Lianna Hambardzumyan

joint with Hamed and Pooya Hatami based on [HHH'21]

DIMENSION-FREE RELATIONS In communication complexity

McGill University

BIRS, July 28 2022

Boolean matrix M

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an *increasing* function $f : \mathbb{R}^+ \to \mathbb{R}^+$,

 $\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M))$

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)

 $\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M))$

• Assume there is an *increasing* function $f : \mathbb{R}^+ \to \mathbb{R}^+$,

- dimension-free bound

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an *increasing* function $f : \mathbb{R}^+ \to \mathbb{R}^+$ s.t.

 $\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M)) \qquad \checkmark \text{dimension-free bound}$

• If there is <u>also</u> an *increasing* function $g : \mathbb{R}^+ \to \mathbb{R}^+$ s.t.

 $\forall M \quad \beta(M) \le \mathbf{g}(\alpha(M))$

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an *increasing* function $\mathbf{f} : \mathbb{R}^+ \to \mathbb{R}^+$ s.t.

 $\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M))$ dimension-free bound

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an *increasing* function $f : \mathbb{R}^+ \to \mathbb{R}^+$ s.t.

then we say α and β are **qualitatively equivalent**.

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an *increasing* function $f : \mathbb{R}^+ \to \mathbb{R}^+$ s.t.

then we say α and β are **qualitatively equivalent**.

$$\alpha \longleftrightarrow \beta$$

- ► *D*(*M*) deterministic CC of *M*
- rank(M) rank of M

- ► *D*(*M*) deterministic CC of *M*
- rank(M) rank of M

$\log rank(M) \le D(M) \le rank(M)$

- ► *D*(*M*) deterministic CC of *M*
- rank(M) rank of M

 $\log_2 rank(M) \le D(M) \le rank(M)$

$$D(\cdot) \longleftrightarrow rank(\cdot)$$

- ► *D*(*M*) deterministic CC of *M*
- rank(M) rank of M

 $\log rank(M) \le D(M) \le rank(M)$

$$D(\cdot) \leftrightarrow rank(\cdot)$$

In contrast to the Log-rank conjecture: $\exists C \quad \log rank(M) \le D(M) \le \left(\log rank(M)\right)^C$

- ► *D*(*M*) deterministic CC of *M*
- R(M) (public) randomized CC of M

- ► *D*(*M*) deterministic CC of *M*
- R(M) (public) randomized CC of M

 $R(M) \leq D(M) \quad \checkmark$

- ► *D*(*M*) deterministic CC of *M*
- R(M) (public) randomized CC of M

 $R(M) \le D(M) \checkmark$ $\exists g \text{ s.t. } D(M) \le g(R(M))$

- ► *D*(*M*) deterministic CC of *M*
- R(M) (public) randomized CC of M

 $R(M) \le D(M) \checkmark$ $\exists g \text{ s.t. } D(M) \le g(R(M)) \checkmark$

- ► *D*(*M*) deterministic CC of *M*
- R(M) (public) randomized CC of M

 $R(M) \le D(M) \checkmark$ $\exists g \text{ s.t. } D(M) \le g(R(M)) \checkmark$

<u>Counter-example</u> EQ: D(EQ) = n + 1, R(EQ) = O(1)

- D(M) deterministic CC of M
- R(M) (public) randomized CC of M

 $R(M) \le D(M) \checkmark$ $\exists g \text{ s.t. } D(M) \le g(R(M)) \checkmark$

<u>Counter-example</u> EQ: D(EQ) = n + 1, R(EQ) = O(1)

$$D(\cdot) \leftrightarrow R(\cdot)$$

$$\alpha \longleftrightarrow \beta$$

$$\alpha \longleftrightarrow \beta$$

• Alternative view: $\alpha(M) = O(1) \iff \beta(M) = O(1)$

- Alternative view: $\alpha(M) = O(1) \iff \beta(M) = O(1)$
- ► *D*(*M*) deterministic CC of *M*
- $\chi(M)$ partition number of M

