)‘?'tcbn(x)?

n
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Eigenvalues as singularities of a complex-valued function

Classical idea in the context of elliptic linear PDE - Watson's
transformation:

convert series to an integral, via a residue calculation, using a
complex valued function with simple poles at the eigenvalues

A
_Z_: f(n) = /1_(62)7m\d/\

where C is any contour enclosing the real A-axis but none of the
singularities (including possible singularities at co) of f .

The Unified Transform approach (Fokas, P,...) goes the other
way,: derive, in general, a complex integral representation for the
solution of linear BVP - which may be equivalent to a series
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Integral representation of the solution of linear BVP

ur(x, t)+iP(—idx)u(x,t) =0, xe€[0,1], t >0, P polynomial

with given IC at t =0 and BCsat x =0, and x =1

(IC)  (BC) (A€C)

{w(x), (D)} 5 {cEON), AN} e

_ 1 x—ip()e ST (N) Ax—1)—ipe S (A)
u(x,t) = {/He a0 dA r7e A d\

£ —{\eC:IimP()\)=0}NC*
(on this contour, e~ PNt s purely oscillatory)
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Singularities in the representation (P, Smith)

ur+Lu=0,xel L =iP(—idx)(+ b.c.)

— i "AX*"P()\)tC—F()\) iA(x—1)—iP )\)tC ( ) }
u(x,t)—27r{/r+e A(>\)d)\/_e A()\)d)\

e (*()), are transforms of the given initial and boundary conditions
e A()) is a determinant (arising in the solution of the so-called
global relation) whose zeros are (essentially) the discrete
eigenvalues of L.

If the associated eigenfuctions form a basis (say the operator+bc is
self-adjoint...), this representation is equivalent to the series one

* Uniformly convergent representation, in contrast to
non-uniformly (slow) converging real integral /series representation

* Fast exponential decay can be harnessed for accurate numerical
evaluations
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Example: homogeneous Dirichlet problem for the heat

equation on (0, 1)

UT solution representation:

2ru(x, t) =

ix— 22t (272 —e ) dig(N)—e dg(—
fr+ e ( e)—»\(,gix ( )d)\

+ frf oA x—=1)= A2t Bo(=A)=o(A) 4

e—A_oix

Ap = 7n zeros of A(\) = et — /A

Using Cauchy+residue calculation —

2
u(x,t) = - Z e Nt sin(Anx)dg(An) sine series
n
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U = Uxx On [0, 1], u(x,0) = up(x), 3 BCs

Th zeros of A(\) are an infinite set accumulating only at infinity;
(asymptotic) location is given by general results in complex
analysis , and depends crucially on the boundary conditions

boundary conditions : u(0,t) = u(1,t) =0, ux(0,t) = Bux(1,t),

2im

A()\) — e—iA_Fae—ia)\_’_aZe—iaz)\+5(ei>\+aeia>\+a2€ia2)\)’ a—=¢e3.

> 3 = 1: the zeros are on the integration contour — residue
computation (with no contour deformation)

> 0 < [ < 1: the zeros are asymptotic to the integration
contour — residue computation

» 3 = 0: the contour of integration cannot be deformed as far
the asymptotic directions of the zeros
= the underlying differential operator does not admit a
Riesz basis of eigenfunctions
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Zeros of A()) as a function of

solid lines = integration contour
BC: u(0,t) (1,t) =0, ux(0,t) = Sux(1,t)

Ve
7
A

(c) B=05 (d) B=08
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A transform pair - examples tailored to a specific BVP

Ut = Usex, IC : u(x,0) = up(x), 3BCs

_ 1 x—intt ST (A) ix—1)—int S (A)
u(x,t)—2ﬂ {/r+e A(A)d)\+/_e A()\)dA}

Problem 1: Problem 2:
u(0,t) = u(1,t) =0, u(0,t) = u(1,t) = ue(0,t) = 0
{ (0, £) = Lu (1, 1), (0.1) = u(l. £) = (0. 1)

The integral representation is
equivalent to a series, by
calculating the residues around
the poles on the contour. representation.
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Zeros of A()) as a function of

BC: u(0,t) = u(1,t) =0, u(0,t) = Bux(1,t)

(a) Problem 1 -3 =1 (b) Problem2-8=0

On the solid lines, Re(—iA3)=0 - separating the regions where the
t exponential decays or grows as A — oo
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Examples of transform pair tailored to a specific BVP

Problem 1:
u(x,0) = f(x), u(0,t) = u(1,t) =0, u(0,t) = Fux(1,¢t).

