Computing Resonances (in the spirit of the Solvability Complexity Index)

Jonathan Ben-Artzi (Cardiff University)

Joint works with:

M. Marletta \& F. Rösler (Cardiff)

Mathematical aspects of the physics with non-self-adjoint operators
Banff International Research Station
10-15 July 2022
EPSRC
Engineering and Physical Sciences Research Council
(1) The Solvability Complexity Index

(2) Main Results

(3) Quantum Scattering Resonances

4 Classical Scattering Resonances

THE SOLVABILITY COMPLEXITY INDEX

Main idea of the Solvability Complexity Index (SCI)

Does there exist an algorithm Γ_{n} that can approximate \equiv for any $A \in \Omega$?

Main idea of the Solvability Complexity Index (SCI)

Does there exist an algorithm Γ_{n} that can approximate \equiv for any $A \in \Omega$?
Not always. Sometimes multiple limits might be necessary, requiring $\Gamma_{n_{k}, n_{k-1}, \ldots, n_{1}}$. The SCI theory characterizes this, as well as questions of error control.

Main idea of the Solvability Complexity Index (SCI)

Does there exist an algorithm Γ_{n} that can approximate \equiv for any $A \in \Omega$?
Not always. Sometimes multiple limits might be necessary, requiring $\Gamma_{n_{k}, n_{k-1}, \ldots, n_{1}}$. The SCl theory characterizes this, as well as questions of error control.
Hansen (JAMS 2011), JBA-Colbrook-Hansen-Nevanlinna-Seidel (arXiv:1508.03280)

S. Smale, Bull. AMS, 1985

Let \mathscr{P}_{d} be the space of polynomials of degree $\leq d$. A purely iterative algorithm is a rational map $T_{p}: \mathbb{C} \rightarrow \mathbb{C}$ depending on $p \in \mathscr{P}_{d}$ and its derivatives up to some fixed order k, and having the form $T_{p}(z)=F\left(z, p(z), \ldots, p^{(k)}(z)\right)$ where F is a rational map.
e.g. Newton's algorithm

S. Smale, Bull. AMS, 1985

Let \mathscr{P}_{d} be the space of polynomials of degree $\leq d$. A purely iterative algorithm is a rational map $T_{p}: \mathbb{C} \rightarrow \mathbb{C}$ depending on $p \in \mathscr{P}_{d}$ and its derivatives up to some fixed order k, and having the form $T_{p}(z)=F\left(z, p(z), \ldots, p^{(k)}(z)\right)$ where F is a rational map.
e.g. Newton's algorithm
T_{p} is generally convergent if $\exists \operatorname{set} \mathcal{U} \subset \mathbb{C} \times \mathscr{P}_{d}$ of full measure s.t. $T_{p}^{n}(z) \xrightarrow{n \rightarrow \infty}$ root of p for any $(z, p) \in \mathcal{U}$.

Newton's algorithm isn't for $d>2$

S. Smale, Bull. AMS, 1985

Let \mathscr{P}_{d} be the space of polynomials of degree $\leq d$. A purely iterative algorithm is a rational map $T_{p}: \mathbb{C} \rightarrow \mathbb{C}$ depending on $p \in \mathscr{P}_{d}$ and its derivatives up to some fixed order k, and having the form $T_{p}(z)=F\left(z, p(z), \ldots, p^{(k)}(z)\right)$ where F is a rational map.
e.g. Newton's algorithm
T_{p} is generally convergent if $\exists \operatorname{set} \mathcal{U} \subset \mathbb{C} \times \mathscr{P}_{d}$ of full measure s.t. $T_{p}^{n}(z) \xrightarrow{n \rightarrow \infty}$ root of p for any $(z, p) \in \mathcal{U}$.

Newton's algorithm isn't for $d>2$

If $d>2$ does there exist a generally convergent purely iterative algorithm?

S. Smale, Bull. AMS, 1985

Let \mathscr{P}_{d} be the space of polynomials of degree $\leq d$. A purely iterative algorithm is a rational map $T_{p}: \mathbb{C} \rightarrow \mathbb{C}$ depending on $p \in \mathscr{P}_{d}$ and its derivatives up to some fixed order k, and having the form $T_{p}(z)=F\left(z, p(z), \ldots, p^{(k)}(z)\right)$ where F is a rational map.
e.g. Newton's algorithm
T_{p} is generally convergent if $\exists \operatorname{set} \mathcal{U} \subset \mathbb{C} \times \mathscr{P}_{d}$ of full measure s.t. $T_{p}^{n}(z) \xrightarrow{n \rightarrow \infty}$ root of p for any $(z, p) \in \mathcal{U}$.

Newton's algorithm isn't for $d>2$

If $d>2$ does there exist a generally convergent purely iterative algorithm?

McMullen, Ann. Math. 1987: yes for $d=3$, no otherwise

The Quintic

Doyle-McMullen, Acta Math. 1989: the cases $d=4,5$ can be solved by towers of algorithms

A tower of algorithms is a finite sequence of generally convergent algorithms, linked together serially, so the output of one or more can be used to compute the input to the next. The final output of the tower is a single number, computed rationally from the original input and the outputs of the intermediate generally convergent algorithms.

Main Questions

1. Does there exist an algorithm for computing the resonances $\operatorname{Res}\left(H_{q}\right)$ of $H_{q}:=-\Delta+q$ for any 'nice' $q: \mathbb{R}^{d} \rightarrow \mathbb{C}$?
2. Does there exist an algorithm for computing the resonances $\operatorname{Res}(U)$ of $-\Delta$ on $\mathbb{R}^{d} \backslash U$ for any 'nice' $U \subset \mathbb{R}^{d}$?

MAIN RESULTS

Quantum Scattering Resonances

Theorem (JBA-Marletta-Rösler, to appear in JEMS)
There exists an arithmetic algorithm that can approximate the resonances of $H_{q}=-\Delta+q$ for any $q \in \Omega=C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

Quantum Scattering Resonances

Theorem (JBA-Marletta-Rösler, to appear in JEMS)
There exists an arithmetic algorithm that can approximate the resonances of $H_{q}=-\Delta+q$ for any $q \in \Omega=C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

Moreover, if one knows a priori that $\exists M>0$ such that $\operatorname{diam}(\operatorname{supp}(q))+\|q\|_{\infty} \leq M$ then the computation can be performed with error control.

Quantum Scattering Resonances

Theorem (JBA-Marletta-Rösler, to appear in JEMS)
There exists an arithmetic algorithm that can approximate the resonances of $H_{q}=-\Delta+q$ for any $q \in \Omega=C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

Moreover, if one knows a priori that $\exists M>0$ such that $\operatorname{diam}(\operatorname{supp}(q))+\|q\|_{\infty} \leq M$ then the computation can be performed with error control.

Comparison of our algorithm with MatScat (Bindel-Zworski) for a Gaussian well supported in $[-1,1]$.

Classical Scattering Resonances

Theorem (JBA-Marletta-Rösler, FoCM 2022)
There exists an arithmetic algorithm that can approximate the Dirichlet resonances of U for any $U \in \Omega=\left\{\emptyset \neq U \subset \mathbb{R}^{d} \mid U\right.$ open, bounded and $\left.\partial U \in C^{2}\right\}$.