• Alternative view: $\alpha(M) = O(1) \iff \beta(M) = O(1) \quad \forall M$

 $\alpha \longleftrightarrow \beta$

- ► *D*(*M*) deterministic CC of *M*
- $\chi(M)$ partition number of M of M that partition M

min number of monochromatic rectangles of M that partition M

• Alternative view:
$$\alpha(M) = O(1) \iff \beta(M) = O(1) \quad \forall M$$

 $\alpha \longleftrightarrow \beta$

- D(M) deterministic CC of M
- $\chi(M)$ partition number of M of M that partition M

 $\log \chi(M) \le D(M) \le O\left(\log^2 \chi(M)\right)$

• Alternative view: $\alpha(M) = O(1) \iff \beta(M) = O(1) \quad \forall M$

 $\alpha \longleftrightarrow \beta$

- ► *D*(*M*) deterministic CC of *M*
- $\chi(M)$ partition number of M of M that partition M

$$\log \chi(M) \le D(M) \le O(\log^2 \chi(M)))$$
$$D(\cdot) \longleftrightarrow \chi(\cdot)$$

• Alternative view:
$$\alpha(M) = O(1) \iff \beta(M) = O(1) \quad \forall M$$

 $\alpha \longleftrightarrow \beta$

- ► *D*(*M*) deterministic CC of *M*
- $\chi(M)$ partition number of M of M that partition M

$$\log \chi(M) \le D(M) \le O(\log^2 \chi(M)))$$
$$D(\cdot) \longleftrightarrow \chi(\cdot)$$

$$D(M) = O(1) \iff \chi(M) = O(1)$$

• Alternative view: $\alpha(M) = O(1) \iff \beta(M) = O(1) \quad \forall M$

 $\alpha \longleftrightarrow \beta$

- ► *D*(*M*) deterministic CC of *M*
- $\chi(M)$ partition number of M of M that partition M

$$\log \chi(M) \le D(M) \le O(\log^2 \chi(M)))$$
$$D(\cdot) \longleftrightarrow \chi(\cdot)$$

 $D(M) = O(1) \iff \chi(M) = O(1) \iff M$ has a "nice" structure

• Alternative view:
$$\alpha(M) = O(1) \iff \beta(M) = O(1) \quad \forall M$$

 $\alpha \longleftrightarrow \beta$

- ► *D*(*M*) deterministic CC of *M*
- $\chi(M)$ partition number of M of M that partition M

$$\log \chi(M) \le D(M) \le O(\log^2 \chi(M)))$$
$$D(\cdot) \longleftrightarrow \chi(\cdot)$$

can be partitioned into **constantly many** monochromatic rectangles

 $D(M) = O(1) \iff \chi(M) = O(1) \iff M$ has a "nice" structure

• Alternative view:
$$\alpha(M) = O(1) \iff \beta(M) = O(1) \quad \forall M$$

 $\alpha \longleftrightarrow \beta$

- ► *D*(*M*) deterministic CC of *M*
- $\chi(M)$ partition number of M of M that partition M

$$\log \chi(M) \le D(M) \le O(\log^2 \chi(M)))$$
$$D(\cdot) \longleftrightarrow \chi(\cdot)$$

can be partitioned into **constantly many** monochromatic rectangles

 $D(M) = O(1) \iff \chi(M) = O(1) \iff M$ has a "nice" structure

• Alternative view:
$$\alpha(M) = O(1) \iff \beta(M) = O(1) \quad \forall M$$

 $\alpha \longleftrightarrow \beta$

- ► *D*(*M*) deterministic CC of *M*
- $\chi(M)$ partition number of M of M that partition M

$$\log \chi(M) \le D(M) \le O(\log^2 \chi(M)))$$
$$D(\cdot) \longleftrightarrow \chi(\cdot)$$

can be partitioned into **constantly many** monochromatic rectangles

$$D(M) = O(1) \bigoplus \chi(M) = O(1) \iff M$$
 has a "nice" structure

Dimension-free bounds \iff Structural result

DIMENSION-FREE BOUNDS: GOAL

▶ Prove dimension-free bounds of form $\alpha(M) \leq \mathbf{f}(\beta(M)) \forall M$ where α characterizes a structure.

