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Dispersion

Definition. A linear partial differential equation is called
dispersive if the different Fourier modes travel unaltered
but at different speeds.

Substituting
u(t, x) = e i (kx−ω t)

produces the dispersion relation

ω = ω(k), ω, k ∈ R

relating frequency ω and wave number k.

Phase velocity: cp =
ω(k)

k

Group velocity: cg =
dω

dk
(stationary phase)



A Simple Linear Dispersive Wave Equation:

∂u

∂t
=
∂3u

∂x3

=⇒ linearized Korteweg–deVries equation

Dispersion relation: ω = k3

Phase velocity: cp =
ω

k
= k2

Group velocity: cg =
dω

dk
= 3k2

Thus, wave packets (and energy) move faster (to the right) than
the individual waves.



Linear Dispersion on the Line

∂u

∂t
=
∂3u

∂x3
u(0, x) = f(x)

Fourier transform solution:

u(t, x) =
1√
2π

∫ ∞

−∞
f̂(k) e i (kx−k3 t) dk

Fundamental solution u(0, x) = δ(x)

u(t, x) =
1

2π

∫ ∞

−∞
e i (kx−k3 t) dk =

1
3
√
3 t

Ai

(

−
x

3
√
3 t

)



Fundamental solution to linearized KdV



t = .03 t = .1 t = 1/3

t = 1 t = 5 t = 20



Linear Dispersion on the Line

∂u

∂t
=
∂3u

∂x3
u(0, x) = f(x)

Superposition solution formula:

u(t, x) =
1

3
√
3 t

∫ ∞

−∞
f(ξ) Ai

(
ξ − x
3
√
3 t

)

dξ

Step function initial data: u(0, x) = σ(x) =

{
0, x < 0,

1, x > 0.

u(t, x) =
1

3
− H

(

−
x

3
√
3 t

)

H(z) =
z Γ

(
1
3

)
1F2

(
1
3 ;

2
3 ,

4
3 ;

1
9 z

3
)

35/3 Γ
(
2
3

)
Γ
(
4
3

) −
z2 Γ

(
2
3

)
1F2

(
2
3 ;

4
3 ,

5
3 ;

1
9 z

3
)

37/3 Γ
(
4
3

)
Γ
(
5
3

)

=⇒ Mathematica — via Meijer G functions
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Step solution to linearized KdV



t = .005 t = .01 t = .05

t = .1 t = .5 t = 1.



Periodic Linear Dispersion

∂u

∂t
=
∂3u

∂x3

u(t,−π) = u(t,π)
∂u

∂x
(t,−π) =

∂u

∂x
(t,π)

∂2u

∂x2
(t,−π) =

∂2u

∂x2
(t,π)

Step function initial data:

u(0, x) = σ(x) =

{
0, x < 0,

1, x > 0.

Fourier series solution formula:

u!(t, x) ∼
1

2
+

2

π

∞∑

j=0

sin( (2j + 1)x− (2j + 1)3 t )

2j + 1
.
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Periodic linearized KdV with ∆t = .01



Periodic linearized KdV with ∆t = π/300



t = 0. t = .1 t = .2

t = .3 t = .4 t = .5

Periodic linearized KdV — irrational times



t = 1
30 π t = 1

15 π t = 1
10 π

t = 2
15 π t = 1

6 π t = 1
5 π

Periodic linearized KdV — rational times



t = 1
30 π t = 1

15 π t = 1
10 π

t = 2
15 π t = 1

6 π t = 1
5 π

Periodic linearized KdV — rational times



Periodic linearized KdV with ∆t = .0001



Theorem. At rational time t = 2πp/q, the solution u!(t, x) is
constant on every subinterval 2π j/q < x < 2π (j + 1)/q.
At irrational time u!(t, x) is a non-differentiable continuous
fractal function.



Lemma.

f(x) ∼
∞∑

k=−∞

ck e
i kx

is piecewise constant on intervals 2π j/q < x < 2π (j + 1)/q
if and only if

ĉk = ĉl, k ≡ l #≡ 0 mod q, ĉk = 0, 0 #= k ≡ 0 mod q.

where

ĉk =
2πk ck

i q (e−2 iπk/q − 1)
k #≡ 0 mod q.

=⇒ DFT



The Fourier coefficients of the solution u!(t, x) at rational time
t = 2πp/q are

ck = bk e
−2π i k3p/q (∗)

where, for the step function initial data,

bk =






− i /(πk), k odd,

1/2, k = 0,

0, 0 #= k even.

Crucial observation:
if k ≡ l mod q then k3 ≡ l3 mod q

which implies

e−2π i k3 p/q = e−2π i l3p/q

and hence the Fourier coefficients (∗) satisfy the condition
in the Lemma. Q.E.D.



Revival

Fundamental Solution: F (0, x) = δ(x).

Theorem. At rational time t = 2πp/q, the fundamental
solution F (t, x) is a linear combination of finitely many
periodically extended delta functions, based at 2π j/q for
integers −1

2 q < j ≤ 1
2 q.

Corollary. At rational time, any solution profile u(2πp/q, x)
to the periodic initial-boundary value problem is a linear
combination of ≤ q translates of the initial data, namely
f(x + 2π j/q), and hence its value depends on only finitely
many values of the initial data.
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! ! The same quantization/fractalization phenomenon
appears in any linearly dispersive equation with
“integral polynomial” dispersion relation:

ω(k) =
n∑

m=0

cmkm

where
cm = αnm nm ∈ Z



Linear Free-Space Schrödinger Equation

i
∂u

∂t
= −

∂2u

∂x2

Dispersion relation: ω = k2

Phase velocity: cp =
ω

k
= k

Group velocity: cg =
dω

dk
= 2k



The Talbot Effect

i
∂u

∂t
= −

∂2u

∂x2

u(t,−π) = u(t,π)
∂u

∂x
(t,−π) =

∂u

∂x
(t,π)

• Michael Berry et. al.

• Oskolkov

• Kapitanski, Rodnianski
“Does a quantum particle know the time?”

• Michael Taylor

• Bernd Thaller, Visual Quantum Mechanics



William Henry Fox Talbot (1800–1877)



! Talbot’s 1835 image of a latticed window in Lacock Abbey

=⇒ oldest photographic negative in existence.



ATalbot Experiment

Fresnel diffraction by periodic gratings (1836):

“It was very curious to observe that though the grating was
greatly out of the focus of the lens . . . the appearance of
the bands was perfectly distinct and well defined . . . the
experiments are communicated in the hope that they may
prove interesting to the cultivators of optical science.”

— Fox Talbot

=⇒ Lord Rayleigh calculates the Talbot distance (1881)
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The Quantized/Fractal Talbot Effect

• Optical experiments — Berry & Klein

• Diffraction of matter waves (helium atoms) — Nowak et. al.



