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Revivals and Fractalisation

Consider the free linear Schrodinger equation with periodic
boundary conditions on [0, 27]

dru(x, t) = id%u(x,t)  u(x,0) = up(x)
o7u(0,t) =0 u(2m,t), m=0,1.

o Solution representation by Fourier series

2

u(x,t) = Z ao(j)e U ei(x),
JEZ

ijx

gj(x) = ors o (j) = (uo, &)-

o For up(x) with jump discontinuities there is a dichotomy in
the behaviour of u(x, t) at irrational times (t/27 ¢ Q) and
rational times (t/27 € Q).



Fractalisation

Choose a step function initial condition

(x) 0, O<x<m
Up(X) =
0 1, m<x<2m.

o Plot u(x,t) at generic times t.

o Continuous, non-differentiable profiles.
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Figure: t =0 Figure: t = 0.4 Figure: t =1.2
Real (blue) and imaginary (red) parts of u(x, t).



Revivals

o However, if t is a rational time, i.e. 3 g € Q such that
t =22, then u(x,2mw2) has piece-wise constant profiles.

Figure: t =0 Figure: p=1, g=3 Figure: p=2, g=5
L P
Real (blue) and imaginary (red) parts of u(x,2m£).

Dichotomy in regularity:
o rational/irrational <— revival (discontinuous)/fractalisation
(continuous+non-differentiable)



Pure revivals

For any ug € L2(0,27), the following identity holds

( 2 1 qzjl qz:l —27nm2p 27I'Imk *( 2 k)
X, 7'(' = — e quy(x —2m—).
q k=0 m=0 q

o ug : 2m-periodic extension of wug.

o Proof. Fourier coefficients of RHS are equal to

fo(j)e 72" = a(j, 2w§).

Pure Revivals: u(x,2mp/q) is a finite linear combination of

translations of wug. o
Implications

(i) Finitely many jump discontinuities at rational times.
(ii) u(x,2mwp/q) depends on finitely many values of wug.



The classical setting

o Oskolkov'92:
> t/2n ¢ Q — u(x, t) continuous in x € [0, 27].
> t/2r € Q — u(x,t) has at most countably many
discontinuities in [0, 27].
> ug continuous — u(x, t) continuous in both variables.

o Berry and Klein'96: Talbot effect = revivals/fractalisation.
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Figure: Talbot effect
(https:/ /skullsinthestars.com /2010/03/04 /rolling-
out-the-optical-carpet-the-talbot-effect/)



The classical setting

o Berry’96: Quantum Revival, Conjecture: Fractal dimension is
3/2.

o Kapitanski, Rodnianksi’'99 + Rodnianski’00: Fractal
dimension is 3/2 indeed (for rough initial data).

o Taylor'03: Pure revival and extension to the N—dimensional
sphere and torus.

o Olver'10 (dispersive quantisation): Pure revival for the
periodic problem to

Oeu(x, t) = —iP( — idy)u(x, t),

where P(-) polynomial of order n > 2 with integer
coefficients.
» See also book by Erdogan and Tzirakis'16 for full statement.
» We refer to this as the classical setting.



Other time evolution problems
Question: Does the revival phenomenon survive in other time
evolution problems?
o Non self-adjoint boundary conditions on [0, 27]:

Oru(x, t) = id2u(x,t), u(x,0) = up(x)
Bou(0, t) = u(2m, t), P10xu(0,t) = Oxu(2m, t).

> Pure revivals of ug and its reflection [Olver, Sheils, Smith'20,
Boulton, F., Pelloni'21].

o Self-adjoint boundary conditions on [0, 27]:
deu(x, t) = 3u(x, t), u(x,0) = up(x)
e?™9mu(0,t) = 0Mu(2n,t), m=0,1,2.

> Pure revivals if and only if § € Q [Boulton, F., Pelloni'21].
o The revival phenomenon does not depend on the
self-adjointness of the boundary conditions.
o However, the eigenstructure of the underlying differential
operator seems to matter.



Weak Revivals

Separated boundary conditions on [0, 7]:

dru(x, t) = i0%u(x, t), u(x,0) = up(x)
bu(xop, t) = (1 — b)dxu(x0,t), xo=0,7 be]o0,1].

o [Boulton, F., Pelloni'21]

u(x, 2718) = pure revival of u5"®"(x)
q

+ {continuous function of x}, x € [0,7],

= weak revival.

o Weak revival has a different structure from the pure revival,
but it has the same implications for u(x, 2775):

» Finitely many jump discontinuities at rational times.
» Dependence on finitely many values of wg.



Weak revivals
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Weak revivals

Consider the bi-harmonic wave equation on [0, 27]

D2u(x, t) = —0%u(x, t)
with u(x,0) = f(x) and d:u(x,0) = g(x) and periodic boundary
conditions 97'u(0, t) = 0J'u(2m,t), m=10,1,2,3.

o Claim: u(x, 2%5) = pure revival + a continuous function of x.
= weak revival.

proof. We notice that

OZu(x, t) = —Ogu(x, t) <> (9 +i03) (0 — i03) u(x,t) = 0

{8tu(x, t) = i0%u(x, t) + w(x, t), uo(x) = f(x),
Orw(x, t) = —id2w(x, t), wo(x) = g(x) — i0%f(x).

with periodic boundary conditions.



Weak revivals

By Duhamel’s principle we have,

u(x, t) = Z f(j)e*"ﬂtej(x) + /ot Z w(Jj, s)e*"ﬂ(t*s)ej(x)ds

JEZ. =/

At rational times t = 27r§:

u(x, 27rB) = pure revival of f(x) + N(x, 27rB),
q q

o N(x, 27rB) : continuous function of x € [0, 27].
q



Conclusions and further problems

o Weak revival is the main revival effect in the periodic even
order poly-harmonic wave equation

Q2u(x,t) = —(—idx)* u(x,t), r>2 integer.

o When we go too far outside the classical setting, then the
pure revival becomes weak revival.

o What happens for more general linear boundary conditions?
» [Olver, Sheils, Smith'20] :

Oru(x, t) = id%u(x, t), u(x,0) = ug(x),
5113XU(27T, t) + 612u(27r, t) + [3138Xu(0, t) + ,314u(0, t)
B210xu(27, t) + Poou(27, t) + B230xu(0, t) + Soau(0, t)

» Third order problem with pseudo-Dirichlet boundary
conditions:

dru(x, t) = Bu(x,t), wu(x,0) = up(x),
u(0, t) = u(2m, t) = Ocu(2m, t) = 0.

)

0
0.



Conclusions and further problems

o Non-linear equations?
[Chen and Olver'14, Erdogan and Tzirakis'13] : Weak type
revival under periodic boundary conditions on [0, 27]:

Oru(x, t) = id2u(x, t) + ilu(x, t)[2u(x, t).

» Galilean invariance:
: 2
z(x, t) = e/ =0 y(x — 20t, t)

implies the weak revival effect in the case of self-adjoint
quasi-periodic boundary conditions:

e?™9,2(0,t) = 0"z(2m,t), m=0,1.

o Linear perturbations ?
[Rodnianski'99, Cho, Kim, Kim, Kwon and Seo'21]: Weak
type revival under periodic boundary conditions on [0, 27]:

Oru(x, t) = —i(=d2u(x, t) + V(x)u(x, t)).
Thank you!
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