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Motivation and Theory



What does it mean to learn a system?

Computer Model

Data




Imposing strict assumptions on the data quality

Noisy measurements, non-uniform
in time, sampled slowly

{z(t;)} - T =v(x) +w(x,t)

Equations of motion with stochastic forcing
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Imposing strict assumptions on the data quality

Noisy measurements, non-uniform
in time, sampled slowly

{z(t;)} - T =v(x) +w(x,t)

Equations of motion with stochastic forcing

Best case scenario Stochastic forcing Slow/irregular sampling
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Lagrangian vs. Eulerian Dynamics

Lagrangian - describes trajectories of Eulerian - describes the
individual particles distribution of all particles
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How do we go from Lagrangian to Eulerian?

Study the statistical properties of trajectories! Occupation measures characterizes

the the average time spent in a
measurable set B for the initial
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When does this provide information about “many” trajectories?

When such a measure u exists, it is

m({x € : Mz, N —7 :LL}) >0 said to be physical.



How do we go from Lagrangian to Eulerian?

Study the statistical properties of trajectories! Occupation measures characterizes

the the average time spent in a
measurable set B for the initial

N—-1
1 k
po,N (B) = N Z xs(T"(z)) condition x.
k=0
When does this provide information about “many” trajectories?

When such a measure u exists, it is

m({x € : Mz, N —7 :LL}) >0 said to be physical.

The weak-* limit of occupation measures is invariant.



Example and Non-Example of a Physical Measure
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How do we computationally approximate a physical measure?

Simulate Trajectory
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How do we computationally approximate a physical measure?

Simulate Trajectory

Create Mesh
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How do we computationally approximate a physical measure?

Simulate Trajectory Create Mesh Bin to Histogram
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How do we computationally approximate a physical measure?

Simulate Trajectory

Create Mesh
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Bin to Histogram

Note: this procedure does not use the sampling times of observations.
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What is the goal?

Invert the mapping ) > LL.

If we know a physical invariant measure, can
we infer the velocity field that produced it?
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What is the goal?

If we know a physical invariant measure, can

Invert the mapping U +—— M = we infer the velocity field that produced it?

1.) Existence: \/
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Previous Work on Learning Dynamics via Invariant Measures
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New contributions:
e Ability to model intrinsically noisy trajectories
e Large-scale parameter identification
e Learning dynamics in time-delay coordinates



Building a Forward Model



Reformulating the inversion as large-scale optimization

Discretize the velocity and “search” for a piecewise constant

representation which inverts the map v +— .
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Reformulating the inversion as large-scale optimization

Discretize the velocity and “search” for a piecewise constant
representation which inverts the map v +— .

It is difficult to compute the derivative of histogram bin counts with respect to the velocity.

How does the
number of
particles here...

Depend on the
velocity here?

We need a forward model for which the mapping ¥ > (4 is easily differentiable!



A PDE Forward Model

% LV () = DV2p = dX; = v(X,;)dt + V2DdW,

TV L )
Eulerian agrangian

Physical measures describe the long term statistical behavior of Lagrangian trajectories, so we
use stationary solutions of the Fokker-Planck Equation (FPE) as a surrogate model.



A PDE Forward Model

0
a—f + V- (pv) = DV?p <= dX; = v(X,)dt + V2DdW,
) Eufe?ia,n i Lagr;;lgian

Physical measures describe the long term statistical behavior of Lagrangian trajectories, so we
use stationary solutions of the Fokker-Planck Equation (FPE) as a surrogate model.

We discretize the FPE via a first order upwind finite volume wh*
method to form a Markov chain approximation of the dynamics.

o) = Mp® M=IT+K O



Taking a closer look at the discretization...
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Finding the Markov Chain’s Stationary Distribution
We will use the Markov chain's steady state as a model for the underlying physical measure

Mp=p
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e The transition matrix may be ill-conditioned.
e We may want to learn the velocity away from the attractor.
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Finding the Markov Chain’s Stationary Distribution
We will use the Markov chain's steady state as a model for the underlying physical measure
Mp=p

Some potential difficulties:
e If the diffusion is zero, the stationary distribution may not be unique.

e The transition matrix may be ill-conditioned.
e We may want to learn the velocity away from the attractor.

