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Introduction

The diamagnetic inequality for Laplacian

Let ~a = (a1, . . . , ad) with ak ∈ L2,loc(R
d) for all k ∈ {1, . . . , d}.

Set H(~a) = (∇− i~a)∗(∇− i~a).
Then

|e−tH(~a)f | ≤ et∆|f |

for all t > 0 and f ∈ L2(Rd).

The same result holds in presence of a real-valued potential V , i.e., with
operators H(~a) + V and −∆ + V .
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Setting and definitions

The setting (1)

Let Ω ⊂ Rd bounded open with Lipschitz boundary Γ.
Let ckl, bk, ck, a0 ∈ L∞(Ω,R) for all k, l ∈ {1, . . . , d}.
Ellipticity condition: there exists a µ > 0 such that

Re

d∑
k,l=1

ckl(x) ξk ξl ≥ µ |ξ|2

for all ξ ∈ Cd and almost every x ∈ Ω.
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Setting and definitions

The setting (2)

Consider form a : W 1,2(Ω)×W 1,2(Ω)→ C

a(u, v) =

d∑
k,l=1

∫
Ω
ckl (∂lu) ∂kv+

d∑
k=1

∫
Ω

(
bk u ∂kv

)
+ck (∂ku) v+

∫
Ω
a0 u v.

Define A : W 1,2(Ω)→W−1,2(Ω) by

〈Au, v〉
W−1,2(Ω)×W 1,2

0 (Ω)
= a(u, v).

Let ψ ∈ L2(Γ) and u ∈W 1,2(Ω) with Au ∈ L2(Ω).
Definition: u has weak conormal derivative ψ if

a(u, v)− (Au, v)L2(Ω) = (ψ,Tr v)L2(Γ) for all v ∈W 1,2(Ω).

Notation ∂aν u = ψ.
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Setting and definitions

The Dirichlet-to-Neumann operator N

Assumption: 0 is not a Dirichlet eigenvalue.
Definition: A function u ∈W 1,2(Ω) is called A-harmonic if

a(u, v) = 0 for all v ∈W 1,2(Ω).

For all ϕ ∈ H1/2(Ω) there is a unique A-harmonic u ∈W 1,2(Ω) such that
Tru = ϕ.
IF u has a weak conormal derivative, then we say

ϕ ∈ D(N ) and Nϕ = ∂aν u.

The operator −N is the generator of a C0-semigroup.
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Intermezzo

Two form methods

Define b : H1/2(Γ)×H1/2(Γ)→ C by

b(ϕ, ξ) := a(u, v),

where u, v ∈W 1,2(Ω) are A-harmonic with Tru = ϕ and Tr v = ξ,
respectively.
Then b is a densely defined continuous elliptic form and N is the
associated operator.
The operator N is the operator associated with b in the following sense:
Let ϕ,ψ ∈ L2(Γ). Then ϕ ∈ D(N ) and Nϕ = ψ if and only if ϕ ∈ D(b)
and

b(ϕ, ξ) = (ψ, ξ)L2(Γ) for all ξ ∈ D(b).
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Intermezzo

Second form method

Let V and H be Hilbert spaces.
Let a : V × V → C be a continuous sesquilinear form.
Let j : V → H be a continuous operator with dense range.
Suppose a is j-elliptic, that is, there are µ > 0 and ω ∈ R such that

Re a(u, u) + ω ‖j(u)‖2H ≥ µ ‖u‖2V for all u ∈ V.

The operator A associated with (a, j) is defined as follows:
Let x, f ∈ H. Then x ∈ D(A) and Ax = f if and only if there exists a
u ∈ V such that j(u) = x and

a(u, v) = (f, j(v))H for all v ∈ V.

Theorem (Arendt–tE). The operator A is well defined and −A is the
generator of a holomorphic C0-semigroup in H.

In our case, if a is Tr -elliptic, then the operator N is the operator
associated with (a,Tr ).
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Setting and definitions

The magnetic Dirichlet-to-Neumann operator N (~a)

Let ~a := (a1, . . . , ad) with ak ∈ L∞(Ω,R) for all k ∈ {1, . . . , d}. Set

Dk := ∂k − iak

Consider form a(~a) : W 1,2(Ω)×W 1,2(Ω)→ C

a(~a)(u, v) =

d∑
k,l=1

∫
Ω
ckl (Dlu)Dkv+

d∑
k=1

∫
Ω

(
bk uDkv

)
+ck (Dku) v+

∫
Ω
a0 u v.

Assumption: 0 is not a Dirichlet eigenvalue.
Define similarly that an element of W 1,2(Ω) is A(~a)-harmonic and the
magnetic Dirichlet-to-Neumann operator N (~a).
Formally, if u ∈ D(N (~a)) is A(~a)-harmonic with trace Tru = ϕ, then

N (~a)ϕ = ∂a(~a)
ν u =

d∑
k,l=1

νk Tr (ckl ∂lu)−i
d∑

k,l=1

νkTr (ckl al u)+

d∑
k=1

νk Tr (bk u).
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Results

The diamagnetic inequality

Let T~a = (T~a(t))t>0 and T = (T (t))t>0 be the semigroups generated by
−N (~a) and −N on L2(Γ), respectively.

