Use of Extended Source Inversion for Estimating the Noise Level in Seismic Data

Susan E. Minkoff¹, Huiyi Chen¹, and Bill Symes²

¹Department of Mathematical Sciences, The University of Texas at Dallas

²Department of Computational and Applied Mathematics, Rice University

New Ideas in Computational Inverse Problems Banff International Research Station (BIRS) October 28, 2022

Acknowledgements: This research is partially supported by the sponsors of the UT Dallas "3D+4D Seismic FWI" research consortium.

- The problem with Full Waveform Inversion (FWI) (or least-squares): cycle-skipping!
- Simple problem setup and motivation
- Introduction of source extended objective function (ESI) and why it helps.
- Noise estimation algorithm

• Numerical examples:

- Noise level fixed
- Noise level updated: coherent noise
- Olise level updated: random noise
- Olise level updated: no noise

Conclusions

Motivation Behind Extended Objective Functions

- Full Waveform Inversion (FWI) is now well-established as a useful tool for estimating parameters in the earth.
- Unfortunately, the FWI objective function is not convex. FWI stagnates at geologically uninformative earth models (local minima).

Schematic of cycle-skipping artifacts in FWI. Solid black line is seismogram of period T. Upper dashed line is seismogram with a time delay greater than T/2. Bottom example, has time delay less than T/2.¹

¹ Virieux, J., and S. Operto, 2009, "An overview of full-waveform inversion in exploration geophysics", *Geophysics*, 74, WCC1–WCC26.

- Extended inversion is one of the many ideas that have been advanced to overcome cycle-skipping. We will focus on "source extension".
- "Extended" signifies that additional degrees of freedom are provided to the modeling process.
- These extended degrees of freedom should be suppressed in the eventual solution since they are not physical.
- In the case of a very simple model problem, all computations can be done analytically. Results can be theoretically justified.
- Simple problem illustrates the same cycle skipping issues one encounters in FWI for more realistic problems.

Simple Experimental Setup

Left: single-trace experimental setup. Right top: the source wavelet (a 20 Hz Ricker). Right bottom: data.

• Assume small amplitude constant-density, acoustic wave propagation in 3D:

$$m^2 \frac{\partial^2 P(x,t;x_s)}{\partial t^2} - \nabla^2 P(x,t;x_s) = \delta(x-x_s) w(t)$$

where w is wavelet, m is slowness.

• The pressure trace recorded at the receiver position is given by:

$$F[m]\mathbf{w}(t) = \frac{1}{4\pi r} \mathbf{w}(t - mr)$$

where F[m] is the operator of convolution with acoustic 3D Green's function and r is the distance between the source and receiver.

- Inverse Problem : Given target noise level e_{tar} , maximum lag ² $\lambda > 0$, find the slowness *m* and wavelet *w* so that:
 - w(t) = 0 if $|t| > \lambda$

•
$$\frac{||F[m]w-d||}{||d||} < e_{tar}$$

²Spiking deconvolution and other processing implies w(t) is negligible for $|t| > \lambda$.

The challenge with full waveform inversion: cycle skipping

The FWI objective function is defined as:

$$J_{FWI}[\boldsymbol{m}, \boldsymbol{w}] = \frac{1}{2} ||F[\boldsymbol{m}]\boldsymbol{w} - \boldsymbol{d}||^2,$$

We solve for slowness m and wavelet w, for maximum lag λ .

Left: Data produced by adding to the noise-free data a shifted, scaled multiple of itself. **Right:** the FWI objective function plotted as function of slowness, for fixed w.

- There are entire intervals of local minimizers far from the global minimizer m_* .
- Initial guess for slowness *m* must be within $2\lambda/r$ of the global minimizer m_* , or we fail to solve the inverse problem.³ "cycle-skipping"!!

Susan E. Minkoff (UTD)

³Symes, W. W., 2022, "Error bounds for extended source inversion applied to an acoustic transmission inverse problem", Inverse Problems, **38**, 115002.

- Add degrees of freedom to F to avoid local minima.
- By including the source wavelet as one of the modeling parameters and dropping the support constraint on *w*, we extend space of possible solutions.