F(x) = FIF() fo x, \)f(x)dx Aelt
fO x, \f(x)dx AeTl~
1 . . . =
+ _ —IAX (TN —ia\ 2 —iac
ET(x,\) = 7B [e (e + 2ae + 2a%e )+}

E_(X )\) _ —e~iA [ —I)\X(2+a2 —la)\+ae—ioz2>\)+ }
N = 2amy

W|th A()\) — el)\ + aeia)\ + a2eia2)\ + 2(6—,)\ + O[eiia}\ + aze*"az)‘).

F(A) — F[F](x (/ /) MF(NdA = Y / e F(A

o:A(0)=0
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Examples of transform pair tailored to a specific BVP

Problem 2:
u(x,0) = f(x), u(0,t) = u(1,t) = ue(0, t) = 0.

oo = BE L e
0 X,
1

B ) = 27 AN

[efi)\x(aefia)\ i a2efia2)\) _ aefia)\xm]
—e—iA
E~(x,\) =

(A = 50 am

with A(A) = e~ 4 qe—iod 4+ g2e—ia%A,
F(A) = fIF](x </ / ) ')‘XF (A)d\, no series.
r+
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Spectral decomposition of differential operators: Gel'fand

generalised eigenfunctions

There are no nonzero eigenfunctions of
(5F)(x) = —f"(x), Vf € 8]0, 00) such that £(0) = 0.
Define instead a functional F[-](A) € (S[0,0))":
FISF](\) = M2F[f](\), YAER

For this example,

™

FIfI(N) = 2 /000 sin(Ax)f(x)dx, (sine transform on [0, c0)).

Gel'fand called this eigenfunctional, or generalised eigenfunctions
(and A € R eigenvalues)

This notion depends on self-adjointness to prove any completeness
result and to define the spectral representation of the operator.
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More general spectral decomposition of differential

operators: augmented eigenfunctions

Example: v + 0Ju =0, x € (0,1) + initial and homogeneous BC
Augmented eigenfunctions of L = 0] on

D = {f € C* : f satisfies the boundary conditions } C L?:
are (eigen)functionals
FAlf], AeT, T={\:Im\" =0}

such that there exist reminder functionals R[-](\) with

MRy [f]ldA =0
.
FA[LF] = A"FA[f] + RA[f], A €T, and ¢ or

f[— e’.AX—Rﬁ\[,f] d}\ =0.
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Diagonalisation of the operator

If the eigenfunctionals form a complete family (Fy[f] = 0 iff
f = 0), then integration over I gives rise to a non-self-adjoint
analogue of the spectral representation of L:

/ e Fy[LfldA = / A" Fy[f]dA,
r r

IXF f:/ IXFf:'

Hence they provides an effective diagonalisation modulo functions
analytic in a certain sector of the complex spectral plane

Important: Completeness follows from the PDE theory, rather than
from self-adjointness

Diagonalisation of such operators in very general situations - talk
of Dave Smith later in the meeting
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Another application of complex analytical ideas:

Time-periodic boundary conditions

The problem:
Oru(x, t)+P(—idx)u(x,t) =0, u(x,0) = uo(x), x € [0,1],
given appropriate time-periodic boundary conditions at x = 0 and
x = 1.

Is u(x, t) time-periodic (exactly or asymptotically)?

With the same period as the BC?

Examples
(free Schrodinger)  uy — iuy = 0,
(Stokes) U + U = 0.
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Necessary conditions for periodicity = analyticity constraint

Step 1 Assuming time periodicity, one can derive necessary conditions
(based on analyticity constraints) for the solvability of the
D-to-N map.