Quantum Revival

• Electrons in potassium ions — Yeazell & Stroud

• Vibrations of bromine molecules —
Vrakking, Villeneuve, Stolow



Periodic Linear Schrödinger Equation

i
∂u

∂t
= −

∂2u

∂x2

u(t,−π) = u(t,π)
∂u

∂x
(t,−π) =

∂u

∂x
(t,π)

Integrated fundamental solution:

u(t, x) =
1

2π

∞∑

0"=k=−∞

e i (kx−k2t)

k
.

For x/t ∈ Q, this is known as a Gauss sum (or, more generally, kn,
a Weyl sum), of great importance in number theory

=⇒ Hardy, Littlewood, Weil, I. Vinogradov, etc.

# # The Riemann Hypothesis!
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Periodic Linear Dispersion
∂u

∂t
= L(Dx) u, u(t, x+ 2π) = u(t, x)

Dispersion relation:

u(t, x) = e i (kx−ω t) =⇒ ω(k) = − iL(− i k) assumed real

Riemann problem: step function initial data

u(0, x) = σ(x) =

{
0, x < 0,

1, x > 0.

Solution:

u(t, x) ∼
1

2
+

2

π

∞∑

j=0

sin[ (2j + 1)x− ω(2j + 1) t ]

2j + 1
.

% % ω(−k) = −ω(k) odd

Polynomial dispersion, rational t =⇒ Weyl exponential sums



Water Waves



2DWaterWaves

h

y = h+ η(t, x) surface elevation

φ(t, x, y) velocity potential



2D Water Waves

• Incompressible, irrotational fluid.

• No surface tension

φt +
1
2 φ

2
x +

1
2 φ

2
y + g η = 0

ηt = φy − ηxφx




 y = h+ η(t, x)

φxx + φyy = 0 0 < y < h+ η(t, x)

φy = 0 y = 0

• Wave speed (maximum group velocity): c =
√
g h

• Dispersion relation:
√
g k tanh(h k) = c k − 1

6 c h
2k3 + · · ·



Shallow Water Dispersion Relations

Water waves ±
√
k tanh k

Boussinesq system ±
k

√
1 + 1

3 k
2

Boussinesq equation ± k
√
1 + 1

3 k
2

Korteweg–deVries k − 1
6 k

3

BBM
k

1 + 1
6 k

2



Water waves ω =
√
k tanh k sign k ω =

√
| k | sign k

ω =
k

√
1 + 1

3 k
2

ω = k
√
1 + 1

3 k
2

ω = k − 1
6 k

3 ω =
k

1 + 1
6 k

2

ω = | k |2 sign k



Water waves:   t > 1000 ω =
√
k tanh k sign k ω =

√
| k | sign k

ω =
k

√
1 + 1

3 k
2

ω = k
√
1 + 1

3 k
2

ω = k − 1
6 k

3 ω =
k

1 + 1
6 k

2

ω = | k |2 sign k



t = 1 t = 2 t = 5

t = 10 t = 20 t = 35

t = 50 t = 75 t = 100

Figure 4. Water Wave Dispersion: ω =
√
k tanh k sign k.

t = 2 t = 5 t = 10

t = 20 t = 50 t = 100

Figure 5. Square Root Dispersion: ω =
√
| k | sign k.
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Water waves ω =
√
k tanh k sign k ω =

√
| k | sign k

ω =
k

√
1 + 1

3 k
2

ω = k
√
1 + 1

3 k
2

ω = k − 1
6 k

3 ω =
k

1 + 1
6 k

2

ω = | k |2 sign k



t = 1 t = 5 t = 10

t = 50 t = 100 t = 1000

Figure 2. RLW/BBM Dispersion: ω =
k

1 + 1
6 k

2
.

t = 1 t = 5 t = 10

t = 50 t = 100 t = 1000

Figure 3. Regularized Boussinesq Dispersion: ω =
k√

1 + 1
3 k

2
.
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BBM equation

ω =
√
k tanh k ω =

√
k

ω =
k

√
1 + 1

3 k
2

ω = k
√
1 + 1

3 k
2

ω = k − 1
6 k

3 ω =
k

1 + 1
6 k

2

ω = | k |2



t = .1 t = .2 t = .3

t = 1
30 π t = 1

15 π t = 1
10 π

Figure 9. Integrable Boussinesq Dispersion: ω = k
√

1 + 1
3 k

2.

t = .1 t = .2 t = .3

t = 1
30 π t = 1

15 π t = 1
10 π

Figure 10. Five-halves Dispersion: ω = | k |5/2 sign k.

t = .1 t = .2 t = .3

t = 1
30 π t = 1

15 π t = 1
10 π

Figure 11. Korteweg–deVries Dispersion: ω = k − 1
6 k

3.
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Boussinesq equation

ω =
√
k tanh k ω =

√
k

ω =
k

√
1 + 1

3 k
2

ω = k
√
1 + 1

3 k
2

ω = k − 1
6 k

3 ω =
k

1 + 1
6 k

2

ω = | k |2



Dispersion Asymptotics

! The qualitative behavior of the solution to the periodic
problem depends crucially on the asymptotic behavior
of the dispersion relation ω(k) for large wave number
k → ±∞.

ω(k) ∼ kα

• α = 0 — large scale oscillations

• 0 < α < 1 — dispersive oscillations

• α = 1 — traveling waves

• 1 < α < 2 — oscillatory becoming fractal

• α ≥ 2 — fractal/quantized



Linearized Benjamin Ono equation

of translates of the initial step function and of its periodic Hilbert transform. For the ILW
and Smith equations, a similar result holds but only in an approximate sense. For these
two equations, we provide a quantification of the error.

In the course of our analysis, we will introduce a certain class of special functions, that
we call trigonometric polylogarithms. A particularly important subclass is given by the
trigonometric hypergeometric functions, so named in that they are obtained by evaluating
classical hypergeometric functions on the unit circle. The latter functions can, in fact, be
expressed in terms of elementary functions. Various properties of these special functions
play a central role in expressing the new type of revival phenomena observed in the above
linear integro-di↵erential equations.

2 Three Linearised Model Wave Equations

The unidirectional evolution equations we consider can be expressed in terms of their dis-
persion relation !(k) connecting the wave number k (or spatial frequency) to the temporal
frequency !, [39]. Indeed, the equations are of the general form

u
t
= L[u], (2.1)

in which L is a linear integro-di↵erential operator characterised by its Fourier transform

cLu(k) = !(k) bu(k). (2.2)

We use the Fourier transform normalisation

bf(k) = F [f(x) ] =
1p
2⇡

Z 1

�1
f(x) e� ikx dx, (2.3)

so that the Fourier transform of the convolution of two functions,

f ⇤ g (x) =
Z 1

�1
f(x� y) g(y) dy

is given by
[f ⇤ g (k) =

p
2⇡ bf(k) bg(k).