PROOF:

QUANTUM SCATTERING RESONANCES

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

$$
(-\Delta+q) u=z^{2} u
$$

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

$$
\begin{aligned}
(-\Delta+q) u & =z^{2} u \\
\left(-\Delta-z^{2}\right) u+q u & =0
\end{aligned}
$$

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

$$
\begin{aligned}
&(-\Delta+q) u=z^{2} u \\
& \underbrace{\left(-\Delta-z^{2}\right) u}_{v}
\end{aligned} q u=0
$$

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

$$
\begin{aligned}
(-\Delta+q) u & =z^{2} u \\
\underbrace{\left(-\Delta-z^{2}\right) u}_{v}+q u & =0 \\
v+q\left(-\Delta-z^{2}\right)^{-1} v & =0
\end{aligned}
$$

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

$$
\begin{aligned}
(-\Delta+q) u & =z^{2} u \\
\underbrace{\left(-\Delta-z^{2}\right) u}_{v}+q u & =0 \\
v+q\left(-\Delta-z^{2}\right)^{-1} v & =0
\end{aligned}
$$

But $v=\left(-\Delta-z^{2}\right) u=-q u=-\chi q u=\chi v$ for any $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{d} ;[0,1]\right)$ which is identically 1 on $\operatorname{supp}(q)$.

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

$$
\begin{aligned}
(-\Delta+q) u & =z^{2} u \\
\underbrace{\left(-\Delta-z^{2}\right) u}_{v}+q u & =0 \\
v+q\left(-\Delta-z^{2}\right)^{-1} v & =0 \\
v+q\left(-\Delta-z^{2}\right)^{-1} \chi v & =0
\end{aligned}
$$

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

$$
\begin{aligned}
(-\Delta+q) u & =z^{2} u \\
\underbrace{\left(-\Delta-z^{2}\right) u}_{v}+q u & =0 \\
v+q\left(-\Delta-z^{2}\right)^{-1} v & =0 \\
v+q\left(-\Delta-z^{2}\right)^{-1} \chi v & =0 \\
\left(\operatorname{Id}_{L^{2}}+q\left(-\Delta-z^{2}\right)^{-1} \chi\right) v & =0
\end{aligned}
$$

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.

$$
\begin{aligned}
(-\Delta+q) u & =z^{2} u \\
\underbrace{\left(-\Delta-z^{2}\right) u}_{v}+q u & =0 \\
v+q\left(-\Delta-z^{2}\right)^{-1} v & =0 \\
v+q\left(-\Delta-z^{2}\right)^{-1} \chi v & =0 \\
\left(\operatorname{Id}_{L^{2}}+q\left(-\Delta-z^{2}\right)^{-1} \chi\right) v & =0
\end{aligned}
$$

2. So we are looking for poles of $\left(\operatorname{Id}_{L^{2}}+q\left(-\Delta-z^{2}\right)^{-1} \chi\right)^{-1}$.

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.
2. So we are looking for poles of $\left(\operatorname{Id}_{L^{2}}+q\left(-\Delta-z^{2}\right)^{-1} \chi\right)^{-1}$.

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.
2. So we are looking for poles of $\left(\operatorname{Id}_{L^{2}}+q\left(-\Delta-z^{2}\right)^{-1} \chi\right)^{-1}$.
3. Obtain quantitative resolvent norm estimates for

$$
K(z):=q\left(-\Delta-z^{2}\right)^{-1} \chi
$$

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.
2. So we are looking for poles of $\left(\operatorname{Id}_{L^{2}}+q\left(-\Delta-z^{2}\right)^{-1} \chi\right)^{-1}$.
3. Obtain quantitative resolvent norm estimates for

$$
K(z):=q\left(-\Delta-z^{2}\right)^{-1} \chi
$$

4. Define a discretized version $K_{n}(z)$ which can be computed with finitely many arithmetic operations.

Proof: Quantum Scattering Resonances

1. Looking for resonances of $H_{q}=-\Delta+q$, where $q \in C_{0}^{1}\left(\mathbb{R}^{d} ; \mathbb{C}\right)$.
2. So we are looking for poles of $\left(\operatorname{Id}_{L^{2}}+q\left(-\Delta-z^{2}\right)^{-1} \chi\right)^{-1}$.
3. Obtain quantitative resolvent norm estimates for

$$
K(z):=q\left(-\Delta-z^{2}\right)^{-1} \chi .
$$

4. Define a discretized version $K_{n}(z)$ which can be computed with finitely many arithmetic operations.
5. Identify the poles of $\left(\operatorname{Id}_{L^{2}}+K(z)\right)^{-1}$ via the discretized operator $\left(I+K_{n}(z)\right)^{-1}$.

An Abstract Approximation Result

\mathcal{H} separable Hilbert space, $\mathcal{H}_{n} \subset \mathcal{H}$ finite-dimensional subspace, $P_{n}: \mathcal{H} \rightarrow \mathcal{H}_{n}$ orthogonal projection.

An Abstract Approximation Result

\mathcal{H} separable Hilbert space, $\mathcal{H}_{n} \subset \mathcal{H}$ finite-dimensional subspace, $P_{n}: \mathcal{H} \rightarrow \mathcal{H}_{n}$ orthogonal projection. Let $K: \mathbb{C} \rightarrow L(\mathcal{H})$ be continuous in operator norm, $K_{n}: \mathbb{C} \rightarrow L\left(\mathcal{H}_{n}\right)$ be analytic for every n.

An Abstract Approximation Result

\mathcal{H} separable Hilbert space, $\mathcal{H}_{n} \subset \mathcal{H}$ finite-dimensional subspace, $P_{n}: \mathcal{H} \rightarrow \mathcal{H}_{n}$ orthogonal projection. Let $K: \mathbb{C} \rightarrow L(\mathcal{H})$ be continuous in operator norm, $K_{n}: \mathbb{C} \rightarrow L\left(\mathcal{H}_{n}\right)$ be analytic for every n. Assume that for any $B \subset \mathbb{C}$ compact \exists a sequence $a_{n} \downarrow 0$ and a constant $C>0$ such that for all $z \in B$

$$
\begin{aligned}
\left\|K(z)-P_{n} K(z) P_{n}\right\|_{L(\mathcal{H})} & \leq C a_{n}, \\
\left\|K(z)-K_{n}(z) P_{n}\right\|_{L(\mathcal{H})} & \leq C a_{n}, \\
\left\|\left.P_{n} K(z)\right|_{\mathcal{H}_{n}}-K_{n}(z)\right\|_{L\left(\mathcal{H}_{n}\right)} & \leq C a_{n} .
\end{aligned}
$$

