Learning Dynamical Systems from Invariant Measures

BIRS Workshop: New Ideas in Computational Inverse Problems

Jonah Botvinick-Greenhouse Center for Applied Mathematics

Cornell University
Ithaca, NY 14850

Yunan Yang
Institute for Theoretical Studies
ETH Zurich
Zurich, Switzerland 8092

Acknowledgment: Robert Martin, U.S. Army Research Office

Motivation and Theory

What does it mean to learn a system?

Computer Model

Imposing strict assumptions on the data quality

Noisy measurements, non-uniform in time, sampled slowly

Equations of motion with stochastic forcing

$$
\left\{\widetilde{x}\left(t_{i}\right)\right\} \longrightarrow \dot{x}=v(x)+\omega(x, t)
$$

Imposing strict assumptions on the data quality

Noisy measurements, non-uniform in time, sampled slowly

Equations of motion with stochastic forcing

$$
\left\{\widetilde{x}\left(t_{i}\right)\right\} \longrightarrow \dot{x}=v(x)+\omega(x, t)
$$

Imposing strict assumptions on the data quality

Noisy measurements, non-uniform in time, sampled slowly

Equations of motion with stochastic forcing

$$
\left\{\widetilde{x}\left(t_{i}\right)\right\} \longrightarrow \dot{x}=v(x)+\omega(x, t)
$$

Stochastic forcing

Imposing strict assumptions on the data quality

Noisy measurements, non-uniform in time, sampled slowly

Equations of motion with stochastic forcing

$$
\left\{\widetilde{x}\left(t_{i}\right)\right\} \longrightarrow \dot{x}=v(x)+\omega(x, t)
$$

Stochastic forcing

Slow/irregular sampling

Lagrangian vs. Eulerian Dynamics

Lagrangian - describes trajectories of individual particles

Eulerian - describes the distribution of all particles

Lagrangian vs. Eulerian Dynamics

Lagrangian - describes trajectories of individual particles

Eulerian - describes the distribution of all particles

How do we go from Lagrangian to Eulerian?

Study the statistical properties of trajectories!

$$
\mu_{x, N}(B)=\frac{1}{N} \sum_{k=0}^{N-1} \chi_{B}\left(T^{k}(x)\right)
$$ the the average time spent in a measurable set B for the initial condition x.

How do we go from Lagrangian to Eulerian?

Study the statistical properties of trajectories!

$$
\mu_{x, N}(B)=\frac{1}{N} \sum_{k=0}^{N-1} \chi_{B}\left(T^{k}(x)\right)
$$ the the average time spent in a measurable set B for the initial condition x.

When does this provide information about "many" trajectories?

$$
m\left(\left\{x \in \Omega: \mu_{x, N} \rightarrow^{*} \mu\right\}\right)>0
$$

When such a measure μ exists, it is said to be physical.

How do we go from Lagrangian to Eulerian?

Study the statistical properties of trajectories!

$$
\mu_{x, N}(B)=\frac{1}{N} \sum_{k=0}^{N-1} \chi_{B}\left(T^{k}(x)\right)
$$

the the average time spent in a measurable set B for the initial condition x.

When does this provide information about "many" trajectories?

$$
m\left(\left\{x \in \Omega: \mu_{x, N} \rightarrow^{*} \mu\right\}\right)>0
$$

When such a measure μ exists, it is said to be physical.

A weak-* limit of occupation measures is invariant.

$$
\mu\left(T^{-1}(B)\right)=\mu(B)
$$

Example and Non-Example of a Physical Measure

Example and Non-Example of a Physical Measure

How do we computationally approximate a physical measure?

How do we computationally approximate a physical measure?

How do we computationally approximate a physical measure?

How do we computationally approximate a physical measure?

Note: this procedure does not use the sampling times of observations.

What is the goal?

Invert the mapping $v \longmapsto \mu$.

If we know a physical invariant measure, can we infer the velocity field that produced it?

What is the goal?

Invert the mapping $v \longmapsto \mu$.

If we know a physical invariant measure, can we infer the velocity field that produced it?
1.) Existence: \checkmark 2.) Uniqueness:
3.) Stability:

What is the goal?