2.1 The Linearised Benjamin–Ono Equation

The Benjamin–Ono equation arises as a nonlinear integrable model for internal waves in
fluids, and has been studied extensively, [1, 3, 28, 32]. Its linearisation has the form

u
t
= H[u

xx
], (2.4)

where H denotes the Hilbert transform

H[f ](x) = H ⇤ f (x) =
1

⇡

Z 1

�1
—

f(y)

x� y
dy, (2.5)

for the Cauchy kernel H(x) = 1/(⇡ x). The bar across the integral sign denotes principal
value. We are interested in the spatially periodic problem on the interval [�⇡,⇡ ]. In this
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case, the convolution formula (2.5) is replaced by the circular or periodic Hilbert transform,
[19], [8, Ch. 9]:

H[f ](x) =
1

⇡

1X

k=�1

Z
⇡

�⇡

—
f(y)

x� y + 2⇡k
dy =

1

2⇡

Z
⇡

�⇡

— cot
⇥

1
2 (x� y)

⇤
f(y) dy, (2.6)

which is a periodic convolution with the rescaled cotangent kernel. The dispersion relation
for the linearised BO equation is the odd function

!
BO

(k) = k2 sign k. (2.7)

2.2 The Linearised Intermediate Long Wave Equation

The nonlinear Intermediate Long Wave equation is yet another integrable equation that
arises through the modelling of internal waves in a fluid of finite depth, [1, 18, 20, 32]. Its
infinite depth limit is the BO equation, as we explain below.

The linearised ILW equation is given by

u
t
= L[u], (2.8)

with the integro-di↵erential operator L given by

L[u] = I
�
[u

xx
]� 1

�
u
x
, (2.9)

where

I
�
[f ](x) = � 1

2 �

Z 1

�1
— coth

h ⇡

2 �
(x� y)

i
f(y) dy (2.10)

is convolution with a hyperbolic cotangent kernel. If f(x) is 2⇡-periodic, this convolution
formally becomes

I
�
[f ](x) = � 1

2 �

Z
⇡

�⇡

—

" 1X

n=�1
coth

✓
⇡

2 �
(x� y) +

⇡2n

�

◆#
f(y) dy . (2.11)

We now seek a closed form expression for a convolution kernel C
�
(x), such that

I
�
[f ](x) = C

�
⇤ f (x) =

Z
⇡

�⇡

— C
�
(x� y)f(y) dy . (2.12)

As for the case of (2.6), C
�
(x) will have a singularity of order 1/x (a simple pole, when

considered as an analytic function for complex x) at x = y, so the integral should be taken
as a principal value.

As a starting point, consider the formal expression

C
�
(x) = � 1

2 �

1X

n=�1
coth

✓
⇡

2 �
x+

⇡2n

�

◆
. (2.13)

Let ⇣(z) denote the Weierstrass zeta function associated with the lattice L ⇢ C generated
by 2!1, 2!3 2 C. Then, [24, 23.8.4]

⇣(z) =
⌘1
!1

z +
⇡

2!1

1X

n=�1
cot

✓
⇡

2!1

z +
⇡ !3 n

!1

◆
, z 62 L, where ⌘1 = ⇣(!1). (2.14)
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Let ⇣(z) denote the Weierstrass zeta function associated with the lattice L ⇢ C generated
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Figure 8. Benjamin–Ono Dispersion: ω = | k |2 sign k.
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Generalized Revival

Ø L. Boulton, PJO, B. Pelloni, D. Smith

with initial datum u(0, x) = f(x) is a linear combination of translates f(x + ⇡ j/q), for
j = 0, . . . , 2q � 1, of the initial condition and translates g(x+ ⇡ j/q) of its periodic Hilbert
transform: g(x) = H[f ](x).

Theorem At a rational time t = ⇡p/q, the solution to the periodic initial-boundary value
problem for the linearized Benjamin–Ono equation on the interval �⇡ < x < ⇡ is a linear
combination of

• translates f(x+ ⇡ j/q) of the initial condition u(0, x) = f(x), and

• translates g(x+ ⇡ j/q) of its periodic Hilbert transform: g(x) = H[f ](x),

for j = 0, . . . , 2q � 1.

In particular, when the initial data is a step function, the first of the two components
of (3.6) in the translated trigonometric polylogarithm solution formula (4.5) is comprised
of piecewise constant translates of the step function4, while the logarithmic sine terms are
translates of its circular Hilbert transform (2.6).

Remark 4.2 A similar analysis applies to the case of the linearised KdV equation (4.3). In
that case, at the rational time t = p⇡/q, we can write the solution of the Riemann problem
as

u

✓
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q
⇡, x

◆
=

1

2
+

2
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1X
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sin
⇥
(2nq + 2j + 1)(x� (2j + 1)2 p⇡/q)

⇤

2nq + 2j + 1

=
1

2
+

2

⇡

q�1X

j=0

S2q
2j+1

✓
x� (2j + 1)2 p

q
⇡

◆
.

However, it is known, [25], that the revivals in this case are all piecewise constant at rational
times, without any cusps, as shown in Figure 3. This is a consequence of the fact that in
the sum (3.8) all the cusped Hilbert transform components cancel out.

4.3 Revival for the Linearised Intermediate Long Wave Equation

We now turn to the periodic Riemann problem for the linearised Intermediate Long Wave
(ILW) equation (2.8) with convolution kernel (2.15) and dispersion relation (2.16).

The solution to the Riemann problem can thus be written as

u(t, x) =
1

2
+

2

⇡

1X

k=0

sin
⇥
(2k + 1)

�
t/� + x� (2k + 1)t coth[�(2k + 1)]

� ⇤

2k + 1
.

Numerical experiments indicate that the solution of the Riemann problem for the ILW equa-
tion, at least for � not too small, presents a “cusped” behaviour at rational times analogous

4
The individual summands are piecewise linear, but they combine to form a piecewise constant profile.
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For r = 2, at the nodes x = 2⇡l/k, for l 2 Z,
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in which case there is a corner.

The most important case of trigonometric polylogarithmic functions for the present
work is the case r = 1, and we will at times refer to these as trigonometric hypergeometric
functions; see the Appendix. In this case we use the notation

Sk

j
(x) = Sk

j,1(x) =
1X

n=0

sin(nk + j)x

nk + j
. (3.5)

In the Appendix, we provide the alternative formula
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. (3.6)

The discontinuities of these functions are described in Proposition 1 and the low order
ones are displayed in Figure 1 and 2. In the graphs, which were plotted in Mathematica,
the infinite logarithmic cusps have been drawn in by hand, as the plotting routines made
them misleadingly appear to be finite in height.
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Figure 1: Graphs of trigonometric hypergeometric functions Sk
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(x), k = 1, 2, 3.

