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Motivation and Theory



What does it mean to learn a system?

Data Computer Model
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How do we go from Lagrangian to Eulerian?

Study the statistical properties of trajectories! Occupation measures characterizes 
the the average time spent in a 
measurable set B for the initial 
condition x.

When does this provide information about “many” trajectories?

When such a measure μ exists, it is 
said to be physical. 

The weak-* limit of occupation measures is invariant.
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How do we computationally approximate a physical measure?
2.) Discretize 3.) Bin to histogram

Note: this procedure does not use the sampling times of observations.



What is the goal?

Invert the mapping 
If we know a physical invariant measure, can 
we infer the velocity field that produced it?
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Previous Work on Learning Dynamics via Invariant Measures

New contributions:
● Ability to model intrinsically noisy trajectories
● Large-scale parameter identification
● Learning dynamics in time-delay coordinates



Building a Forward Model
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Reformulating the inversion as large-scale optimization

Discretize the velocity and “search” for a piecewise constant 
representation which inverts the map 

It is difficult to compute the derivative of histogram bin counts with respect to the velocity.

We need a forward model for which the mapping                       is easily differentiable! 

How does the 
number of 
particles here…

Depend on the 
velocity here?
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A PDE Forward Model

Physical measures describe the long term statistical behavior of Lagrangian trajectories, so we 
use stationary solutions of the Fokker-Planck Equation (FPE) as a surrogate model.

We discretize the FPE via a first order upwind finite volume 
method to form a Markov chain approximation of the dynamics.



Taking a closer look at the discretization…



Finding the Markov Chain’s Stationary Distribution
We will use the Markov chain’s steady state as a model for the underlying physical measure



Finding the Markov Chain’s Stationary Distribution
We will use the Markov chain’s steady state as a model for the underlying physical measure

Some potential difficulties: 
● If the diffusion is zero, the stationary distribution may not be unique. 
● The transition matrix may be ill-conditioned. 
● We may want to learn the velocity away from the attractor. 



Finding the Markov Chain’s Stationary Distribution
We will use the Markov chain’s steady state as a model for the underlying physical measure

Some potential difficulties: 
● If the diffusion is zero, the stationary distribution may not be unique. 
● The transition matrix may be ill-conditioned. 
● We may want to learn the velocity away from the attractor. 

Solution: Teleportation regularization from Google’s Pagerank algorithm.



Finding the Markov Chain’s Stationary Distribution
We will use the Markov chain’s steady state as a model for the underlying physical measure

Some potential difficulties: 
● If the diffusion is zero, the stationary distribution may not be unique. 
● The transition matrix may be ill-conditioned. 
● We may want to learn the velocity away from the attractor. 

Solution: Teleportation regularization from Google’s Pagerank algorithm.

Now, the steady state can be uniquely found by solving a sparse linear system. 



Forward Model vs. Occupation Measures



Selecting an Objective Function

Squared L2 Norm

Kullback-Leibler Divergence

Jenson-Shannon Divergence

Quadratic Wasserstein Distance



Computing the Gradient



Using the Adjoint State Method
Compute the Fréchet derivative of the objective function with respect to the current density
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Compute the Fréchet derivative of the objective function with respect to the current density

Solve the adjoint equation 

Compute gradient with respect to the piecewise constant velocities used in the Markov matrix.  

Using the Adjoint State Method
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and the second is easy to compute when the 
functional form of the paramaterization is known.
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The Optimization Framework

1.) Solve the forward problem

2.) Evaluate the cost

3.) Compute the Frechet derivative

4.) Solve the adjoint equation

5.) Compute the gradient 

6.) Descend



Numerical Results



Ground truth

Inverse solution



Lorenz-63 System - Inverting V1



What if we only have partial observations?



What if we only have partial observations?

Motivated by Takens’ Theorem (1981), we can linstead earn the dynamics in delay coordinates.

(the delay map)



Application to a Hall-Effect Thruster (HET)



Varying the Paramaterization



Quantifying Model Uncertainty



Temperature Prediction with Uncertainty Quantification



Future Directions 

● Dimension-free and mesh-free approaches
● Unstructured Mesh
● Higher order finite volume method
● Study inverse problem regularity
● The case of multiple attractors
● Learning an anisotropic diffusion



Thank you!
Questions?