An Abstract Approximation Result

\mathcal{H} separable Hilbert space, $\mathcal{H}_{n} \subset \mathcal{H}$ finite-dimensional subspace, $P_{n}: \mathcal{H} \rightarrow \mathcal{H}_{n}$ orthogonal projection. Let $K: \mathbb{C} \rightarrow L(\mathcal{H})$ be continuous in operator norm, $K_{n}: \mathbb{C} \rightarrow L\left(\mathcal{H}_{n}\right)$ be analytic for every n. Assume that for any $B \subset \mathbb{C}$ compact \exists a sequence $a_{n} \downarrow 0$ and a constant $C>0$ such that for all $z \in B$

$$
\begin{aligned}
\left\|K(z)-P_{n} K(z) P_{n}\right\|_{L(\mathcal{H})} & \leq C a_{n}, \\
\left\|K(z)-K_{n}(z) P_{n}\right\|_{L(\mathcal{H})} & \leq C a_{n}, \\
\left\|\left.P_{n} K(z)\right|_{\mathcal{H}_{n}}-K_{n}(z)\right\|_{L\left(\mathcal{H}_{n}\right)} & \leq C a_{n} .
\end{aligned}
$$

Let $G_{n}=\frac{1}{a_{n}}(\mathbb{Z}+i \mathbb{Z})$ and define

$$
\Gamma_{n}^{B}(K)=\left\{z \in G_{n} \cap B \left\lvert\,\left\|\left(I+K_{n}(z)\right)^{-1}\right\|_{L\left(\mathcal{H}_{n}\right)} \geq \frac{1}{2 \sqrt{a_{n}}}\right.\right\}
$$

An Abstract Approximation Result (cont)

Proposition

We have $\Gamma_{n}^{B}(K) \rightarrow\{z \in B \mid-1 \in \sigma(K(z))\}$ in the Hausdorff metric.

Where we remind that

$$
\Gamma_{n}^{B}(K)=\left\{z \in G_{n} \cap B \left\lvert\,\left\|\left(I+K_{n}(z)\right)^{-1}\right\|_{L(\mathcal{H} n)} \geq \frac{1}{2 \sqrt{a_{n}}}\right.\right\}
$$

An Abstract Approximation Result (cont)

Proposition

We have $\Gamma_{n}^{B}(K) \rightarrow\{z \in B \mid-1 \in \sigma(K(z))\}$ in the Hausdorff metric.

Where we remind that

$$
\Gamma_{n}^{B}(K)=\left\{z \in G_{n} \cap B \left\lvert\,\left\|\left(I+K_{n}(z)\right)^{-1}\right\|_{L(\mathcal{H} n)} \geq \frac{1}{2 \sqrt{a_{n}}}\right.\right\}
$$

Crucially: if we assume that $K_{n}(z)$ can be computed with finitely arithmetic operations, then $\Gamma_{n}^{B}(K)$ can be completely determined with finitely many operations.

The Operator $K(z)=q\left(-\Delta-z^{2}\right)^{-1} \chi$

For $x \in \mathbb{R}^{d}, z \in \mathbb{C}$, the Green's function of the Helmholtz operator $-\Delta-z^{2}$ is

$$
G(x, z):= \begin{cases}\frac{i}{4}\left(\frac{z}{2 \pi \mid x)^{\frac{d-2}{2}}} H_{\frac{d-2}{2}}(z|x|),\right. & d \geq 2, \\ \frac{i}{2 z} e^{i| | x \mid}, & d=1,\end{cases}
$$

where $H_{\nu}=$ Hankel function of the first kind.

The Operator $K(z)=q\left(-\Delta-z^{2}\right)^{-1} \chi$

For $x \in \mathbb{R}^{d}, z \in \mathbb{C}$, the Green's function of the Helmholtz operator $-\Delta-z^{2}$ is

$$
G(x, z):= \begin{cases}\frac{i}{4}\left(\frac{z}{2 \pi|x|}\right)^{\frac{d-2}{2}} H_{\frac{d-2}{2}}(z|x|), & d \geq 2, \\ \frac{i}{2 z} e^{i z|x|}, & d=1,\end{cases}
$$

where $H_{\nu}=$ Hankel function of the first kind. Therefore

$$
\left(q\left(-\Delta-z^{2}\right)^{-1} \chi f\right)(x)=q(x) \int_{\mathbb{R}^{d}} G(x-y, z) \chi(y) f(y) d y
$$

The Operator $K(z)=q\left(-\Delta-z^{2}\right)^{-1} \chi$

For $x \in \mathbb{R}^{d}, z \in \mathbb{C}$, the Green's function of the Helmholtz operator $-\Delta-z^{2}$ is

$$
G(x, z):= \begin{cases}\frac{i}{4}\left(\frac{z}{2 \pi \mid x)^{\frac{d-2}{2}}} H_{\frac{d-2}{2}}(z|x|),\right. & d \geq 2, \\ \frac{i}{2 z} e^{i| | x \mid}, & d=1,\end{cases}
$$

where $H_{\nu}=$ Hankel function of the first kind. Therefore

$$
\left(q\left(-\Delta-z^{2}\right)^{-1} \chi f\right)(x)=q(x) \int_{\mathbb{R}^{d}} G(x-y, z) \chi(y) f(y) d y
$$

We shall approximate the kernel (slight abuse of notation)

$$
K(x, y):=q(x) G(x-y, z) \chi(y)
$$

Approximation of $K(x, y)=q(x) G(x-y, z) \chi(y)$

Split \mathbb{R}^{d} into small cubes:

$$
\mathbb{R}^{d}=\bigcup_{i \in \frac{1}{n} \mathbb{Z}^{d}} S_{n, i}:=\bigcup_{i \in \frac{1}{n} \mathbb{Z}^{d}}\left(\left[0, \frac{1}{n}\right)^{d}+i\right)
$$

let
$\mathcal{H}_{n}=L^{2}$ functions that are constant on each $S_{n, i}$
$P_{n}=$ orthogonal projection onto \mathcal{H}_{n}

Approximation of $K(x, y)=q(x) G(x-y, z) \chi(y)$

Split \mathbb{R}^{d} into small cubes:

$$
\mathbb{R}^{d}=\bigcup_{i \in \frac{1}{n} \mathbb{Z}^{d}} S_{n, i}:=\bigcup_{i \in \frac{1}{n} \mathbb{Z}^{d}}\left(\left[0, \frac{1}{n}\right)^{d}+i\right)
$$

let

$$
\begin{aligned}
\mathcal{H}_{n} & =L^{2} \text { functions that are constant on each } S_{n, i} \\
P_{n} & =\text { orthogonal projection onto } \mathcal{H}_{n}
\end{aligned}
$$

Define

$$
K_{n}(x, y):=\sum_{i, j \in \frac{1}{n} \mathbb{Z}^{d}} K(i, j) \chi_{S_{n, i}}(x) \chi_{S_{n, j}}(y)
$$

The Algorithm: the Poles of $\left(I+K_{n}(z)\right)^{-1}$

Let $\emptyset \neq B \subset \mathbb{C}$ be compact and let $G_{n}:=\frac{1}{a_{n}}(\mathbb{Z}+i \mathbb{Z})$

$$
\begin{aligned}
& \Gamma_{n}^{B}: \Omega \rightarrow \mathrm{cl}(\mathbb{C}) \\
& \Gamma_{n}^{B}(q)=\left\{z \in G_{n} \cap B \left\lvert\,\left\|\left(I+K_{n}(\cdot, \cdot)\right)^{-1}\right\|_{L\left(\mathcal{H}_{n}\right)} \geq \frac{1}{2 \sqrt{a_{n}}}\right.\right\}
\end{aligned}
$$