Both the horizontal and vertical axes are from �⇡ to ⇡.

8

For r = 2, at the nodes x = 2⇡l/k, for l 2 Z,

Sk

j,2(x)

Ck

j,2(x)

)
has a point of infinite gradient, unless

8
>>><

>>>:

cos

✓
2⇡jl

k

◆
= 0

sin

✓
2⇡jl

k

◆
= 0

9
>>>=

>>>;

in which case there is a corner.

The most important case of trigonometric polylogarithmic functions for the present
work is the case r = 1, and we will at times refer to these as trigonometric hypergeometric
functions; see the Appendix. In this case we use the notation

Sk

j
(x) = Sk

j,1(x) =
1X

n=0

sin(nk + j)x

nk + j
. (3.5)

In the Appendix, we provide the alternative formula

Sk

j
(x) =

1

k

kX

l=1


sin

✓
2⇡j l

k

◆
log

����2 sin
✓
x

2
+

⇡l

k

◆����

+cos

✓
2⇡j l

k

◆
sign (x+ 2⇡l/k)⇡ � (x+ 2⇡l/k)

2

�
. (3.6)

The discontinuities of these functions are described in Proposition 1 and the low order
ones are displayed in Figure 1 and 2. In the graphs, which were plotted in Mathematica,
the infinite logarithmic cusps have been drawn in by hand, as the plotting routines made
them misleadingly appear to be finite in height.

S1
1(x) S2

1(x) S2
2(x)

S3
1(x) S3

2(x) S3
3(x)

Figure 1: Graphs of trigonometric hypergeometric functions Sk

j
(x), k = 1, 2, 3.

Both the horizontal and vertical axes are from �⇡ to ⇡.

8

Trigonometric hypergeometric functions

v Produces the periodic fundamental solution
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These functions have distributional derivatives
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(3.7)
The first summation in expression (3.7) is a linear combination of Dirac deltas at the nodes
and the second is a linear combination of pole singularities at the nodes that are not integer
multiples of ⇡. Furthermore, for j = 1, . . . , k � 1, the sum
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is a piecewise constant function on the intervals m⇡/k < x < (m+ 1)⇡/k; the proof relies
on the method used in [25] to characterize Fourier series representing piecewise constant
functions. Note that the pole terms cancel out in the sum
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Linearized Intermediate Long Wave Equation

case, the convolution formula (2.5) is replaced by the circular or periodic Hilbert transform,
[19], [8, Ch. 9]:
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⇡
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Z
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—
f(y)

x� y + 2⇡k
dy =

1

2⇡

Z
⇡

�⇡

— cot
⇥

1
2 (x� y)

⇤
f(y) dy, (2.6)

which is a periodic convolution with the rescaled cotangent kernel. The dispersion relation
for the linearised BO equation is the odd function

!
BO

(k) = k2 sign k. (2.7)

2.2 The Linearised Intermediate Long Wave Equation

The nonlinear Intermediate Long Wave equation is yet another integrable equation that
arises through the modelling of internal waves in a fluid of finite depth, [1, 18, 20, 32]. Its
infinite depth limit is the BO equation, as we explain below.

The linearised ILW equation is given by

u
t
= I

�
[u

xx
]� 1

�
u
x

(2.8)

with the integro-di↵erential operator L given by

L[u] = I
�
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�
u
x
, (2.9)

where

I
�
[f ](x) = � 1
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i
f(y) dy (2.10)

is convolution with a hyperbolic cotangent kernel. If f(x) is 2⇡-periodic, this convolution
formally becomes
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We now seek a closed form expression for a convolution kernel C
�
(x), such that

I
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Z
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— C
�
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As for the case of (2.6), C
�
(x) will have a singularity of order 1/x (a simple pole, when

considered as an analytic function for complex x) at x = y, so the integral should be taken
as a principal value.

As a starting point, consider the formal expression
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Let ⇣(z) denote the Weierstrass zeta function
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case, the convolution formula (2.5) is replaced by the circular or periodic Hilbert transform,
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We now seek a closed form expression for a convolution kernel C
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(x), such that
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— C
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(x� y)f(y) dy . (2.12)

As for the case of (2.6), C
�
(x) will have a singularity of order 1/x (a simple pole, when

considered as an analytic function for complex x) at x = y, so the integral should be taken
as a principal value.

As a starting point, consider the formal expression
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Set !1 = � i� and !3 = ⇡. Then Im(!3/!1) = ⇡/� > 0 and L becomes a real rectangular
lattice. Since coth z = i cot( iz), comparing (2.13), (2.14), yields

C
�
(x) =

1

⇡

⇥
↵x� ⇣(x)

⇤
, where ↵ = i

⇣(� i�)

�
(2.15)

for all real x 6= 2n!3 = 2n⇡.
From the periodicity properties of ⇣(z) [24, 23.2(iii)], it follows that C

�
(x) is quasi-

periodic with

C
�
(x+ 2⇡) = C

�
(x)� 1

�
and in fact periodic with period 2i/�. To rigorously prove that the expresion for I

�
[f ](x) in

(2.10) for 2⇡-periodic f(x) and the circular convolution (2.12) coincide, it might be possible
to follow a similar programme as described in [8, §9.1.1] for the Hilbert transform. This
will be pursued elsewhere.2

The corresponding non-polynomial dispersion relation for the (linearised) ILW equation
(2.8), which depends on the depth parameter � > 0, is given by the odd function

!
�
(k) = k2 coth(�k)� k

�
. (2.16)

Note that in the infinite depth limit, � ! 1, the ILW dispersion relation (2.16) reduces to
the dispersion relation (2.7) for the BO equation as !

�
(k) �! !

BO
(k) pointwise.

2.3 The Linearised Smith Equation

The Smith equation was proposed in [33] in the context of water wave theory, as a model for
continental shelf waves. An analysis of the existence and regularity of the solutions of the
Cauchy and of the periodic problem for this equation is presented in [1]. The Smith equation
can be viewed as the unidirectional analogue of the more famous Boussinesq equation, [22],
whose revival properties were first investigated in [10]. Indeed, the two equations have the
same dispersion relation.

The Smith equation as analysed in [1] is given in dimensionless coordinates, and proved
to be a bounded perturbation of the BO equation. To quantify this qualitative result, and
to shed light on the similarity in the revival property the BO and Smith equations display,
it is necessary to understand the modelling assumptions made in the derivation given in
[33]. This derivation depends on a parameter � directly proportional to the water depth,
and that we have explicitly included in the dispersion relation. The limit � ! 1 therefore
corresponds to infinite depth, namely the BO regime.