Invert the mapping $v \longmapsto \mu$.

If we know a physical invariant measure, can we infer the velocity field that produced it?
1.) Existence: \downarrow

2.) Uniqueness:

3.) Stability:

Previous Work on Learning Dynamics via Invariant Measures

Yunan Yang, Levon Nurbekyan, Elisa Negrini, Robert Martin, and Mirjeta Pasha. Optimal transport for parameter identification of chaotic dynamics via invariant measures. arXiv preprint arXiv:2104.15138, 2021.
CM Greve, K Hara, RS Martin, DQ Eckhardt, and JW Koo. A data-driven approach to model calibration for nonlinear dynamical systems. Journal of Applied physics, 125(24):244901, 2019.

Previous Work on Learning Dynamics via Invariant Measures

Yunan Yang, Levon Nurbekyan, Elisa Negrini, Robert Martin, and Mirjeta Pasha. Optimal transport for parameter identification of chaotic dynamics via invariant measures. arXiv preprint arXiv:2104.15138, 2021.
CM Greve, K Hara, RS Martin, DQ Eckhardt, and JW Koo. A data-driven approach to model calibration for nonlinear dynamical systems. Journal of Applied physics, 125(24):244901, 2019.

New contributions:

- Ability to model intrinsically noisy trajectories
- Large-scale parameter identification
- Learning dynamics in time-delay coordinates

Building a Forward Model

Reformulating the inversion as large-scale optimization

Discretize the velocity and "search" for a piecewise constant representation which inverts the map $v \mapsto \mu$.

Reformulating the inversion as large-scale optimization

Discretize the velocity and "search" for a piecewise constant representation which inverts the map $v \mapsto \mu$.

It is difficult to compute the derivative of histogram bin counts with respect to the velocity.

Reformulating the inversion as large-scale optimization

Discretize the velocity and "search" for a piecewise constant representation which inverts the map $v \mapsto \mu$.

It is difficult to compute the derivative of histogram bin counts with respect to the velocity.

We need a forward model for which the mapping $v \longmapsto \mu$ is easily differentiable!

A PDE Forward Model

Physical measures describe the long term statistical behavior of Lagrangian trajectories, so we use stationary solutions of the Fokker-Planck Equation (FPE) as a surrogate model.

A PDE Forward Model

$$
\underbrace{\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho v)=D \nabla^{2} \rho}_{\text {Eulerian }} \Longleftrightarrow \underbrace{d X_{t}=v\left(X_{t}\right) d t+\sqrt{2 D} d W_{t}}_{\text {Lagrangian }}
$$

Physical measures describe the long term statistical behavior of Lagrangian trajectories, so we use stationary solutions of the Fokker-Planck Equation (FPE) as a surrogate model.

We discretize the FPE via a first order upwind finite volume method to form a Markov chain approximation of the dynamics.
$\rho^{(\ell+1)}=M \rho^{(\ell)}, \quad M=I+K$

Taking a closer look at the discretization...

Finding the Markov Chain's Stationary Distribution

We will use the Markov chain's steady state as a model for the underlying physical measure
$M \rho=\rho$

Finding the Markov Chain's Stationary Distribution

We will use the Markov chain's steady state as a model for the underlying physical measure
$M \rho=\rho$

Some potential difficulties:

- If the diffusion is zero, the stationary distribution may not be unique.
- The transition matrix may be ill-conditioned.
- We may want to learn the velocity away from the attractor.

Finding the Markov Chain's Stationary Distribution

We will use the Markov chain's steady state as a model for the underlying physical measure
$M \rho=\rho$

Some potential difficulties:

- If the diffusion is zero, the stationary distribution may not be unique.
- The transition matrix may be ill-conditioned.
- We may want to learn the velocity away from the attractor.

Solution: Teleportation regularization from Google's Pagerank algorithm.

$$
M_{\epsilon}:=(1-\epsilon) M+\frac{\epsilon}{N} \mathbf{1 1}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{1}:=\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right] \in \mathbb{R}^{N}
$$

Finding the Markov Chain's Stationary Distribution

We will use the Markov chain's steady state as a model for the underlying physical measure
$M \rho=\rho$

Some potential difficulties:

- If the diffusion is zero, the stationary distribution may not be unique.
- The transition matrix may be ill-conditioned.
- We may want to learn the velocity away from the attractor.