Step 2 To prove that the solution/unknown boundary values is
(asymptotically) periodic, one needs to analyse the integral or
series representation of the solution.

Assuming that the necessary conditions for periodicity hold,:
» For free Schrodinger with time-periodic Dirichlet boundary
conditions of period 7, the solution is time periodic only if 7
and 2/ are linearly dependent over Q.
» For the Stokes equation, with time-periodic Dirichlet-type
conditions, the solution is always asymptotically time periodic,
with the same period as the boundary data.
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Finally: periodic revival for third order dispersion

Talbot effect, or the revival property: in linear periodic problem, it
refers to the propagation, at rational values of the time, of any
initial discontinuities - at other times, the solution is continuous
but nowhere differentiable.

Studied for linear Schrodinger, then also for Stokes equation

Ur = Uxxx, U(X,0)=step function, periodic boundary conditions

(Peter Olver)

A A
- — W
" ”‘vﬂvu \.wv“\ \W’ ‘ ,W\\ s "
Wt ‘M Mﬂ,w‘.“‘,\ W ,/\m.«,y ) N
W R v
t=20 t=.1 t=
M, )
v A > W A
/ MJW Vgt /M o ‘/\’\‘V " A Vi N A \fwﬁ N \m\,mw \
AWML iy MW A W \ Vo, i N
W A A
~f Al W
t=.3 t=.4 t=.5

July 2022 BP



Periodic Airy - solution at "rational” times

Ur = Uxxx, U(X,0)=step function, periodic boundary conditions
Revival of the initial discontinuities:

_ _1 _1

t=m t=g5m t=3m
e s I

[

t=1m t=1ir t=3%m
T 1 :

— j ] o

’_‘u — 1
t:%ﬂ' t:%ﬂ' t:%ﬂ'
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Revival property for quasi-periodic Stokes

Quasi-periodic conditions:
2™ u(t,0) = du(t,2m), (j=0,1), 0<6<1.

Revival property still hold for 2nd order problems (free space
Schrodinger), for any value of 6 - but it holds for Stokes only for
0 € Q.

p3,qs7 pe1,053

——J_ ' !' w W" W“)

. vw/’f M v»\ ( A’w IJW‘M
’ n

(a)yt=2n3,0=1/4 (b) t =27, 0=12/3

More on this in the talk talk of George Farmakis later in the
meeting
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UT: complex (RH) formulation of integral transforms

Example: The ODE
,LLX(X,A)—I.A,U,(X,)\):U(X), AeC

encodes the Fourier transform

direct transform: via solving the ODE for u(x, \) bounded in A € C
inverse transform: via solving a RH problem

Given u(x) (smooth and decaying), solutions u™ and p~ bounded
(wrt A) in C* and C™ are

X

pt = / M y(y)dy, N e CH; pm = / NN y(y)dy, X e C”

—0o0 [e.9]

— for A€ R (p"—p7)(\) =e™0a(\)  DIRECT
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Fourier inversion theorem

C
(X plane) -

M a(N) Im A=0
C-

Given {()), A € R, a function p analytic everywhere in C except
the real axis is the solution of a RH problem (via Plemelj formula):

1 /°° e 0(¢)

HAX) =55 | TN

d¢

1 [~
= u(x) = px — i\ = 27r/ e*i(¢)d¢, xe R INVERSE
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Trasforms for BVP for (linear) PDEs

PDE as the compatibility condition of a pair of linear ODEs

Example: linear evolution problem

Ux — IAL=u

UttUsx = 0 = fix = e with g { e — i3 = U + ity — N2u

and \ € C.

BVP main idea: derive a transform pair (via RH) from this
system of ODEs (with both x and t as parameters)

equivalently, divergence form (classical for elliptic case)

Up + Upe = 0 <— [e—i/\x—i}\3tu]t _ [e—ikx—i)ﬁt(uxx + i)\UX o )\2U)]X =0
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