Our version of the Smith equation takes the form

u
t
= S

�
[u

x
], (2.17)

where the integro-di↵erential operator is defined through the Fourier expansion of its kernel
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�
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�
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(k) bu(k). (2.18)
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e ik(x�y)f(y) dy dk. (2.19)

2
A more complicated closed form expression for the kernel C� involving Jacobi elliptic functions can be

found in [2]. The expression given here in (2.15) appears to be novel.
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In the Appendix, we provide details of a computation that yields the inverse Fourier trans-
form of (2.18) in closed form as

s
�
(x) = � i

r
2

⇡ �

K1

�
|x |/

p
�
�

|x | , (2.20)

where K1(x) denotes the modified Bessel function of the second kind, [24, 10.25]. Thus, the
Smith operator (2.19) on R is given by convolution

S
�
[f ] = � i

⇡
p
�

Z 1

�1

K1

�
|x� y |/

p
�
�

|x� y | f(y) dy. (2.21)

If f is 2⇡-periodic, then we can write

S
�
[f ] = S

�
⇤ f (x) =

Z
⇡

�⇡

S
�
(x� y) f(y) dy,

where, formally,

S
�
(x) = � i

⇡
p
�

1X

n=�1

K1

�
|x+ 2n⇡ |/

p
�
�

|x+ 2n⇡ | . (2.22)

The Bessel function K1(z) is entire in z except at z = 0 where it has a pole of order 1, and
hence the only singularities of S

�
(x) are at the even multiples of ⇡. Moreover, according to

[24, 10.40.2],

K1(x) ⇠
r

⇡

2x
e�x as x �! 1,

and hence, away from the pole singularities, the infinite sum (2.22) converges rapidly. How-
ever, unlike the periodic BO and ILW kernels, it seems unlikely that there exists a closed
form formula for the summation (2.22) in terms of known special functions.

The dispersion relation for the Smith equation (2.17) is

!
S
(k) = k

r
1

�
+ k2. (2.23)

As for the case of the ILW equation, in the limit as the depth parameter becomes infinite,
the Smith dispersion relation (2.23) reduces to the dispersion relation (2.7) for the BO
equation: !

S
(k) �! !

BO
(k) pointwise as � ! 1.

Remark: Intriguingly the hierarchy (ignoring constants)

1

x
7�! cotx or cothx 7�! ⇣(x) (2.24)

i.e., rational to (hyperbolic) trigonometric to elliptic, corresponding to

BO 7�! periodic BO or ILW 7�! periodic ILW

reminds one of the hierarchies in the discrete integrable Calogero–Moser–Sutherland many
body models, both classical and quantum, [9, 23, 35]. Indeed, if one di↵erentiates (2.24)
one obtains

� 1

x2
7�! � csc2 x or � csch2 x 7�! �P(x),

where P is the Weierstrass elliptic function, which are precisely the Calogero–Moser–
Sutherland potentials. Connections between these continuous and discrete integrable sys-
tems are noted in [41].
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Periodic kernel:



What about nonlinear equations?



Periodic Korteweg–deVries equation

∂u

∂t
= α

∂3u

∂x3
+ β u

∂u

∂x
u(t, x+ 2$) = u(t, x)

Zabusky–Kruskal (1965)

α = 1, β = .000484, $ = 1, u(0, x) = cos πx.

Lax–Levermore (1983) — small dispersion

α −→ 0, β = 1.

Gong Chen (2011)

α = 1, β = .000484, $ = 1, u(0, x) = σ(x).



Zabusky & Kruskal — birth of the soliton



Periodic KdV — dispersive quantization
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Figure 13. Korteweg–deVries Equation: Irrational Times.
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Figure 14. Korteweg–deVries Equation: Rational Times.
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Figure 15. Quartic Korteweg–deVries Equation: Irrational Times.
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Figure 16. Quartic Korteweg–deVries Equation: Rational Times.
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Periodic Nonlinear Schrödinger Equation

iut + uxx + |u |p u = 0, x ∈ R/Z, u(0, x) = g(x).

Theorem. (Erdoǧan, Tzirakis)
Suppose p = 2 (the integrable case) and g ∈ BV. Then

(i) u(t, ·) is continuous at irrational times t "∈ Q

(ii) u(t, ·) is bounded with at most countably many discontinuities
at rational times t ∈ Q

(iii) When the initial data is sufficiently “rough”, i.e., g "∈
⋃

ε>0
H1/2+ε

then, at almost all t, the real or imaginary part of the
graph of u(t, · ) has fractal (upper Minkowski) dimension 3

2.



Periodic Linear Dispersive Equations
=⇒ Chousionis, Erdoǧan, Tzirakis

Theorem. Suppose 3 ≤ k ∈ Z and

iut + (− i ∂x)
ku = 0, x ∈ R/Z, u(0, x) = g(x) ∈ BV

(i) u(t, ·) is continuous for almost all t

(ii) When g %∈
⋃

ε>0
H1/2+ε, then, at almost all t, the real and imaginary parts of

the graph of u(t, · ) has fractal dimension 1 + 21−k ≤ D ≤ 2− 21−k.

Theorem. For the periodic Korteweg–deVries equation

ut + uxxx + uux = 0, x ∈ R/Z, u(0, x) = g(x) ∈ BV

(i) u(t, ·) is continuous for almost all t

(ii) When g %∈
⋃

ε>0
H1/2+ε, then, at almost all t, the real and imaginary parts of

the graph of u(t, · ) has fractal dimension 5
4 ≤ D ≤ 7

4 .



The Lamb Problem

oscillating mass connected to an elastic string



The Lamb Problem
=⇒ Horace Lamb, 1900

Consider an oscillating mass connected to an elastic string.

Starting at rest, the mass is subject to a sudden blow.

=⇒ 1D model of radiation damping
of a vibrating body in a medium



Radiation Damping in Applications

• Vibrations of elastic sphere in a gaseous medium

• Electrical oscillations of a spherical conductor

• Dielectic sphere with large inductance

• Relativistic radiation of energy via gravity waves

• Quantum resonance of nuclei, etc.

• Radiative decay of sine–Gordon breathers



The Lamb Problem

• m — mass

• σ — mass oscillation frequency

• T — string tension

• ρ — string density

• c =
√
T/ρ — wave speed of string

• b = m/(2ρ) — mass damping coefficient

• κ =

√
σ2

c2
−
ρ2

m2
— damped oscillation frequency



In the linear regime, the string displacement u(t, x) satisfies
the usual wave equation

utt = c2uxx x != 0

Force balance on the mass displacement h(t) = u(t, 0) yields

m(h′′ + σ2h) = −T [ux ]0

the right hand side being the jump in ux

at the location of the mass: x = 0.