Solution: Teleportation regularization from Google's Pagerank algorithm.
€
Mezz(l—e)M—l—NllTGRNXN, 1:2[1 I}ERN.
Now, the steady state can be uniquely found by solving a sparse linear system.

(1- M —D)p=—+1



Forward Model vs. Occupation Measures

Forward Model vs. Trajectory Histogram with Diffusion = 0.001
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Selecting an Objective Function
(o) = 5 [ (o) = o ()P
Q

Dxw(p, p*) := //p*(w) log (p*(x))dw

p(z)
e . =H,
Dis(p: p") = 5Dkrlp, p) + 5 Drrlp”, )
W3 (p, p*) = pglfeM/Iw T o+ () Pdp()

Squared L2 Norm

Kullback-Leibler Divergence

Jenson-Shannon Divergence

Quadratic Wasserstein Distance



Computing the Gradient



Using the Adjoint State Method

Compute the Fréchet derivative of the objective function with respect to the current density
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Using the Adjoint State Method

Compute the Fréchet derivative of the objective function with respect to the current density

()LQ 8DKL [)* (flf) ()DJS

* 1
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Solve the adjoint equation
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Using the Adjoint State Method

Compute the Fréchet derivative of the objective function with respect to the current density

()LQ oD KL [)* (:1:) oD 1S 2 P ) 0 sz ;
— @,

1
‘— p— ) — )* . P —= e 2 — = ]‘O()‘ (
dp £ dp p(x) dp 2 " \p+p*

dp

Solve the adjoint equation

S ((% dp pl)

Compute gradient with respect to the piecewise constant velocities used in the Markov matrix.
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Velocity Parameterization

0T 0J Ov The first term comes from the adjoint state method
e . and the second is easy to compute when the
00 k ov 006 k functional form of the paramaterization is known.

v = v(0)
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Velocity Parameterization

0T 0J Ov The first term comes from the adjoint state method
V=V (9) S —— = . and the second is easy to compute when the
8 v (9?) 5‘ 0 functional form of the paramaterization is known.
k k P

We tested three paramaterizations: piecewise constant, global polynomial, and neural network.
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The Optimization Framework

Solve the forward problem Mcp =p
Evaluate the cost J(p,p")

o 0T
Compute the Frechet derivative ¢ = 5
Solve the adjoint equation (M —DA=—¢p+¢-pl
Compute the gradient oF _ ;. 8M€p 9J _0J Ov

v; Ov; 00,  Ov 00y

Descend Adam, L-BFGS-B, CG, etc.



Numerical Results



Optimization
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Lorenz-63 System - Inverting V1
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What if we only have partial observations?

& = v(x) y:M-oR {y(a(t:) ity

7

Vv Vv
full dynamics observation function available data



What if we only have partial observations?

&= v(z) y: M—=>R iy(l‘(tz’))}ﬁv:;
full d;rrlamics observati(;;l function availaglre data

Motivated by Takens Theorem (1981), we can linstead earn the dynamics in delay coordinates.

30 : /\/lv—> Rcf with ®(x(t)) = (y(t),y(t —7),...,y(t — 2d7))

diffeomorphism




Application to a Hall-Effect Thruster (HET)

/
Embedded Cathode-Pearson Signal Modeled Velocity
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Varying the Paramaterization
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Quantifying Model Uncertainty
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Temperature Prediction with Uncertainty Quantification

True Occupation Measure

Learned Forward Model

Learned Velocity
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Future Directions

Dimension-free and mesh-free approaches
Unstructured Mesh

Higher order finite volume method

Study inverse problem regularity

The case of multiple attractors

Learning an anisotropic diffusion



Thank you!

Questions?