DIMENSION-FREE BOUNDS: GOAL

- ▶ Prove dimension-free bounds of form $\alpha(M) \leq \mathbf{f}(\beta(M)) \forall M$ where α characterizes a structure.
- Equivalently, $\beta(M) = O(1) \implies M$ has a "nice" structure

DIMENSION-FREE BOUNDS: GOAL

- ▶ Prove dimension-free bounds of form $\alpha(M) \leq \mathbf{f}(\beta(M)) \forall M$ where α characterizes a structure.
- Equivalently, $\beta(M) = O(1) \implies M$ has a "nice" structure Conjecture template

CONJECTURE I

<u>Recall</u>: $D(\cdot) \leftrightarrow \chi(\cdot)$

• $D(M) = O(1) \implies M$ has a global structure

CONJECTURE I

<u>Recall</u>: $D(\cdot) \leftrightarrow \chi(\cdot)$

• $D(M) = O(1) \implies M$ has a global structure

<u>Recall</u>: $R(M) \leftrightarrow \chi(M)$ (Equality)

CONJECTURE I

<u>Recall</u>: $D(\cdot) \leftrightarrow \chi(\cdot)$

• $D(M) = O(1) \implies M$ has a global structure

<u>Recall</u>: $R(M) \leftrightarrow \chi(M)$ (Equality)

<u>Recall</u>: $D(\cdot) \leftrightarrow \chi(\cdot)$

• $D(M) = O(1) \implies M$ has a global structure

<u>Recall</u>: $R(M) \leftrightarrow \chi(M)$ (Equality)

Equality has large 0-monochromatic rectangles

<u>Recall</u>: $D(\cdot) \leftrightarrow \chi(\cdot)$

• $D(M) = O(1) \implies M$ has a global structure

<u>Recall</u>: $R(M) \leftrightarrow \chi(M)$ (Equality)

Equality has large 0-monochromatic rectangles

Question: $R(M) = O(1) \Longrightarrow M$ has a large monochromatic rectangle?

Conjecture I: For a Boolean matrix M of size $n \times n$, if $R_c(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where δ_c is a constant depending on c. **Conjecture** [CLV19]: For a Boolean matrix M of size $n \times n$, if $R_{\epsilon}(M) \leq c(n)$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where $\delta_c = 2^{-O(c(n))}$.

Conjecture I: For a Boolean matrix M of size $n \times n$, if $R_c(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where δ_c is a constant depending on c.

End goal: fully characterize randomized protocols

Conjecture I: For a Boolean matrix M of size $n \times n$, if $R_c(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where δ_c is a constant depending on c.

- End goal: fully characterize randomized protocols
- Understand the "easy" randomized protocols

Conjecture I: For a Boolean matrix M of size $n \times n$, if $R_c(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where δ_c is a constant depending on c.

- End goal: fully characterize randomized protocols
- Understand the "easy" randomized protocols
- A barrier for the open problem of [BFS86, GPW18]:

 $\mathbb{BPP}^{CC} \subset \mathbb{P}^{\mathbb{NP}^{CC}}?$

Conjecture I: For a Boolean matrix M of size $n \times n$, if $R_c(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where δ_c is a constant depending on c.

- End goal: fully characterize randomized protocols
- Understand the "easy" randomized protocols
- A barrier for the open problem of [BFS86, GPW18]:

 $\mathbb{BPP}^{CC} \subset \mathbb{P}^{\mathbb{NP}^{CC}}?$

If Conjecture I is false, then there is a separation between these classes.

This theorem applies to all the matrices for which the randomized protocol with constant complexity uses hashing technique.

- This theorem covers all the matrices for which the randomized protocol with constant complexity uses hashing technique.
- In particular, this includes EQ, Hamming-Distance-d for constant d.

Proof idea:

Forbid a submatrix that is *hard* for one-sided error randomized protocol.

<u>Recall</u>: $R^1(EQ_k) = \Theta(k)$ (if the protocol doesn't make an error on 0's).