Equivalent model

utt = c2uxx − 2ch′(t) δ(x),

where

h′′ + 2βh′ + σ2h = 0, h(0) = 0, β = c/(2b).

=⇒ damped oscillator

Solution:

u(t, x) =

{
C e(|x |−ct)/(2b) sinκ (|x |− ct) |x | < ct

0 |x | > ct



The Lamb Problem



Periodic Lamb Problem

We can solve the periodic problem by superposition or
by Fourier series:

u(t, x) = 1
2 a0(t) +

∞∑

k=1

ak(t) cos kx.

where

a′′k + ω(k)2ak = h′(t)/π, ak(0) = a′k(0) = 0.

ω(k) — dispersion relation wave equation: ω(k) = ck.



Dispersion Asymptotics

for the Lamb Problem

In general, if

ω(k) ∼ km as k → ∞,

where m > 0, then

ak(t) ∼ ω(k)−2 ∼ k−2m as k → ∞.

Thus, the physical water wave dispersion

ω(k) ∼
√
| k |

produces slow decay
ak(t) ∼ 1/| k |

in the dispersive Lamb system indicative of fractalization.



Periodic Lamb



Higher order string model



Square root dispersion



Square root dispersion



The Fermi–Pasta–Ulam–Tsingou Problem

=⇒ Los Alamos Report, 1955

Our problem turned out to have been felicitously chosen.
The results were entirely different qualitatively from what
even Fermi, with his great knowledge of wave motions, had
expected. . . . To our surprise, the string started playing a
game of musical chairs, only between several low notes, and
perhaps even more amazingly, after what would have been
several hundred ordinary up and down vibrations, it came
back almost exactly to its original sinusoidal shape.

— Stanislaw Ulam, Adventures of a Mathematician, pp. 226–7

Ø PJO + Ari Stern
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The Fermi–Pasta–Ulam–Tsingou System

µ−2 d2un

dt2
= F (un+1 − un)− F (un − un−1)

= un+1 − 2un + un−1 +N(un+1 − un)−N(un − un−1).

Forcing function and potential

F (y) = y +N(y) = V ′(y), where V (y) = 1
2 y

2 +W (y)

Classical potentials: N(y) = αyβ, β = 2, 3

Toda lattice: N(y) = αeβ y



Continuum Limit

Periodic problem: m masses on a circle of unit radius with
intermass spacing h = 2π/m. We suppose m −→ ∞.

Rescale time: t $−→ ht

d2un

dt2
=

c2

h2
[F (un+1 − un)− F (un − un−1) ],

c = µh — wave speed

Assume the displacements are obtained by sampling a
function u(t, x) at the nodes:

un(t) = u(t, xn), where xn = nh = 2πn/m.

Taylor expansion:

un±1(t) = u(t, xn ± h) = u± hux +
1
2 h

2uxx ±
1
6 h

3uxxx + · · · ,



Continuum Models

utt = c2(K[u ] +M [u ] )

Linear component

K[u ] = uxx +
1
12h

2uxxxx +O(h4)

Quadratic nonlinear component:

M [u ] = 2αhuxuxx +
1
6αh3uxuxxxx +

1
3αh3uxxuxxx +O(h5)

Bidirectional continuum model = potential Boussinesq equation

utt = c2( uxx + 2αhuxuxx +
1
12h

2uxxxx )

Unidirectional model = Korteweg–deVries equation:

ut = c (ux + αhuux +
1
24h

2uxxx )



Linear FPU

Discrete wave equation:

d2un

dt2
=

c2

h2
(un+1 − 2un + un−1),

Bidirectional continuum model

utt = c2uxx +
1
12 c

2h2uxxxx,

! linearized “bad Boussinesq equation” — ill-posed.

Dispersion relation:

ω2 = p4(k) = c2k2( 1− 1
12 h

2k2 ) < 0 for k " 0



Regularized Bidirectional Models

Sixth order linearized model:

utt = c2(uxx +
1
12 h

2uxxxx +
1

360 h
4uxxxxxx ),

Dispersion relation:

ω2 = p6(k) = c2k2( 1− 1
12 h

2k2 + 1
360 h

4k4 ) > 0 for all k "= 0Regularized Bidirectional Models

Alternatively, replacing

uxx = c−2utt +O(h2)

leads to the linear Boussinesq equation

utt = c2uxx +
1
12 h

2uxxtt

Dispersion relation:

ω2 = q(k) =
c2k2

1 + 1
12 h

2k2
> 0 for all k != 0



FPU Lattice Dispersion Relation

Substituting u(t, x) = e i (kx−ω t) evaluated at x = xn = nh into
the linearized FPU system

d2un

dt2
=

c2

h2
(un+1 − 2un + un−1),

produces

−ω2e i (kxn−ω t) =
c2

h2

(

e i (kxn+kh−ω t) − 2e i (kxn−ω t) + e i (kxn−kh−ω t)
)

= −
2c2

h2
(1− cos kh) e i (kxn−ω t).

Discrete FPU dispersion relation:

ω2 =
2c2

h2
(1− cos kh) =

4c2

h2
sin2 1

2 kh =
c2m2

π2
sin2

kπ

m



The Continuum Riemann Problem

Step function initial data:

u(0, x) = σ(x) =
1

2
+

2

π

∞
∑

j=0

sin (2j + 1)x

2j + 1

ut(0, x) = 0

Bidirectional solution

u(t, x) =
1

2
+

2

π

∞
∑

j=0

cosω(2j + 1) t sin (2j + 1)x

2j + 1
.

Unidirectional right-moving constituent:

uR(t, x) =
1

2
+

2

π

∞
∑

j=0

sin[ (2j + 1)x− ω(2j + 1) t ]

2j + 1
,



The Discrete Riemann Problem

un(0) =















1, 0 < n < m,

0, −m < n < 0,
1
2 , n = −m, 0, m.

Discrete Fourier Transform:

u(0, x) ∼
1

2
+

1

m

[m/2]
∑

j=0

cot
(2j + 1)π

2m
sin(2j + 1)x.

Linear FPU solution:

u(t, x) ∼
1

2
+

1

m

[m/2]
∑

j=0

cot
(2j + 1)π

2m
cos

(

cmt

π
sin

(2j + 1)π

m

)

sin(2j + 1)x,

Right-moving constituent:

uR(t, x) ∼
1

2
+

1

2m

[m/2]
∑

j=0

cot
(2j + 1)π

2m
sin

(

(2j + 1)x−
cmt

π
sin

(2j + 1)π

m

)

.



scales: what we will call short times , where t = O(1), medium times , where t = O(h−1),
and long times , where t = O(h−2).