The Algorithm: the Poles of $\left(I+K_{n}(z)\right)^{-1}$

Let $\emptyset \neq B \subset \mathbb{C}$ be compact and let $G_{n}:=\frac{1}{a_{n}}(\mathbb{Z}+i \mathbb{Z})$

$$
\begin{gathered}
\Gamma_{n}^{B}: \Omega \rightarrow \mathrm{cl}(\mathbb{C}) \\
\Gamma_{n}^{B}(q)=\left\{z \in G_{n} \cap B \left\lvert\,\left\|\left(I+K_{n}(\cdot, \cdot)\right)^{-1}\right\|_{L\left(\mathcal{H}_{n}\right)} \geq \frac{1}{2 \sqrt{a_{n}}}\right.\right\}
\end{gathered}
$$

Theorem
For any $q \in \Omega$ we have $\Gamma_{n}^{B}(q) \rightarrow \operatorname{Res}(q) \cap B$ in the Hausdorff distance as $n \rightarrow+\infty$.

We need to extend this to the whole of \mathbb{C}. We do this by tiling \mathbb{C} with compact sets:

We need to extend this to the whole of \mathbb{C}. We do this by tiling \mathbb{C} with compact sets:

We need to extend this to the whole of \mathbb{C}. We do this by tiling \mathbb{C} with compact sets:

And finally define:

$$
\Gamma_{n}(q):=\bigcup_{j=1}^{n} \Gamma_{n}^{B_{j}}(q)
$$

PROOF:

CLASSICAL SCATTERING RESONANCES

Proof: Classical Scattering Resonances

1. Assume that the support B_{R} of U is known.

Proof: Classical Scattering Resonances

1. Assume that the support B_{R} of U is known.
2. Write the Dirichlet-to-Neumann (DtN) maps for $-\Delta-k^{2}, k \in \mathbb{C}^{+}$:

$$
\begin{array}{rll}
M_{\text {in }}(k) & \text { in } & B_{R} \backslash \bar{U} \\
M_{\text {out }}(k) & \text { in } & \mathbb{R}^{d} \backslash \bar{B}_{R}
\end{array}
$$

These can be extended meromorphically to $k \in \mathbb{C}$.

Proof: Classical Scattering Resonances

1. Assume that the support B_{R} of U is known.
2. Write the Dirichlet-to-Neumann (DtN) maps for $-\Delta-k^{2}, k \in \mathbb{C}^{+}$:

$$
\begin{array}{rll}
M_{\text {in }}(k) & \text { in } & B_{R} \backslash \bar{U} \\
M_{\text {out }}(k) & \text { in } & \mathbb{R}^{d} \backslash \bar{B}_{R}
\end{array}
$$

These can be extended meromorphically to $k \in \mathbb{C}$.
3. $k \in \mathbb{C}^{-}$is a resonance if and only if $\operatorname{ker}\left(M_{\text {in }}(k)+M_{\text {out }}(k)\right) \neq\{0\}$.

Proof: Classical Scattering Resonances

1. Assume that the support B_{R} of U is known.
2. Write the Dirichlet-to-Neumann (DtN) maps for $-\Delta-k^{2}, k \in \mathbb{C}^{+}$:

$$
\begin{array}{rll}
M_{\text {in }}(k) & \text { in } & B_{R} \backslash \bar{U} \\
M_{\text {out }}(k) & \text { in } & \mathbb{R}^{d} \backslash \bar{B}_{R}
\end{array}
$$

These can be extended meromorphically to $k \in \mathbb{C}$.
3. $k \in \mathbb{C}^{-}$is a resonance if and only if $\operatorname{ker}\left(M_{\text {in }}(k)+M_{\text {out }}(k)\right) \neq\{0\}$.
4. Find a compact operator $\mathcal{C}(k)$ in a p-Schatten class $(\forall p>2)$ such that $\operatorname{ker}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}(k)\right) \neq\{0\} \quad \Leftrightarrow \quad \operatorname{ker}\left(M_{\text {in }}(k)+M_{\text {out }}(k)\right) \neq\{0\}$

Proof: Classical Scattering Resonances

1. Assume that the support B_{R} of U is known.
2. Write the Dirichlet-to-Neumann (DtN) maps for $-\Delta-k^{2}, k \in \mathbb{C}^{+}$:

$$
\begin{array}{rll}
M_{\text {in }}(k) & \text { in } & B_{R} \backslash \bar{U} \\
M_{\text {out }}(k) & \text { in } & \mathbb{R}^{d} \backslash \bar{B}_{R}
\end{array}
$$

These can be extended meromorphically to $k \in \mathbb{C}$.
3. $k \in \mathbb{C}^{-}$is a resonance if and only if $\operatorname{ker}\left(M_{\text {in }}(k)+M_{\text {out }}(k)\right) \neq\{0\}$.
4. Find a compact operator $\mathcal{C}(k)$ in a p-Schatten class $(\forall p>2)$ such that $\operatorname{ker}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}(k)\right) \neq\{0\} \quad \Leftrightarrow \quad \operatorname{ker}\left(M_{\text {in }}(k)+M_{\text {out }}(k)\right) \neq\{0\}$
5. Approximate \mathcal{C} \& find values of k for which $\left|\operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}(k)\right)\right|<\epsilon$.

Proof: Classical Scattering Resonances

1. Assume that the support B_{R} of U is known.
2. Write the Dirichlet-to-Neumann (DtN) maps for $-\Delta-k^{2}, k \in \mathbb{C}^{+}$:

$$
\begin{array}{rll}
M_{\text {in }}(k) & \text { in } & B_{R} \backslash \bar{U} \\
M_{\text {out }}(k) & \text { in } & \mathbb{R}^{d} \backslash \bar{B}_{R}
\end{array}
$$

These can be extended meromorphically to $k \in \mathbb{C}$.
3. $k \in \mathbb{C}^{-}$is a resonance if and only if $\operatorname{ker}\left(M_{\text {in }}(k)+M_{\text {out }}(k)\right) \neq\{0\}$.
4. Find a compact operator $\mathcal{C}(k)$ in a p-Schatten class $(\forall p>2)$ such that $\operatorname{ker}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}(k)\right) \neq\{0\} \quad \Leftrightarrow \quad \operatorname{ker}\left(M_{\text {in }}(k)+M_{\text {out }}(k)\right) \neq\{0\}$
5. Approximate \mathcal{C} \& find values of k for which $\left|\operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}(k)\right)\right|<\epsilon$.
6. Get rid of R dependence.

DtN Maps $(d=2)$

In the orthonormal basis $e_{n}(\theta):=\frac{e^{\text {in } \theta}}{\sqrt{2 \pi R}}$ on ∂B_{R} :

$$
M_{\text {out }}(k)=\operatorname{diag}\left(-k \frac{H_{|n|}^{\prime}(k R)}{H_{|n|}(k R)}\right)=\operatorname{diag}(\frac{|n|}{R}-k \underbrace{\frac{H_{|n|-1}(k R)}{H_{|n|}(k R)}}_{\sim \frac{k R}{2|n|}})
$$

$H_{\nu}=$ Hankel functions of the first kind.