Dimension-free relation:

 $\forall M \quad \log \log rank(M) \le R_0(M) \le rank(M)$

Dimension-free relation:

 $\forall M \quad \log \log rank(M) \le R_0(M) \le rank(M),$

which implies

$$R_0(\cdot) \longleftrightarrow rank(\cdot)$$

Dimension-free relation:

 $\forall M \quad \log \log rank(M) \le R_0(M) \le rank(M),$ which implies

$$R_0(\cdot) \longleftrightarrow rank(\cdot) \longleftrightarrow D(\cdot)$$

Dimension-free relation:

 $\forall M \quad \log \log rank(M) \le R_0(M) \le rank(M),$

which implies

$$R_0(\cdot) \longleftrightarrow rank(\cdot) \longleftrightarrow D(\cdot) \longleftrightarrow \chi(\cdot)$$

Dimension-free relation:

 $\forall M \quad \log \log rank(M) \le R_0(M) \le rank(M),$

which implies

 $R_0(\,\cdot\,) \longleftrightarrow rank(\,\cdot\,) \xleftarrow{\mathsf{GS19}} rank_{\epsilon}(\,\cdot\,) \longleftrightarrow D(\,\cdot\,) \longleftrightarrow \chi(\,\cdot\,)$

Dimension-free relation:

 $\forall M \quad \log \log rank(M) \le R_0(M) \le rank(M),$

which implies

 $R_0(\ \cdot\) \longleftrightarrow rank(\ \cdot\) \stackrel{\mathsf{GS19}}{\longleftrightarrow} rank_{\epsilon}(\ \cdot\) \longleftrightarrow D(\ \cdot\) \longleftrightarrow R^{pri}(\ \cdot\) \longleftrightarrow \chi(\ \cdot\)$

Proof idea:

Forbid a submatrix that is *hard* for zero error randomized protocol.

Proof idea:

Forbid a submatrix that is *hard* for zero error randomized protocol.

<u>Recall</u>: $R_0(EQ_k) = \Theta(k)$, $R_0(GT_k) = \Theta(k)$ $R_0(\overline{EQ}_k) = \Theta(k)$, $R_0(\overline{GT}_k) = \Theta(k)$

Conjecture I: For a Boolean matrix M of size $n \times n$, if $R_c(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where δ_c is a constant depending on c.

Conjecture I: For a Boolean matrix M of size $n \times n$, if $R_c(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where δ_c is a constant depending on c.

Proof idea:

Forbid a submatrix that is *hard* for two-sided error randomized protocol.

Conjecture I: For a Boolean matrix M of size $n \times n$, if $R_c(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_c n \times \delta_c n$, where δ_c is a constant depending on c.

Proof idea:

Forbid a submatrix that is hard for two-sided error randomized protocol.

Barrier theorem [HHH21]: For all sufficiently large n, there exists an $n \times n$ Boolean matrix M s.t.

(1) Every $n^{1/4} \times n^{1/4}$ submatrix F of M has $R_{\epsilon}(F) = O(1)$.

(2) M doesn't contain a monochromatic rectangle of size $n^{0.99} \times n^{0.99}$. $R(M) \ge \Omega(\log n)$ **Barrier theorem** [HHH21]: For all sufficiently large n, there exists an $n \times n$ Boolean matrix M s.t.

(1) Every $n^{1/4} \times n^{1/4}$ submatrix *F* of *M* has $R_{e}(F) = O(1)$.

(2) *M* doesn't contain a monochromatic rectangle of size $n^{0.99} \times n^{0.99}$.

 $R(M) \ge \Omega(\log n), M$ is a random graph.

Barrier theorem [HHH21]: For all sufficiently large n, there exists an $n \times n$ Boolean matrix M s.t.

(1) Every $n^{1/4} \times n^{1/4}$ submatrix *F* of *M* has $R_{e}(F) = O(1)$.

(2) *M* doesn't contain a monochromatic rectangle of size $n^{0.99} \times n^{0.99}$.

 $R(M) \ge \Omega(\log n), M$ is a random graph.