Solution: Teleportation regularization from Google's Pagerank algorithm.

$$
M_{\epsilon}:=(1-\epsilon) M+\frac{\epsilon}{N} \mathbf{1} \mathbf{1}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{1}:=\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right] \in \mathbb{R}^{N}
$$

Now, the steady state can be uniquely found by solving a sparse linear system.

$$
(1-\epsilon)(M-I) \rho=-\frac{\epsilon}{N} \mathbf{1}
$$

Forward Model vs. Occupation Measures

Forward Model vs. Trajectory Histogram with Diffusion $=0.001$

Selecting an Objective Function

$L^{2}\left(\rho, \rho^{*}\right):=\frac{1}{2} \int_{\Omega}\left(\rho(x)-\rho^{*}(x)\right)^{2} d x$

Squared L2 Norm

$D_{\mathrm{KL}}\left(\rho, \rho^{*}\right):=\int_{\Omega^{\prime}} \rho^{*}(x) \log \left(\frac{\rho^{*}(x)}{\rho(x)}\right) d x$
Kullback-Leibler Divergence
$D_{\mathrm{JS}}\left(\rho, \rho^{*}\right)=\frac{1}{2} D_{K L}\left(\rho, \rho^{\prime}\right)+\frac{1}{2} D_{K L}\left(\rho^{*}, \rho^{\prime}\right)$
Jenson-Shannon Divergence
$W_{2}^{2}\left(\rho, \rho^{*}\right):=\inf _{T_{\rho, \rho^{*} \in \mathcal{M}}} \int_{\Omega}\left|x-T_{\rho, \rho^{*}}(x)\right|^{2} d \rho(x)$
Quadratic Wasserstein Distance

Computing the Gradient

Using the Adjoint State Method

Compute the Fréchet derivative of the objective function with respect to the current density

$$
\frac{\partial L_{2}}{\partial \rho}=\rho-\rho^{*}
$$

$$
\frac{\partial D_{\mathrm{KL}}}{\partial \rho}=-\frac{\rho^{*}(x)}{\rho(x)} .
$$

$$
\frac{\partial D_{\mathrm{JS}}}{\partial \rho}=\frac{1}{2} \log \left(\frac{2 \rho}{\rho+\rho^{*}}\right)
$$

$$
\frac{\partial W_{2}^{2}}{\partial \rho}=\phi,
$$

Using the Adjoint State Method

Compute the Fréchet derivative of the objective function with respect to the current density

$$
\frac{\partial L_{2}}{\partial \rho}=\rho-\rho^{*}
$$

$$
\frac{\partial D_{\mathrm{KL}}}{\partial \rho}=-\frac{\rho^{*}(x)}{\rho(x)}
$$

$$
\frac{\partial D_{\mathrm{JS}}}{\partial \rho}=\frac{1}{2} \log \left(\frac{2 \rho}{\rho+\rho^{*}}\right)
$$

$$
\frac{\partial W_{2}^{2}}{\partial \rho}=\phi,
$$

Solve the adjoint equation

$$
\left(M_{\epsilon}-I\right)^{T} \lambda=-\left(\frac{\partial \mathcal{J}}{\partial \rho}-\frac{\partial \mathcal{J}}{\partial \rho} \cdot \rho \mathbf{1}\right)^{T}
$$

Using the Adjoint State Method

Compute the Fréchet derivative of the objective function with respect to the current density

$$
\frac{\partial L_{2}}{\partial \rho}=\rho-\rho^{*}
$$

$$
\frac{\partial D_{\mathrm{KL}}}{\partial \rho}=-\frac{\rho^{*}(x)}{\rho(x)}
$$

$$
\frac{\partial D_{\mathrm{JS}}}{\partial \rho}=\frac{1}{2} \log \left(\frac{2 \rho}{\rho+\rho^{*}}\right)
$$

$$
\frac{\partial W_{2}^{2}}{\partial \rho}=\phi,
$$

Solve the adjoint equation

$$
\left(M_{\epsilon}-I\right)^{T} \lambda=-\left(\frac{\partial \mathcal{J}}{\partial \rho}-\frac{\partial \mathcal{J}}{\partial \rho} \cdot \rho \mathbf{1}\right)^{T}
$$