DtN Maps $(d=2)$

In the orthonormal basis $e_{n}(\theta):=\frac{e^{i n \theta}}{\sqrt{2 \pi R}}$ on ∂B_{R} :

$$
\begin{gathered}
M_{\mathrm{out}}(k)=\operatorname{diag}\left(-k \frac{H_{|n|}^{\prime}(k R)}{H_{|n|}(k R)}\right)=\operatorname{diag}(\frac{|n|}{R}-k \underbrace{\frac{H_{|n|-1}(k R)}{H_{|n|}(k R)}}_{\sim \frac{k R}{2|n|}}) \\
M_{\mathrm{in}}(k)=M_{\mathrm{in}, 0}(k)+\mathcal{K}(k)
\end{gathered}
$$

DtN Maps $(d=2)$

In the orthonormal basis $e_{n}(\theta):=\frac{e^{\text {in } \theta}}{\sqrt{2 \pi R}}$ on ∂B_{R} :

$$
\begin{gathered}
M_{\text {out }}(k)=\operatorname{diag}\left(-k \frac{H_{|n|}^{\prime}(k R)}{H_{|n|}(k R)}\right)=\operatorname{diag}(\frac{|n|}{R}-k \underbrace{\frac{H_{|n|-1}(k R)}{H_{|n|}(k R)}}_{\sim \frac{k R}{2|n|}}) \\
M_{\text {in }}(k)=M_{\text {in }, 0}(k)+\mathcal{K}(k) \\
M_{\text {in }, 0}(k)=\operatorname{diag}\left(k \frac{J_{|n|}^{\prime}(k R)}{J_{|n|}(k R)}\right)=\operatorname{diag}(\frac{|n|}{R}-k \underbrace{\frac{J_{|n|+1}(k R)}{J_{|n|}(k R)}}_{\sim \frac{k R}{2|n|}})
\end{gathered}
$$

$J_{\nu}=$ Bessel functions of the first kind.

DtN Maps $(d=2)$

In the orthonormal basis $e_{n}(\theta):=\frac{e^{\text {in } \theta}}{\sqrt{2 \pi R}}$ on ∂B_{R} :

$$
\begin{gathered}
M_{\text {out }}(k)=\operatorname{diag}\left(-k \frac{H_{|n|}^{\prime}(k R)}{H_{|n|}(k R)}\right)=\operatorname{diag}(\frac{|n|}{R}-k \underbrace{\frac{H_{|n|-1}(k R)}{H_{|n|}(k R)}}_{\sim \frac{k R}{2|n|}}) \\
M_{\text {in }}(k)=M_{\text {in }, 0}(k)+\mathcal{K}(k) \\
M_{\text {in }, 0}(k)=\operatorname{diag}\left(k \frac{J_{|n|}^{\prime}(k R)}{J_{|n|}(k R)}\right)=\operatorname{diag}(\frac{|n|}{R}-k \underbrace{\frac{J_{|n|+1}(k R)}{J_{|n|}(k R)}}_{\sim \frac{k R}{2|n|}}) \\
M_{\text {in }}(k)+M_{\text {out }}(k)=\frac{2}{R} N+\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)
\end{gathered}
$$

DtN Maps $(d=2)$, cont.

$$
\begin{aligned}
M_{\text {in }}(k)+ & M_{\text {out }}(k)=\frac{2}{R} N+\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k) \\
& =\frac{2}{R} N^{\frac{1}{2}}\left(\operatorname{Id}_{L^{2}}+\frac{R}{2} N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}}\right) N^{\frac{1}{2}}
\end{aligned}
$$

DtN Maps $(d=2)$, cont.

$$
\begin{aligned}
M_{\text {in }}(k)+ & M_{\text {out }}(k)=\frac{2}{R} N+\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k) \\
& =\frac{2}{R} N^{\frac{1}{2}}\left(\operatorname{Id}_{L^{2}}+\frac{R}{2} N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}}\right) N^{\frac{1}{2}}
\end{aligned}
$$

Hence

$$
\begin{gathered}
\operatorname{ker}\left(M_{\text {in }}(k)+M_{\text {out }}(k)\right)=\{0\} \\
\hat{\Downarrow} \\
\operatorname{ker}(\operatorname{Id}_{L^{2}}+\frac{R}{2} \underbrace{N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}}}_{\mathcal{C}(k)})=\{0\}
\end{gathered}
$$

Approximation of $\mathcal{C}(k)$

$$
\mathcal{C}(k)=N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}}
$$

Approximation of $\mathcal{C}(k)$

$$
\mathcal{C}(k)=N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}}
$$

1. Truncate the matrix:

Lemma

Let $k \in \mathbb{C}^{-}, p>2$, and for $n \in \mathbb{N}$ let $P_{n}: L^{2}\left(\partial B_{R}\right) \rightarrow \operatorname{span}\left\{e_{-n}, \ldots e_{n}\right\}$ be the orthogonal projection. Then there exists a constant $C>0$ depending only on the set U such that

$$
\left\|\mathcal{C}(k)-P_{n} \mathcal{C}(k) P_{n}\right\|_{C_{p}} \leq C n^{-\frac{1}{2}+\frac{1}{p}}
$$

Approximation of $\mathcal{C}(k)$

$$
\mathcal{C}(k)=N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}}
$$

1. Truncate the matrix:

Lemma

Let $k \in \mathbb{C}^{-}, p>2$, and for $n \in \mathbb{N}$ let $P_{n}: L^{2}\left(\partial B_{R}\right) \rightarrow \operatorname{span}\left\{e_{-n}, \ldots e_{n}\right\}$ be the orthogonal projection. Then there exists a constant $C>0$ depending only on the set U such that

$$
\left\|\mathcal{C}(k)-P_{n} \mathcal{C}(k) P_{n}\right\|_{C_{p}} \leq C n^{-\frac{1}{2}+\frac{1}{p}}
$$

2. Approximate $\mathcal{K}(k)$.

The Operator $\mathcal{K}(k)$

$$
\mathcal{K}(k)=\partial_{\nu}\left(H_{\mathrm{D}}-k^{2}\right)^{-1} T_{\rho} S(k): L^{2}\left(\partial B_{R}\right) \rightarrow L^{2}\left(\partial B_{R}\right)
$$

where:

- ∂_{ν} is the normal derivative on ∂B_{R},
- H_{D} denotes the Laplacian on $L^{2}\left(B_{R} \backslash \bar{U}\right)$ with homogeneous Dirichlet boundary condition on $\partial\left(B_{R} \backslash \bar{U}\right)$,
- $T_{\rho}=2 \nabla \rho \cdot \nabla+\Delta \rho$ where ρ is a cutoff function that is 0 in B_{R-1} and 1 near ∂B_{R},
- and $S(k): H^{1}\left(\partial B_{R}\right) \rightarrow H^{\frac{3}{2}}\left(B_{R}\right)$ is defined by $S(k) \phi=w$, where w solves

$$
\left\{\begin{aligned}
\left(-\Delta-k^{2}\right) w=0 & \text { in } B_{R}, \\
w=\phi & \text { on } \partial B_{R},
\end{aligned}\right.
$$

i.e. $S(k) \phi$ is the harmonic extension of ϕ into B_{R}, which extends to a bounded operator $L^{2}\left(\partial B_{R}\right) \rightarrow H^{\frac{1}{2}}\left(B_{R}\right)$.

