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Revivals and Fractalisation
Consider the free linear Schrödinger equation with periodic
boundary conditions on [0, 2π]

∂tu(x , t) = i∂2
xu(x , t) u(x , 0) = u0(x)

∂m
x u(0, t) = ∂m

x u(2π, t), m = 0, 1.

◦ Solution representation by Fourier series

u(x , t) =
∑
j∈Z

û0(j)e
−ij2tej(x),

ej(x) =
e ijx√
2π

, û0(j) = ⟨u0, ej⟩.

◦ For u0(x) with jump discontinuities there is a dichotomy in
the behaviour of u(x , t) at irrational times (t/2π /∈ Q) and
rational times (t/2π ∈ Q).



Fractalisation

Choose a step function initial condition

u0(x) =

{
0, 0 < x < π

1, π < x < 2π.

◦ Plot u(x , t) at generic times t.

◦ Continuous, non-differentiable profiles.
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Figure: t = 0
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Figure: t = 0.4
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Figure: t = 1.2

Real (blue) and imaginary (red) parts of u(x , t).



Revivals

◦ However, if t is a rational time, i.e. ∃ p
q ∈ Q such that

t = 2π p
q , then u(x , 2π p

q ) has piece-wise constant profiles.
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Figure: t = 0
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Figure: p = 1, q = 3
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Figure: p = 2, q = 5

Real (blue) and imaginary (red) parts of u(x , 2π p
q ).

Dichotomy in regularity:

◦ rational/irrational ←→ revival (discontinuous)/fractalisation
(continuous+non-differentiable)



Pure revivals

For any u0 ∈ L2(0, 2π), the following identity holds

u
(
x , 2π

p

q

)
=

1

q

q−1∑
k=0

q−1∑
m=0

e−2πim2 p
q e2πim

k
q u∗0

(
x − 2π

k

q

)
.

◦ u∗0 : 2π-periodic extension of u0.

◦ Proof: Fourier coefficients of RHS are equal to

û0(j)e
−ij22π p

q = û
(
j , 2π

p

q

)
.

Pure Revivals: u(x , 2πp/q) is a finite linear combination of
translations of u0.

Implications
(i) Finitely many jump discontinuities at rational times.
(ii) u(x , 2πp/q) depends on finitely many values of u0.



The classical setting

◦ Oskolkov’92:
▶ t/2π ̸∈ Q→ u(x , t) continuous in x ∈ [0, 2π].
▶ t/2π ∈ Q→ u(x , t) has at most countably many

discontinuities in [0, 2π].
▶ u0 continuous → u(x , t) continuous in both variables.

◦ Berry and Klein’96: Talbot effect = revivals/fractalisation.

Figure: Talbot effect
(https://skullsinthestars.com/2010/03/04/rolling-
out-the-optical-carpet-the-talbot-effect/)



The classical setting

◦ Berry’96: Quantum Revival, Conjecture: Fractal dimension is
3/2.

◦ Kapitanski, Rodnianksi’99 + Rodnianski’00: Fractal
dimension is 3/2 indeed (for rough initial data).

◦ Taylor’03: Pure revival and extension to the N−dimensional
sphere and torus.

◦ Olver’10 (dispersive quantisation): Pure revival for the
periodic problem to

∂tu(x , t) = −iP
(
− i∂x

)
u(x , t),

where P(·) polynomial of order n ≥ 2 with integer
coefficients.
▶ See also book by Erdoğan and Tzirakis’16 for full statement.
▶ We refer to this as the classical setting.



Other time evolution problems
Question: Does the revival phenomenon survive in other time
evolution problems?

◦ Non self-adjoint boundary conditions on [0, 2π]:

∂tu(x , t) = i∂2
xu(x , t), u(x , 0) = u0(x)

β0u(0, t) = u(2π, t), β1∂xu(0, t) = ∂xu(2π, t).

▶ Pure revivals of u0 and its reflection [Olver, Sheils, Smith’20,
Boulton, F. , Pelloni’21].

◦ Self-adjoint boundary conditions on [0, 2π]:

∂tu(x , t) = ∂3
xu(x , t), u(x , 0) = u0(x)

e i2πθ∂m
x u(0, t) = ∂m

x u(2π, t), m = 0, 1, 2.