Compute gradient with respect to the piecewise constant velocities used in the Markov matrix.

$$
\frac{\partial \mathcal{J}}{\partial v_{i}}=\lambda \cdot \frac{\partial M_{\epsilon}}{\partial v_{i}} \rho
$$

Velocity Parameterization

$$
v=v(\theta) \Longrightarrow \frac{\partial \mathcal{J}}{\partial \theta_{k}}=\frac{\partial \mathcal{J}}{\partial v} \cdot \frac{\partial v}{\partial \theta_{k}}
$$

The first term comes from the adjoint state method and the second is easy to compute when the functional form of the paramaterization is known.

Velocity Parameterization

$v=v(\theta) \Longrightarrow \frac{\partial \mathcal{J}}{\partial \theta_{k}}=\frac{\partial \mathcal{J}}{\partial v} \cdot \frac{\partial v}{\partial \theta_{k}}$
The first term comes from the adjoint state method and the second is easy to compute when the functional form of the paramaterization is known.

We tested three paramaterizations: piecewise constant, global polynomial, and neural network.

Velocity Parameterization

$$
v=v(\theta) \Longrightarrow \frac{\partial \mathcal{J}}{\partial \theta_{k}}=\frac{\partial \mathcal{J}}{\partial v} \cdot \frac{\partial v}{\partial \theta_{k}}
$$

The first term comes from the adjoint state method and the second is easy to compute when the functional form of the paramaterization is known.

We tested three paramaterizations: piecewise constant, global polynomial, and neural network.

$$
\left\{x_{j}-\mathbf{e}_{1} \Delta x / 2\right\} \quad v^{1}\left(\mathbf{x} ; \theta_{1}\right)
$$

$$
v^{2}\left(\mathbf{x} ; \theta_{2}\right) \quad\left\{x_{j}-\mathbf{e}_{2} \Delta x / 2\right\}
$$

The Optimization Framework

1.) Solve the forward problem

$$
M_{\epsilon} \rho=\rho
$$

2.) Evaluate the cost

$$
\mathcal{J}\left(\rho, \rho^{*}\right)
$$

3.) Compute the Frechet derivative

$$
\phi=\frac{\partial \mathcal{J}}{\partial \rho}
$$

4.) Solve the adjoint equation

$$
\left(M_{\epsilon}^{T}-I\right) \lambda=-\phi+\phi \cdot \rho \mathbf{1}
$$

5.) Compute the gradient

$$
\frac{\partial \mathcal{J}}{\partial v_{i}}=\lambda \cdot \frac{\partial M_{\epsilon}}{\partial v_{i}} \rho \quad \frac{\partial \mathcal{J}}{\partial \theta_{k}}=\frac{\partial \mathcal{J}}{\partial v} \cdot \frac{\partial v}{\partial \theta_{k}}
$$

6.) Descend

Adam, L-BFGS-B, CG, etc.

Numerical Results

L2

Density

Inverse solution

Non-Diffuse Dynamics

Lorenz-63 System - Inverting V1

What if we only have partial observations?

What if we only have partial observations?

$\underbrace{\left\{y\left(x\left(t_{i}\right)\right)\right\}_{i=1}^{N}}_{\text {available data }}$
Motivated by Takens' Theorem (1981), we can linstead earn the dynamics in delay coordinates.
$\exists \underbrace{\Phi: \mathcal{M} \rightarrow \mathbb{R}^{d}}$ with $\Phi(x(t))=(y(t), y(t-\tau), \ldots, y(t-2 d \tau))$
diffeomorphism

Application to a Hall-Effect Thruster (HET)

Varying the Paramaterization

Piecewise Constant Velocity

$C(t)$

Quantifying Model Uncertainty

Temperature Prediction with Uncertainty Quantification

Future Directions

- Dimension-free and mesh-free approaches
- Unstructured Mesh
- Higher order finite volume method
- Study inverse problem regularity
- The case of multiple attractors
- Learning an anisotropic diffusion

Thank you!

Questions?