Theorem (tE–Ouhabaz). Suppose a is accretive and there exist µ, ω > 0
such that

Re a(u, u) + ω ‖Tru‖2L2(Γ) ≥ µ ‖u‖
2
W 1,2(Ω) for all u ∈W 1,2(Ω).

Then
|T~a(t)ϕ| ≤ T (t)|ϕ|

for all t > 0 and ϕ ∈ L2(Γ).
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Results

Kernel bounds

Suppose Ω is of class C1+κ for some κ > 0.
Suppose also that ckl = clk ∈ Cκ(Ω,R), bk = ck = 0 and ak ∈ L∞(Ω,R)
for all k, l ∈ {1, . . . , d}.
Suppose a0 ≥ 0 a.e. on Ω.
Then T~a has a kernel K~a and there exists a constant c > 0 such that

|K~a(t, z, w)| ≤ c (t ∧ 1)−(d−1) e−λ1t(
1 +
|z − w|

t

)d
for all z, w ∈ Γ and t > 0, where λ1 is the first eigenvalue of the operator
N (~a).
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Results

Hölder continuous kernel bounds

Same assumptions. In addition suppose that d ≥ 3.
Then for all ε, τ ′ ∈ (0, 1), τ > 0 there exist c, ν > 0 such that

|K~a(t, z, w)−K~a(t, z
′, w′)|

≤ c (t ∧ 1)−(d−1)
( |z − z′|+ |w − w′|

t+ |z − w|

)ν 1(
1 +
|z − w|

t

)d−ε (1 + t)ν e−λ1t

for all z, w, z′, w′ ∈ Γ and t > 0 with |z − z′|+ |w −w′| ≤ τ t+ τ ′ |z −w|.
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Sketch of proof

Sketch of proof

The diamagnetic inequality is obtained by proving the invariance of the
closed convex set

{(ϕ,ψ) ∈ L2(Γ)× L2(Γ) : |ϕ| ≤ ψ}

for the semigroup (
T~a(t) 0

0 T (t)

)
t>0

.
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Sketch of proof

Invariance of closed convex sets

Let V and H̃ be Hilbert spaces with V densely and continuously embedded
in H̃.
Let a : V × V → C be a continuous accretive sesquilinear form.
Suppose a is elliptic, that is i-elliptic, where i is the inclusion map.
Let S̃ be the associated semigroup.
Let C̃ ⊂ H̃ be a non-empty closed convex set and let P̃ : H̃ → C̃ be the
projection.

Theorem (Ouhabaz). The following are equivalent.
C̃ is invariant under S̃, that is S̃tC̃ ⊂ C̃ for all t > 0.
P̃ V ⊂ V and Re a(P̃ u, u− P̃ u) ≥ 0 for all u ∈ V .
P̃ V ⊂ V and Re a(u, u− P̃ u) ≥ 0 for all u ∈ V .
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Sketch of proof

Invariance of closed convex sets

Let V and H be Hilbert spaces.
Let a : V × V → C be a continuous sesquilinear form.
Let j : V → H be a continuous operator with dense range.
Suppose a is j-elliptic and accretive.
Let S be the semigroup associated with (a, j).
Let C ⊂ H be a non-empty closed convex set and let P : H → C be the
projection.

Theorem (Arendt–tE). The following are equivalent.
C is invariant under S, that is StC ⊂ C for all t > 0.
For all u ∈ V there exists a w ∈ V such that P (j(u)) = j(w) and
Re a(w, u− w) ≥ 0.
For all u ∈ V there exists a w ∈ V such that P (j(u)) = j(w) and
Re a(u, u− w) ≥ 0.
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Sketch of proof

Invariance of closed convex sets

Proposition. Let C ⊂ H be a non-empty closed convex set and let
P : H → C be the projection.
Let C̃ ⊂ H̃ be a non-empty closed convex set and let P̃ : H̃ → C̃ be the
projection.
Suppose a is j-elliptic and accretive.
Suppose C̃ is invariant under the semigroup S̃ and

P ◦ j = j ◦ P̃ on V.

Then C is invariant under the semigroup S.
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Sketch of proof

Our situation

V = W 1,2(Ω).
H = L2(Γ).
H̃ = L2(Ω).
j = Tr : W 1,2(Ω)→ L2(Γ).
S semigroup generated by Dirichlet-to-Neumann operator.
S̃ semigroup on L2(Ω) with Neumann boundary conditions.

We need in addition to prove a diamagnetic inequality for differential
operators in divergence form with lower-order terms and Neumann
boundary conditions on Ω.

The latter was done by Hundertmark and Simon for the Laplacian.
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