 [HHH21]: Barrier theorem refuted the Probabilistic Universal Graph Conjecture of Harms, Wild, and Zamaraev [HWZ21]. **Barrier theorem** [HHH21]: For all sufficiently large n, there exists an $n \times n$ Boolean matrix M s.t.

(1) Every $n^{1/4} \times n^{1/4}$ submatrix F of M has $R_{\epsilon}(F) = O(1)$.

(2) *M* doesn't contain a monochromatic rectangle of size $n^{0.99} \times n^{0.99}$.

 $R(M) \ge \Omega(\log n), M$ is a random graph.

- [HHH21]: Barrier theorem refuted the Probabilistic Universal Graph Conjecture of Harms, Wild, and Zamaraev [HWZ21].
- [HH21]: Barrier theorem + counting argument refuted the Implicit
 Graph Conjecture [HWZ21].

Idea: Study randomized CC via matrix norms

Idea: Study randomized CC via matrix norms

1. Trace norm,
$$||M||_{tr} := \sum_{i=1}^{k} |\lambda_i|$$
, where λ_i are eigenvalues of M

Idea: Study randomized CC via matrix norms

1. Trace norm,
$$||M||_{tr} := \sum_{i=1}^{k} |\lambda_i|$$
, where λ_i are eigenvalues of M

2. μ - norm $\leftrightarrow \nu$ - norm $\leftrightarrow \gamma_2$ - norm (Schur norm)

Idea: Study randomized CC via matrix norms

1. Trace norm,
$$||M||_{tr} := \sum_{i=1}^{k} |\lambda_i|$$
, where λ_i are eigenvalues of M

2. μ - norm $\leftrightarrow \nu$ - norm $\leftrightarrow \gamma_2$ - norm (Schur norm)

Approximates of these norms lower bound R(M)

Idea: Study randomized CC via matrix norms

1. Trace norm,
$$||M||_{tr} := \sum_{i=1}^{k} |\lambda_i|$$
, where λ_i are eigenvalues of M

2. μ - norm $\leftrightarrow \nu$ - norm $\leftrightarrow \gamma_2$ - norm (Schur norm)

- Approximates of these norms lower bound R(M)
 - $\|M\|_{\bullet,\epsilon} = \min_{M'} \{\|M'\|_{\bullet} : \forall (x, y) \quad |M(x, y) M'(x, y)| \le \epsilon \text{ and } M' \text{ is real-valued} \}$

CONJECTURE I: TRACE NORM

$$R_{\epsilon}(M) \ge \log \frac{\|M\|_{tr,\epsilon}}{n}$$

M is $n \times n$ -sized

CONJECTURE I: TRACE NORM

$$R_{\epsilon}(M) \ge \log \frac{\|M\|_{tr,\epsilon}}{n}$$

M is $n \times n$ -sized

Strong **Conjecture I:**
$$\frac{\|M\|_{tr,\epsilon}}{n} \le c \implies M \text{ has a mon. rec. of size } \delta_c n \times \delta_c n$$

CONJECTURE I: TRACE NORM

$$R_{\epsilon}(M) \ge \log \frac{\|M\|_{tr,\epsilon}}{n}$$

M is $n \times n$ -sized

Strong **Conjecture I:**
$$\frac{\|M\|_{tr, \ell}}{n} \le c \implies M \text{ has a mon. rec. of size } \delta_c n \times \delta_c n$$

CONJECTURE I: TRACE NORM

$$R_{\epsilon}(M) \ge \log \frac{\|M\|_{tr,\epsilon}}{n}$$

M is $n \times n$ -sized

Strong Conjecture I:
$$\frac{\|M\|_{tr,\epsilon}}{n} \le c \implies M \text{ has a mon. rec. of size } \delta_c n \times \delta_c n$$

Conjecture II:
$$\frac{\|M\|_{tr}}{n} \le c \implies M$$
 has a mon. rec. of size $\delta_c n \times \delta_c n$