Define the extended source inversion for the minimization over $\{m, w\}$ as

$$J_{ESI}^{\alpha}[\boldsymbol{m}, \boldsymbol{w}; \boldsymbol{d}] = \frac{1}{2} \left(\underbrace{\frac{||\boldsymbol{F}[\boldsymbol{m}]\boldsymbol{w} - \boldsymbol{d}||^2}{||\boldsymbol{d}||^2}}_{= e^2} + \frac{\alpha^2 ||\boldsymbol{A}\boldsymbol{w}||^2}{||\boldsymbol{d}||^2} \right),$$

A is an annihilator to penalize energy away from t = 0:

$$Aw(t)=tw(t).$$

• The value of J_{ESI}^{α} will be small at the minimizer of J_{FWI} .

The Variable Projection Method (VPM) produces a reduced objective function of m alone:

$$J_{VPM}^{\alpha}[m; d] = \inf_{\mathbf{w}} J_{ESI}^{\alpha}[m, \mathbf{w}; d]$$

Susan E. Minkoff (UTD)

Extended Inversion vs FWI: Data with Coherent Noise

- ESI objective hard to minimize for both *m* and *w* simultaneously.
- Use Variable Projection Method⁴ with inner minimization over *w* then an outer minimization over *m*.
- In this case, wavelet solution given analytically by the normal equations.

Left: Data with coherent noise. Right: The VPM (red curve, with $\alpha = 1$) and FWI (blue curve) objective functions plotted as functions of slowness.

⁴ Golub, G., and V. Pereyra, 2003, "Separable nonlinear least squares: the variable projection method and its applications", *Inverse Problems*, 19, R1-R26.

VPM objective functions with different values of α

- α has a big impact on the rate of convergence of the algorithm⁵.
- If α can increase dynamically during run we see improved performance of the algorithm.

VPM objective functions plotted with different values of α for the data with coherent noise.

- As α goes to 0, the VPM objective function goes to 0, and the error also goes to 0.
- As α increases, the region of convexity gets smaller, and the resolution of the slowness m gets better.
- The error increases as α increases.

⁵W. W. Symes, H. Chen, and S. E. Minkoff, 2022, "Solution of an Acoustic Transmission Inverse Problem by Extended Inversion", *Inverse Problems*, 38, 115002.

- We define "noise" as the unmodeled signal, which is the minimum of the FWI objective function over physical models (that is, the wavelets *w* with maximum lag constraint).
- We have to select α to use the ESI/VPM approach to estimate slowness.
- The error increases monotonically with α for the VPM solution, which is equivalent to selecting target noise level e_{tar} and updating error (by updating α) until it's near e_{tar} .
- If the difference between the estimated noise level e_{est} and the target noise level e_{tar} is too big, then we can replace e_{tar} by e_{est} , repeat the calculation, and obtain a better α hence a better estimate of *m*, which in turn gives a better e_{est} . If e_{est} is about the same as e_{tar} , the process stops.⁶

⁶H. Chen, W. W. Symes, and S. E. Minkoff, "Use of extended source inversion for estimating the noise level in seismic data," Proceedings of the Second International Meeting for Applied Geoscience & Energy, Houston, TX., pp 887-891, 2022.

Noise estimation algorithm

The noise level as estimated in the algorithm is computed by the following formula:

$$e_{est} = \min_{\mathbf{w}} \frac{||F[\mathbf{m}]\mathbf{w} - \mathbf{d}||}{||\mathbf{d}||}.$$

Note that there is maximum lag constraint on w.

- Start with arbitrary m, $\alpha = 0$, $\gamma < 1$, $\delta > 0$, gradient tolerance β . Initialize the assumed target noise level $e_{tar} > 0$ and a range of minimum and maximum allowable errors $0 < (1 \gamma)e_{tar} < (1 + \gamma)e_{tar}$.
- O:

Start discrepancy algorithm:⁷

- first fix *m*, update lpha so that $(1-\gamma)e_{tar} \leq e \leq (1+\gamma)e_{tar}$
- then fix α , update *m* so that $|\nabla J^{\alpha}_{VPM}| < \beta$ (use local descent method)
- repeat until $(1 \gamma)e_{tar} \le e \le (1 + \gamma)e_{tar}$ AND $|\nabla J_{VPM}| < \beta$

End discrepancy algorithm

- compute minimum value e_{est} of *e* over physical source vector *w*, with the updated medium parameter *m*;
- if $|e_{tar} e_{est}| > \delta e_{est}$ then $e_{tar} = e_{est}$, repeat, else terminate.

⁷ L. Fu and W. W. Symes, 2017, "A discrepancy-based penalty method for extended waveform inversion", *Geophysics*, 82, no. 5, R287-R298.