The Operator $\mathcal{K}(k)$

$$
\mathcal{K}(k)=\partial_{\nu}\left(H_{\mathrm{D}}-k^{2}\right)^{-1} T_{\rho} S(k): L^{2}\left(\partial B_{R}\right) \rightarrow L^{2}\left(\partial B_{R}\right)
$$

where:

- ∂_{ν} is the normal derivative on ∂B_{R},
- H_{D} denotes the Laplacian on $L^{2}\left(B_{R} \backslash \bar{U}\right)$ with homogeneous Dirichlet boundary condition on $\partial\left(B_{R} \backslash \bar{U}\right)$,
- $T_{\rho}=2 \nabla \rho \cdot \nabla+\Delta \rho$ where ρ is a cutoff function that is 0 in B_{R-1} and 1 near ∂B_{R},
- and $S(k): H^{1}\left(\partial B_{R}\right) \rightarrow H^{\frac{3}{2}}\left(B_{R}\right)$ is defined by $S(k) \phi=w$, where w solves

$$
\left\{\begin{aligned}
\left(-\Delta-k^{2}\right) w=0 & \text { in } B_{R}, \\
w=\phi & \text { on } \partial B_{R},
\end{aligned}\right.
$$

i.e. $S(k) \phi$ is the harmonic extension of ϕ into B_{R}, which extends to a bounded operator $L^{2}\left(\partial B_{R}\right) \rightarrow H^{\frac{1}{2}}\left(B_{R}\right)$.

The Operator $\mathcal{K}(k)$

$$
\mathcal{K}(k)=\partial_{\nu}\left(H_{\mathrm{D}}-k^{2}\right)^{-1} T_{\rho} S(k): L^{2}\left(\partial B_{R}\right) \rightarrow L^{2}\left(\partial B_{R}\right)
$$

where:

- ∂_{ν} is the normal derivative on ∂B_{R},
- H_{D} denotes the Laplacian on $L^{2}\left(B_{R} \backslash \bar{U}\right)$ with homogeneous Dirichlet boundary condition on $\partial\left(B_{R} \backslash \bar{U}\right)$,
- $T_{\rho}=2 \nabla \rho \cdot \nabla+\Delta \rho$ where ρ is a cutoff function that is 0 in B_{R-1} and 1 near ∂B_{R},
- and $S(k): H^{1}\left(\partial B_{R}\right) \rightarrow H^{\frac{3}{2}}\left(B_{R}\right)$ is defined by $S(k) \phi=w$, where w solves

$$
\left\{\begin{aligned}
\left(-\Delta-k^{2}\right) w=0 & \text { in } B_{R}, \\
w=\phi & \text { on } \partial B_{R},
\end{aligned}\right.
$$

i.e. $S(k) \phi$ is the harmonic extension of ϕ into B_{R}, which extends to a bounded operator $L^{2}\left(\partial B_{R}\right) \rightarrow H^{\frac{1}{2}}\left(B_{R}\right)$.

The Operator $\mathcal{K}(k)$

$$
\mathcal{K}(k)=\partial_{\nu}\left(H_{\mathrm{D}}-k^{2}\right)^{-1} T_{\rho} S(k): L^{2}\left(\partial B_{R}\right) \rightarrow L^{2}\left(\partial B_{R}\right)
$$

where:

- ∂_{ν} is the normal derivative on ∂B_{R},
- H_{D} denotes the Laplacian on $L^{2}\left(B_{R} \backslash \bar{U}\right)$ with homogeneous Dirichlet boundary condition on $\partial\left(B_{R} \backslash \bar{U}\right)$,
- $T_{\rho}=2 \nabla \rho \cdot \nabla+\Delta \rho$ where ρ is a cutoff function that is 0 in B_{R-1} and 1 near ∂B_{R},
- and $S(k): H^{1}\left(\partial B_{R}\right) \rightarrow H^{\frac{3}{2}}\left(B_{R}\right)$ is defined by $S(k) \phi=w$, where w solves

$$
\left\{\begin{aligned}
\left(-\Delta-k^{2}\right) w=0 & \text { in } B_{R}, \\
w=\phi & \text { on } \partial B_{R}
\end{aligned}\right.
$$

i.e. $S(k) \phi$ is the harmonic extension of ϕ into B_{R}, which extends to a bounded operator $L^{2}\left(\partial B_{R}\right) \rightarrow H^{\frac{1}{2}}\left(B_{R}\right)$.

The Operator $\mathcal{K}(k)$

$$
\mathcal{K}(k)=\partial_{\nu}\left(H_{D}-k^{2}\right)^{-1} T_{\rho} S(k): L^{2}\left(\partial B_{R}\right) \rightarrow L^{2}\left(\partial B_{R}\right)
$$

where:

- ∂_{ν} is the normal derivative on ∂B_{R},
- H_{D} denotes the Laplacian on $L^{2}\left(B_{R} \backslash \bar{U}\right)$ with homogeneous Dirichlet boundary condition on $\partial\left(B_{R} \backslash \bar{U}\right)$,
- $T_{\rho}=2 \nabla \rho \cdot \nabla+\Delta \rho$ where ρ is a cutoff function that is 0 in B_{R-1} and 1 near ∂B_{R},
- and $S(k): H^{1}\left(\partial B_{R}\right) \rightarrow H^{\frac{3}{2}}\left(B_{R}\right)$ is defined by $S(k) \phi=w$, where w solves

$$
\left\{\begin{aligned}
\left(-\Delta-k^{2}\right) w=0 & \text { in } B_{R}, \\
w=\phi & \text { on } \partial B_{R},
\end{aligned}\right.
$$

i.e. $S(k) \phi$ is the harmonic extension of ϕ into B_{R}, which extends to a bounded operator $L^{2}\left(\partial B_{R}\right) \rightarrow H^{\frac{1}{2}}\left(B_{R}\right)$.