▶ Pure revivals if and only if θ ∈ Q [Boulton, F., Pelloni’21].

◦ The revival phenomenon does not depend on the
self-adjointness of the boundary conditions.

◦ However, the eigenstructure of the underlying differential
operator seems to matter.



Weak Revivals

Separated boundary conditions on [0, π]:

∂tu(x , t) = i∂2
xu(x , t), u(x , 0) = u0(x)

bu(x0, t) = (1− b)∂xu(x0, t), x0 = 0, π b ∈ [0, 1].

◦ [Boulton, F., Pelloni’21]

u
(
x , 2π

p

q

)
= pure revival of ueven0 (x)

+ {continuous function of x} , x ∈ [0, π],

:= weak revival.

◦ Weak revival has a different structure from the pure revival,
but it has the same implications for u(x , 2π p

q ):

▶ Finitely many jump discontinuities at rational times.
▶ Dependence on finitely many values of u0.



Weak revivals

b = 0.35

b = 0.6



Weak revivals

Consider the bi-harmonic wave equation on [0, 2π]

∂2
t u(x , t) = −∂4

xu(x , t)

with u(x , 0) = f (x) and ∂tu(x , 0) = g(x) and periodic boundary
conditions ∂m

x u(0, t) = ∂m
x u(2π, t), m = 0, 1, 2, 3.

◦ Claim: u(x , 2π p
q ) = pure revival + a continuous function of x .

:= weak revival.

proof. We notice that

∂2
t u(x , t) = −∂4

xu(x , t)⇐⇒
(
∂t + i∂2

x

)(
∂t − i∂2

x

)
u(x , t) = 0

⇐⇒

{
∂tu(x , t) = i∂2

xu(x , t) + w(x , t), u0(x) = f (x),

∂tw(x , t) = −i∂2
xw(x , t), w0(x) = g(x)− i∂2

x f (x).

with periodic boundary conditions.



Weak revivals

By Duhamel’s principle we have,

u(x , t) =
∑
j∈Z

f̂ (j)e−ij2tej(x) +

∫ t

0

∑
j∈Z

ŵ(j , s)e−ij2(t−s)ej(x)ds

At rational times t = 2π p
q :

u
(
x , 2π

p

q

)
= pure revival of f (x) + N(x , 2π

p

q
),

◦ N(x , 2π
p

q
) : continuous function of x ∈ [0, 2π].



Conclusions and further problems
◦ Weak revival is the main revival effect in the periodic even
order poly-harmonic wave equation

∂2
t u(x , t) = −(−i∂x)2ru(x , t), r ≥ 2 integer.

◦ When we go too far outside the classical setting, then the
pure revival becomes weak revival.

◦ What happens for more general linear boundary conditions?
▶ [Olver, Sheils, Smith’20] :

∂tu(x , t) = i∂2
xu(x , t), u(x , 0) = u0(x),

β11∂xu(2π, t) + β12u(2π, t) + β13∂xu(0, t) + β14u(0, t) = 0,

β21∂xu(2π, t) + β22u(2π, t) + β23∂xu(0, t) + β24u(0, t) = 0.

▶ Third order problem with pseudo-Dirichlet boundary
conditions:

∂tu(x , t) = ∂3
xu(x , t), u(x , 0) = u0(x),

u(0, t) = u(2π, t) = ∂xu(2π, t) = 0.



Conclusions and further problems
◦ Non-linear equations?
[Chen and Olver’14, Erdoğan and Tzirakis’13] : Weak type
revival under periodic boundary conditions on [0, 2π]:

∂tu(x , t) = i∂2
xu(x , t) + i |u(x , t)|2u(x , t).

▶ Galilean invariance:

z(x , t) = e i(θx−θ2t)u(x − 2θt, t)

implies the weak revival effect in the case of self-adjoint
quasi-periodic boundary conditions:

e i2πθ∂xz(0, t) = ∂m
x z(2π, t), m = 0, 1.

◦ Linear perturbations ?
[Rodnianski’99, Cho, Kim, Kim, Kwon and Seo’21]: Weak
type revival under periodic boundary conditions on [0, 2π]:

∂tu(x , t) = −i(−∂2
xu(x , t) + V (x)u(x , t)).

Thank you!
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