- noise-to-signal ratio of 30%
- initial m = 0.343. Initial $\alpha = 0$.

initial noise level:	estimated noise level:	penalty weight:	estimated slowness:
e _{tar}	e _{est}	α	<i>m</i> (s/km)
0.1	0.285395	0.626626	0.403532
0.2	0.287649	1.253252	0.400797
0.3	0.287910	1.409909	0.400575
0.4	0.959087	5.013009	0.498857
0.5	0.961294	7.832827	0.499765
0.6	0.963973	11.279270	0.499937

Table: Noise estimation algorithm with initial target noise levels ranging from 0.1 to 0.6.

• Best $e_{est} = 0.287253$, which is computed by

$$e_{best} = \min_{\mathbf{w}} \frac{||F[m_*]\mathbf{w} - d||}{||d||},$$

where $m_* = 0.4$ s/km is the true slowness.

• Note: local minimum near m = 0.5 s/km which we find when target noise level is too large.

- noise-to-signal ratio of 30%
- initial m = 0.343. Initial $\alpha = 0$.

initial noise level:	estimated noise level:	penalty weight:	estimated slowness:
e _{tar}	e _{est}	α	<i>m</i> (s/km)
0.1	0.287253	3.878713	0.400021
0.2	0.287253	4.167532	0.400017
0.3	0.287253	2.136271	0.400156
0.4	0.287253	4.118976	0.400017
0.5	0.287253	4.118293	0.400017
0.6	0.287253	4.118268	0.400017

Table: Noise estimation algorithm starting with initial target noise levels ranging from 0.1 to 0.6.

• All estimates e_{est} of data noise level are close to the best estimate 0.287253, which is computed by

$$e_{best} = \min_{\mathbf{w}} \frac{||F[m_*]\mathbf{w} - d||}{||d||},$$

where $m_* = 0.4 \text{ s/km}$ is the true slowness.

• All estimated slownesses m are close to the true slowness of 0.4 s/km.

VPM objective functions for the $\boldsymbol{\alpha}$ selected by the noise estimation algorithm

Regardless of the values of the initial noise level, the penalty weights α from the noise estimation algorithm can help to convexify the VPM objective function.

Data for experiment 3 which contains 30% random filtered noise.

initial noise level:	estimated noise level:	penalty weight:	estimated slowness:
e _{tar}	e _{est}	α	<i>m</i> (s/km)
0.1	0.256468	1.246196	0.400486
0.2	0.256468	1.245998	0.400492
0.3	0.256468	1.245833	0.400489
0.4	0.256468	1.246121	0.400488
0.5	0.256526	1.749055	0.400507
0.6	0.256468	1.246053	0.400489

Table: Noise estimation algorithm with initial target noise levels ranging from 0.1 to 0.6.

- All estimates *e*_{est} of data noise level are close to the best estimate 0.256468.
- All estimated slownesses m are close to the true slowness of 0.4 s/km.

VPM objective functions for the $\boldsymbol{\alpha}$ selected by the noise estimation algorithm

Regardless of the values of the initial noise level, the penalty weights α from the noise estimation algorithm can help to convexify the VPM objective function.

initial noise level:	estimated noise level:	penalty weight:	estimated slowness:
e _{tar}	e _{est}	α	<i>m</i> (s/km)
0.1	0.000000	3.854345	0.400000
0.2	0.000000	5.139127	0.400000
0.3	0.000000	8.672277	0.400000
0.4	0.000000	15.417382	0.400000
0.5	0.000000	24.089659	0.400000
0.6	0.000000	34.689109	0.400000

Table: Noise estimation algorithm with initial target noise levels ranging from 0.1 to 0.6.

- All estimates e_{est} of data noise level are close to the best estimate of 0.0.
- All estimated slownesses m are close to the true slowness of 0.4 s/km.

- Even this very simple single-trace transmission problem exhibits cycle skipping, so FWI can fail without a good enough initial guess.
- The ESI objective function can be efficiently solved using the Discrepancy Algorithm which maintains the data misfit within a reasonable range while also increasing the penalty parameter.
- ESI avoids cycle-skipping, allowing us to solve the inverse problem using standard local optimization.
- The discrepancy algorithm dynamically updates the penalty parameter α to more efficiently solve the inverse problem, but it requires an estimate of the data noise level.
- We can simultaneously update our estimate of the noise level in the data while solving the inverse problem.
- Goal is to test how noise estimation combined with ESI works on more realistic problems.