First, on short time scales, the solutions to all four models exhibit little appreciable
difference. For example, consider the profiles at t = 1

5 π graphed below— the top row
being the full bidirectional solution and the bottom row its right-moving unidirectional
constituent. The only noticeable difference is that, on closer inspection, the oscillatory
(or perhaps fractal) perturbation that is superimposed upon the intervals of constancy is
more concentrated near the discontinuities in the regularized Boussinesq (and sixth order)
model, while in the FPU and KdV cases, the oscillations are more spread out, particularly
in the unidirectional profiles.
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Figure 1. Bi- and uni-directional solution profiles at t = 1
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Figure 2. Bi- and unidirectional FPU solution profiles.
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Since all profiles remain rather similar at short times, in the plots in Figure 2, we just
graph the FPU solution profiles. What we observe is that, on the short time scale, the
solution is a oscillatory perturbation of the solution to the bi- and unidirectional traveling
wave solution to the limiting wave equations utt = uxx and ut + ux = 0, respectively.
In particular, at t = 1

2 π the right- and left-moving frames have cancelled each other out,
leaving only a constant solution profile for the traveling wave solution, with a superimposed
fractal residue in the FPU system, as well as its continuum models, all three of which are
very similar.
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Figure 3. Bi- and unidirectional FPU solution profiles.
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Figure 4. Bi- and unidirectional solution profiles at t = 1/h2.

At medium times, of order O(h−1), the fractal nature of the oscillations superimposed
upon the traveling wave solution profile has become more pronounced. Again, both the
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At medium times, of order O(h−1), the fractal nature of the oscillations superimposed
upon the traveling wave solution profile has become more pronounced. Again, both the
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FPU system and its continuum models exhibit very similar behavior; Figure 3 show graphs
of the former at some representative medium times.

Once we transition to the long time scale, of order O(h−2), there is a dramatic dif-
ference in the observed behaviors. First consider the solution profiles at the irrational
(meaning that h2t/π !∈ Q) times t = 1/h2 ≈ 26560 and t = 400000.

All three solution profiles have a similar fractal nature. The unidirectional constituents
are more “pure” fractals, while the bidirectional solutions exhibit some semi-coherent re-
gions, perhaps indicating a remnant of regions of constancy of a nearby rational profile.
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Figure 5. Bi- and unidirectional solution profiles at t = 400,000.
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Figure 6. Bi- and unidirectional solution profiles at t = 24π/(5h2) ≈ 400,527.

However, at long rational times, things are quite different, as shown below for two
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However, at long rational times, things are quite different, as shown below for two
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representative examples. The KdV solution has quantized into an essentially piecewise
constant profile, while the FPU system and the Boussinesq models retain a similar fractal
form. On the other hand, the latter profiles retain a noticeable adherence to the underlying
the piecewise constant KdV solution albeit with a superimposed fractal perturbation.
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Figure 7. Bi- and unidirectional solution profiles at t = 24π/h2.
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Figure 8. Truncated unidirectional solution profiles at t = 24π/(5h2) ≈ 400,527.

Recall that the initial data is the discrete Fourier representation (3.9) of the step
function. Interestingly, if we use the continuous version (3.2) instead, which only differs
in the higher frequency modes, the graphs do not appreciably change, and so are not
displayed. The only noticeable difference is that piecewise constant KdV profile exhibits
a more pronounced Gibbs phenomenon.
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Recall that the initial data is the discrete Fourier representation (3.9) of the step
function. Interestingly, if we use the continuous version (3.2) instead, which only differs
in the higher frequency modes, the graphs do not appreciably change, and so are not
displayed. The only noticeable difference is that piecewise constant KdV profile exhibits
a more pronounced Gibbs phenomenon.
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as always, are obtained by explicitly summing over the first m modes. The first column
plots the solutions to the bidirectional KdV model; the discrete oscillatory peaks indicate
the appearance of a revival. The second column plots the corresponding FPU solution;
here, there is no appreciable signs of a concentration of the solution and hence no apparent
revival. Similar behavior is observed at other (long) times, with varying number of masses.
The KdV profiles are fractal at rational times and concentrated in accordance with a revival
at rational times, whereas the FPU profiles are more or less uniformly oscillatory at all
times.
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Figure 11. Revival and lack thereof.

4. Discussion.x

In conclusion, we have shown that the solution to the periodic linear Fermi–Past–
Ulam chain, with a step function as initial displacement and zero initial velocity, exhibits
a fractal-like solution profile at large scale times, namely t = O(h−2) = O(m2), where m is
the number of masses, and h their spacing around the unit circle. Of course, being purely
discrete, the solution cannot be genuinely fractal, even when extended into a continuous
trigonometric interpolating function, because it only involves a sum over a finite number of
Fourier modes. Moreover, it does not become fractal in the h → 0 limit since the limiting
equation is the basic linear second order wave equation, whose solution is a combination
of traveling waves, and hence piecewise constant at all times. Indeed, as h → 0, all of the
observed behavior on medium and long time scales moves off to infinity, leaving only the
wave equation solution, with all times now being classified as “short”. On the other hand,
both of the (regularized) bidirectional continuum models have genuinely fractal solutions
at a dense set of times, as established by the results in [9], which closely follow the FPU
solution at the given resolution. In contrast, the unidirectional Korteweg–deVries model
mimics the FPU and Boussinesq solutions at irrational times, but exhibits a very different
dispersive quantization profile at rational times, although the latter solutions retain some
trace of the overall quantized character within their fractal profiles. Finally, the lack of any
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FIGURE 12. Numerical approximation of the bidirectional KdV solution profile with m = 512 at
t = 24π/(5 h2), showing the effect of time step size "t for the Störmer/Verlet method (top) and midpoint
method (bottom).

and substituting the exponential ansatz yields

tan2 1
2 ω̃"t = ( 1

2 ω "t)2 =⇒ ω̃ = 2
"t

arctan 1
2 ω "t = ω

(
1 − 1

12 (ω "t)2 + O
(
(ω "t)4)

)
. (4.4)

In contrast to Störmer/Verlet, this modified frequency is defined without restrictions on ω"t,
which reflects the unconditional linear stability of the midpoint method.

Figure 12 illustrates the effect of replacing ω by the modified frequencies ω̃ in the disper-
sion relation for the bidirectional KdV model with m = 512 and t = 24π/(5 h2), showing that
quantisation does not become visible unless "t is very small, much smaller than needed for
numerical stability. At "t = 10−4, the solution profile is qualitatively indistinguishable from the
fractal profiles of the FPUT and Boussinesq models in Figure 6. The first hints of quantisation
are visible at "t = 10−5, and only by "t = 10−6 does the solution appear to have converged suf-
ficiently to the true, quantised KdV profile. Since t ≈ 4 × 105 such a simulation would require
on the order of 1011 time steps to observe quantisation, even before the effects of nonlinearity
are taken into account. Figure 13 repeats this experiment for a shorter chain with m = 32 and
t = 24π/h2 ≈ 8 · 103 (compare Figure 10), where quantisation occurs earlier and the time step
size restriction is less severe, requiring on the order of 107 steps.