Writing $\mathcal{K}(k)$ in the basis $e_{n}(\theta)$

Recall: $\mathcal{K}(k)=\partial_{\nu}\left(H_{D}-k^{2}\right)^{-1} T_{\rho} S(k)$ and $e_{n}(\theta)=(2 \pi R)^{-\frac{1}{2}} e^{i n \theta}$

Writing $\mathcal{K}(k)$ in the basis $e_{n}(\theta)$

Recall: $\mathcal{K}(k)=\partial_{\nu}\left(H_{\mathrm{D}}-k^{2}\right)^{-1} T_{\rho} S(k)$ and $e_{n}(\theta)=(2 \pi R)^{-\frac{1}{2}} e^{\text {in } \theta}$

Goal: approximate

$$
\begin{aligned}
\mathcal{K}_{\alpha \beta} & :=\int_{\partial B_{R}} \overline{e_{\beta}} \mathcal{K}(k) e_{\alpha} d \sigma \\
& =\int_{\partial B_{R}} \overline{e_{\beta}} \partial_{\nu} \underbrace{\left(H_{\mathrm{D}}-k^{2}\right)^{-1} \underbrace{T_{\rho} S(k) e_{\alpha}}_{f_{\alpha}}}_{V_{\alpha}} d \sigma .
\end{aligned}
$$

Writing $\mathcal{K}(k)$ in the basis $e_{n}(\theta)$

Recall: $\mathcal{K}(k)=\partial_{\nu}\left(H_{\mathrm{D}}-k^{2}\right)^{-1} T_{\rho} S(k)$ and $e_{n}(\theta)=(2 \pi R)^{-\frac{1}{2}} e^{\text {in } \theta}$

Goal: approximate

$$
\begin{aligned}
\mathcal{K}_{\alpha \beta} & :=\int_{\partial B_{R}} \overline{\bar{\beta}} \mathcal{K}(k) e_{\alpha} d \sigma \\
& =\int_{\partial B_{R}} \overline{e_{\beta}} \partial_{\nu}(\underbrace{\left(H_{D}-k^{2}\right)^{-1} \underbrace{T_{\rho} S(k) e_{\alpha}}_{f_{\alpha}}}_{V_{\alpha}} d \sigma .
\end{aligned}
$$

Define $E_{n}(r, \theta)=\rho(r) e_{n}(\theta)$ and use Green's first identity...

$$
\begin{aligned}
\mathcal{K}_{\alpha \beta} & =\int_{\partial B_{R}} \overline{e_{\beta}} \partial_{\nu} v_{\alpha} d \sigma \\
& =\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} \Delta v_{\alpha} d x+\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x \\
& =\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}}\left(-f_{\alpha}-k^{2} v_{\alpha}\right) d x+\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x \\
& =\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x-k^{2} \int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} v_{\alpha} d x-\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} f_{\alpha} d x
\end{aligned}
$$

$$
\begin{array}{rl}
\mathcal{K}_{\alpha \beta} & =\int_{\partial B_{R}} \overline{e_{\beta}} \partial_{\nu} v_{\alpha} d \sigma \\
& =\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} \Delta v_{\alpha} d x+\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x \\
& =\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}}\left(-f_{\alpha}-k^{2} v_{\alpha}\right) d x+\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x \\
& =\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x-k^{2} \int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} v_{\alpha} d x-\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} f_{\alpha} d x \\
x & \boldsymbol{x}
\end{array}
$$

The last term can be approximated by standard methods; a mesh of size h leads to error of order h^{2}. First two terms are problematic.

$$
\begin{array}{rl}
\mathcal{K}_{\alpha \beta} & =\int_{\partial B_{R}} \overline{e_{\beta}} \partial_{\nu} v_{\alpha} d \sigma \\
& =\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} \Delta v_{\alpha} d x+\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x \\
& =\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}}\left(-f_{\alpha}-k^{2} v_{\alpha}\right) d x+\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x \\
& =\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x-k^{2} \int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} v_{\alpha} d x-\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} f_{\alpha} d x \\
x & \boldsymbol{x}
\end{array}
$$

The last term can be approximated by standard methods; a mesh of size h leads to error of order h^{2}. First two terms are problematic.

We need to approximate v_{α}.

$$
\begin{gathered}
\mathcal{K}_{\alpha \beta}=\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x-k^{2} \int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} v_{\alpha} d x-\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} f_{\alpha} d x \\
\boldsymbol{x}
\end{gathered}
$$

Proposition

For small $h>0$ there exists a piecewise linear function v_{α}^{h} which is computable in finitely many algebraic steps, which satisfies the error estimate

$$
\left\|v_{\alpha}-v_{\alpha}^{h}\right\|_{H^{1}\left(B_{R} \backslash \bar{U}\right)} \leq C h^{\frac{1}{3}}\left\|f_{\alpha}\right\|_{H^{1}\left(B_{R} \backslash \bar{U}\right)}
$$

where C is independent of h and α.

$$
\begin{gathered}
\mathcal{K}_{\alpha \beta}=\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x-k^{2} \int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} v_{\alpha} d x-\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} f_{\alpha} d x \\
\boldsymbol{x}
\end{gathered}
$$

Proposition

For small $h>0$ there exists a piecewise linear function v_{α}^{h} which is computable in finitely many algebraic steps, which satisfies the error estimate

$$
\left\|v_{\alpha}-v_{\alpha}^{h}\right\|_{H^{1}\left(B_{R} \backslash \bar{U}\right)} \leq C h^{\frac{1}{3}}\left\|f_{\alpha}\right\|_{H^{1}\left(B_{R} \backslash \bar{U}\right)}
$$

where C is independent of h and α.
Proof is about 4 pages, so we skip. Ingredients: triangulation of $B_{R} \backslash \bar{U}$, tools from numerical analysis (e.g. Céa's Lemma) and functional analysis (e.g. Sobolev embeddings).

$$
\mathcal{K}_{\alpha \beta}=\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x-k^{2} \int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} v_{\alpha} d x-\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} f_{\alpha} d x
$$

Thus we have a quantitative way to approximate these integrals:

$$
\left(\mathcal{K}_{h}\right)_{\alpha \beta}=\int_{B_{R} \backslash \bar{U}}\left(\Pi^{h} \nabla \overline{E_{\beta}}\right) \cdot \nabla v_{\alpha}^{h} d x-k^{2} \int_{B_{R} \backslash \bar{U}}\left(\Pi^{h} \overline{E_{\beta}}\right) v_{\alpha}^{h} d x-\int_{B_{R} \backslash \bar{U}}\left(\Pi^{h} \overline{E_{\beta}}\right) f_{\alpha}^{h} d x
$$

$$
\mathcal{K}_{\alpha \beta}=\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x-k^{2} \int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} v_{\alpha} d x-\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} f_{\alpha} d x
$$

Thus we have a quantitative way to approximate these integrals:
$\left(\mathcal{K}_{h}\right)_{\alpha \beta}=\int_{B_{\beta} \backslash \bar{U}}\left(\Pi^{h} \nabla \overline{E_{\beta}}\right) \cdot \nabla v_{\alpha}^{h} d x-k^{2} \int_{B_{\beta} \backslash \bar{U}}\left(\Pi^{h} \overline{E_{\beta}}\right) v_{\alpha}^{h} d x-\int_{B_{\beta} \backslash \bar{U}}\left(\Pi^{h} \overline{E_{\beta}}\right) f_{\alpha}^{h} d x$

This ultimately leads to

$$
\begin{aligned}
\left|\mathcal{K}_{\alpha \beta}-\left(\mathcal{K}_{h}\right)_{\alpha \beta}\right| & \leq C(k) \beta^{2}\left(h^{\frac{1}{3}}\left\|f_{\alpha}\right\|_{L^{2}\left(B_{R} \backslash \bar{U}\right)}+h^{2}\left\|f_{\alpha}\right\|_{H^{2}\left(B_{R} \backslash \bar{U}\right)}\right) \\
& \leq C(k) \beta^{2}\left(h^{\frac{1}{3}}|\alpha|+h^{2}|\alpha|^{3}\right)
\end{aligned}
$$

$$
\mathcal{K}_{\alpha \beta}=\int_{B_{R} \backslash \bar{U}} \nabla \overline{E_{\beta}} \cdot \nabla v_{\alpha} d x-k^{2} \int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} v_{\alpha} d x-\int_{B_{R} \backslash \bar{U}} \overline{E_{\beta}} f_{\alpha} d x
$$