To overcome the computational obstacle of small step size, we turn to higher order
Hamiltonian splitting methods, cf. [26, 32], which converge more quickly as "t → 0 while still
preserving symplectic structure. Write the FPUT system (2.7) in the first-order form

u̇n = vn,

v̇n = c2

h2

[
F(un+1 − un) − F(un − un−1)

]
,

(4.5)

where F(y) = y + N(y). There are two natural ways to split this into two Hamiltonian systems,
each of which can be integrated exactly. The first is
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FIGURE 14. Bidirectional solution profiles for the discrete FPUT system with m = 32 and quadratic
nonlinearity N(y) = αy2.

unable to definitely say to what extent dispersive fractalisation and quantisation appears in non-
linear periodic FPUT chains. Nevertheless, we feel reasonably confident in stating that there is
a noticeable effect, that is certainly worthy of further investigation. Our claim is bolstered by
the appearance of these phenomena in a range of nonlinear model partial differential equations,
[12] with rigorous estimates of the fractal dimension of the profiles at irrational times provided
in [13, 19], most relevantly the Korteweg–deVries equation which arises as a continuum model
for the quadratic FPUT system and the modified Korteweg-deVries equation, which arises for
the cubic version.

5 Discussion

In conclusion, we have shown that the solution to the periodic linear Fermi–Pasta–Ulam–Tsingou
chain, with a step function as initial displacement and zero initial velocity, exhibits a fractal-like
solution profile at large times, namely t = O(h−2) = O(M2), where M is the number of masses,
and h their spacing around the unit circle. Of course, being purely discrete, the solution cannot
be genuinely fractal, even when extended into a continuous trigonometric interpolating func-
tion, because it only involves a sum over a finite number of Fourier modes. Moreover, it does
not become fractal in the final h → 0 limit since the limiting equation is merely the very basic
linear second-order wave equation (3.16), whose solution is a combination of travelling waves,
and hence piecewise constant at all times. Indeed, as h → 0, all of the observed behaviour on
medium and long time scales moves off to infinity, and the solution converges (weakly) to the
corresponding solution to the simple limiting wave equation, with all times now being classified
as ‘short’. On the other hand, all of the regularised bidirectional continuum models have gen-
uinely fractal solutions at a dense set of times, which closely follow the FPUT solution at the
given resolution. In contrast, the bi- and uni-directional Korteweg–deVries models mimic the
FPUT and Boussinesq solutions at irrational times, but exhibit a very different dispersive quan-
tisation profile at rational times. Be that as it may, the latter solutions retain an observable trace
of the overall quantised character within their fractal profiles. Finally, the lack of any noticeable
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Blanes–Moan Runge–Kutta–Nyström method with 106 time steps.

1

v

Numerical Integration of Nonlinear FPUT



22 P. J. Olver and A. Stern

Table 1. Numerical error of Strang splitting methods at t = 1 for the FPUT model
with m = 32 and quadratic nonlinearity N(y) = αy2

"t = 10−2 "t = 10−3 "t = 10−4

α = 0.005
Störmer/Verlet 4.347e-03 4.332e-05 4.331e-07
Split-Step Fourier 1.423e-06 1.421e-08 1.474e-10

α = 0.05
Störmer/Verlet 4.348e-03 4.333e-05 4.332e-07
Split-Step Fourier 1.429e-05 1.427e-07 1.427e-09

α = 0.5
Störmer/Verlet 4.544e-03 4.529e-05 4.529e-07
Split-Step Fourier 1.895e-04 1.891e-06 1.891e-08

Runge–Kutta–Nyström (RKN) methods are designed specifically for splittings of the form
(4.6), i.e., for second-order Newtonian systems written in first-order form using a velocity vari-
able. Of these, we chose the optimal 14-stage order-6 RKN method of Blanes and Moan, [6],
which has the symmetric form

ϕA
a1"t ◦ ϕB

b1"t ◦ · · · ◦ ϕA
a7"t ◦ ϕB

b7"t ◦ ϕA
a8"t ◦ ϕB

b7"t ◦ ϕA
a7"t ◦ · · · ◦ ϕB

b1"t ◦ ϕA
a1"t, (4.8)

where the coefficients ai, bi are

a1 = 0.0378593198406116, b1 = 0.09171915262446165,

a2 = 0.102635633102435, b2 = 0.183983170005006,

a3 = −0.0258678882665587, b3 = −0.05653436583288827,

a4 = 0.314241403071447, b4 = 0.004914688774712854,

a5 = −0.130144459517415, b5 = 0.143761127168358,

a6 = 0.106417700369543, b6 = 0.328567693746804,

a7 = −0.00879424312851058, b7 = 1
2 − (b1 + · · · + b6),

a8 = 1 − 2(a1 + · · · + a7).

(4.9)

Blanes and Moan calculated these coefficients to minimise the constant in the order-6 error esti-
mate. Although a step of this method is 14 times as expensive as a step of Störmer/Verlet, it
requires vastly fewer steps owing to its faster convergence. For the linear FPUT problem with
m = 32 and t = 24π/h2, we observe that the Störmer/Verlet method gives an error on the order
of 10−3 for 108 steps and 10−5 for 109 steps; by contrast, the RKN method gives an error on the
order of 10−3 for only 105 steps and 10−9 for 106 steps.

Figure 14 shows discrete solution profiles at t = 7500 and t = 24π/h2 ≈ 7822 for the FPUT
model with m = 32 and quadratic nonlinearity N(y) = αy2, computed using the Blanes–Moan
RKN method with 106 time steps. For α = 0.005, the solutions are nearly identical to the linear
discrete FPUT profiles observed in Figure 10. As the strength of the nonlinearity increases, we
observe noticeably different profiles at α = 0.05 and 0.5. However, unlike with the KdV model,
we still do not observe any dispersive quantisation, and there does not appear to be any qualitative
difference between the profiles at t = 7500 and t = 24π/h2, just as with the linear FPUT model.

In summary, owing to lack of sufficient computational power to increase the number of
masses – which simultaneously requires extending the time interval of interest – we are as yet
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Future Directions

• General dispersion behavior explanation/justification

• Stability analysis

• Improved numerical solution techniques

• Other boundary conditions

• Nonlinearly dispersive models: Camassa–Holm, . . .

• Discrete systems: Fermi–Pasta–Ulam, spin chains, . . .

• Higher space dimensions and other domains: tori, spheres, . . .

• Experimental verification in dispersive media?