Thus we have a quantitative way to approximate these integrals:

$$
\left(\mathcal{K}_{h}\right)_{\alpha \beta}=\int_{B_{R} \backslash \bar{U}}\left(\Pi^{h} \nabla \overline{E_{\beta}}\right) \cdot \nabla v_{\alpha}^{h} d x-k^{2} \int_{B_{R} \backslash \bar{U}}\left(\Pi^{h} \overline{E_{\beta}}\right) v_{\alpha}^{h} d x-\int_{B_{R} \backslash \bar{U}}\left(\Pi^{h} \overline{E_{\beta}}\right) f_{\alpha}^{h} d x
$$

Finally, a Young's inequality leads to:

Proposition

For any $n \in \mathbb{N}$, one has the operator norm estimate:

$$
\left\|P_{n} \mathcal{K} P_{n}-\mathcal{K}_{h}\right\|_{L(\mathcal{H})} \leq C(k)\left(h^{\frac{1}{3}} n^{3}+h^{2} n^{5}\right)
$$

Approximation of $\mathcal{C}(k)$ Revisited

Recall that we had to approximate

$$
\mathcal{C}(k)=N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}} .
$$

Approximation of $\mathcal{C}(k)$ Revisited

Recall that we had to approximate

$$
\mathcal{C}(k)=N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}} .
$$

We know from before that

$$
\left\|\mathcal{C}(k)-P_{n} \mathcal{C}(k) P_{n}\right\|_{C_{p}} \leq C n^{-\frac{1}{2}+\frac{1}{p}}
$$

Approximation of $\mathcal{C}(k)$ Revisited

Recall that we had to approximate

$$
\mathcal{C}(k)=N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}} .
$$

We know from before that

$$
\left\|\mathcal{C}(k)-P_{n} \mathcal{C}(k) P_{n}\right\|_{C_{p}} \leq C n^{-\frac{1}{2}+\frac{1}{p}}
$$

The Proposition on the last slide leads to

$$
\|\mathcal{C}(k)-\underbrace{P_{n} N^{-\frac{1}{2}}\left(\mathcal{H}+\mathcal{J}+\mathcal{K}_{h(n)}\right) N^{-\frac{1}{2}} P_{n}}_{\mathcal{C}_{n}(k)}\|_{C_{p}} \leq C n^{-\frac{1}{2}+\frac{1}{\rho}}
$$

Approximation of $\mathcal{C}(k)$ Revisited

Recall that we had to approximate

$$
\mathcal{C}(k)=N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}} .
$$

We know from before that

$$
\left\|\mathcal{C}(k)-P_{n} \mathcal{C}(k) P_{n}\right\|_{C_{p}} \leq C n^{-\frac{1}{2}+\frac{1}{p}}
$$

The Proposition on the last slide leads to

$$
\|\mathcal{C}(k)-\underbrace{P_{n} N^{-\frac{1}{2}}\left(\mathcal{H}+\mathcal{J}+\mathcal{K}_{h(n)}\right) N^{-\frac{1}{2}} P_{n}}_{\mathcal{C}_{n}(k)}\|_{C_{p}} \leq C n^{-\frac{1}{2}+\frac{1}{\rho}}
$$

$\mathcal{C}_{n}(k)$ is something that we can compute with finitely many arithmetic operations!

Approximation of $\mathcal{C}(k)$ Revisited

$$
\begin{aligned}
\mathcal{C}(k) & =N^{-\frac{1}{2}}(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}(k)) N^{-\frac{1}{2}} \\
\mathcal{C}_{n}(k) & =P_{n} N^{-\frac{1}{2}}\left(\mathcal{H}(k)+\mathcal{J}(k)+\mathcal{K}_{h(n)}(k)\right) N^{-\frac{1}{2}} P_{n}
\end{aligned}
$$

We finally have:

Proposition

There exists $C>0$ which is independent of k for k in a compact subset of \mathbb{C}^{-}such that:

$$
\left|\operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}(k)\right)-\operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}_{n}(k)\right)\right| \leq C n^{-\frac{1}{2}+\frac{1}{\lceil p\rceil}}
$$

The Algorithm

Goal: find values of k for which $\operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}_{n}(k)\right)$ is small.

The Algorithm

Goal: find values of k for which $\operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}_{n}(k)\right)$ is small.

Let $\emptyset \neq Q \subset \mathbb{C}^{-}$be compact and let $G_{n}=\frac{1}{n}(\mathbb{Z}+i \mathbb{Z})$. Define

$$
\begin{aligned}
\Gamma_{n}^{Q} & : \Omega \rightarrow \mathrm{cl}(\mathbb{C}) \\
\Gamma_{n}^{Q}(U) & :=\left\{k \in G_{n} \cap Q| | \operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}_{n}(k)\right) \left\lvert\, \leq \frac{1}{\log (n)}\right.\right\} .
\end{aligned}
$$

The Algorithm

Goal: find values of k for which $\operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}_{n}(k)\right)$ is small.

Let $\emptyset \neq Q \subset \mathbb{C}^{-}$be compact and let $G_{n}=\frac{1}{n}(\mathbb{Z}+i \mathbb{Z})$. Define

$$
\begin{aligned}
\Gamma_{n}^{Q} & : \Omega \rightarrow \mathrm{cl}(\mathbb{C}) \\
\Gamma_{n}^{Q}(U) & :=\left\{k \in G_{n} \cap Q| | \operatorname{det}_{\lceil p\rceil}\left(\operatorname{Id}_{L^{2}}+\mathcal{C}_{n}(k)\right) \left\lvert\, \leq \frac{1}{\log (n)}\right.\right\} .
\end{aligned}
$$

Theorem
For any $U \in \Omega$ we have $\Gamma_{n}^{Q}(U) \rightarrow \operatorname{Res}(U) \cap Q$ in the Hausdorff distance as $n \rightarrow+\infty$.

We need to extend this to the whole of \mathbb{C}^{-}. We do this by tiling \mathbb{C}^{-}with compact sets:

We need to extend this to the whole of \mathbb{C}^{-}. We do this by tiling \mathbb{C}^{-}with compact sets:

We need to extend this to the whole of \mathbb{C}^{-}. We do this by tiling \mathbb{C}^{-}with compact sets:

And finally define:

$$
\Gamma_{n}(U):=\bigcup_{j=1}^{n} \Gamma_{n}^{Q_{j}}(U)
$$

Solution of

$$
\left\{\begin{aligned}
\left(-\Delta-k^{2}\right) u=0 & \text { in } B_{R} \backslash \bar{U} \\
u=e_{5} & \text { on } \partial B_{R} \\
u=0 & \text { on } \partial U
\end{aligned}\right.
$$

Left: $k=1.0$ (far from resonance)
Right: $k=2.049-0.026 i$ (near second resonance)

Thank you for your attention!