CONJECTURE I: TRACE NORM

$$R_{\epsilon}(M) \ge \log \frac{\|M\|_{tr,\epsilon}}{n}$$

M is $n \times n$ -sized

Strong **Conjecture I:** $\frac{\|M\|_{tr, \mathscr{I}}}{n} \le c \implies M \text{ has a mon. rec. of size } \delta_c n \times \delta_c n$

Conjecture II:
$$\frac{\|M\|_{tr}}{n} \le c \implies M$$
 has a mon. rec. of size $\delta_c n \times \delta_c n$

Theorem [HHH21]: Conjecture II holds for matrices of form $F(x, y) = f(y^{-1}x)$,

where $f: G \rightarrow \{0,1\}$ and G is any finite group.

Conjecture II:
$$\frac{\|M\|_{tr}}{n} \le c \implies M \text{ has a mon. rec. of size } \delta_c n \times \delta_c n$$

Conjecture II: $\frac{\|M\|_{tr}}{n} \le c \implies M$ has a mon. rec. of size $\delta_c n \times \delta_c n$

Matrix

Bipartite graph

Trace norm

Conjecture II: $\frac{\|M\|_{tr}}{n} \leq c \implies M$ has a mon. rec. of size $\delta_c n \times \delta_c n$ MatrixBipartite graphTrace normGraph energy

Conjecture II: $\frac{\|M\|_{tr}}{n} \leq c \implies M$ has a mon. rec. of size $\delta_c n \times \delta_c n$ MatrixBipartite graphTrace normGraph energyMonochromatic rectangle

Conjecture II: $\frac{\|M\|_{tr}}{n} \leq c \implies M$ has a mon. rec. of size $\delta_c n \times \delta_c n$ MatrixBipartite graphTrace normGraph energyMonochromatic rectangle \blacksquare Complete bipartite subgraph*

Conjecture II: $\frac{||M||_{tr}}{n} \leq c \implies M$ has a mon. rec. of size $\delta_c n \times \delta_c n$ MatrixBipartite graphTrace normGraph energyMonochromatic rectangle \equiv Complete bipartite subgraph*has a large mon. rect.

Conjecture II: $\frac{\|M\|_{tr}}{dt} \le c \implies M$ has a mon. rec. of size $\delta_c n \times \delta_c n$ n Matrix **Bipartite graph** Trace norm **Graph energy Complete bipartite subgraph*** Monochromatic rectangle has a large mon. rect. satisfies Strong Erdős-Hajnal property

Conjecture II: $\frac{\|M\|_{tr}}{dt} \leq c \implies M$ has a mon. rec. of size $\delta_c n \times \delta_c n$ **Matrix Bipartite graph Graph energy** Trace norm **Complete bipartite subgraph*** Monochromatic rectangle satisfies Strong Erdős-Hajnal property has a large mon. rect.

Conjecture II (graph theoretic): If a bipartite graph has small graph energy, then it satisfies the Strong Erdős-Hajnal property.

Recall:
$$||M||_{\mu} = \min \left\{ \sum_{i} |\alpha_{i}| : M = \sum_{i} \alpha_{i}R_{i} \right\}$$
,
where R_{i} are rank-1 matrices and $\alpha_{i} \in \mathbb{R}$.

Recall:
$$||M||_{\mu} = \min \left\{ \sum_{i} |\alpha_{i}| : M = \sum_{i} \alpha_{i}R_{i} \right\}$$
,
where R_{i} are rank-1 matrices and $\alpha_{i} \in \mathbb{R}$.

 $R(M) = \Omega(\log \|M\|_{\mu,\epsilon})$

Recall:
$$||M||_{\mu} = \min \left\{ \sum_{i} |\alpha_{i}| : M = \sum_{i} \alpha_{i}R_{i} \right\}$$
,
where R_{i} are rank-1 matrices and $\alpha_{i} \in \mathbb{R}$.

$$R(M) = \Omega(\log \|M\|_{\mu,\epsilon})$$
 and $R(M) = O(\|M\|_{\mu,\epsilon}^2)$

Recall:
$$||M||_{\mu} = \min \left\{ \sum_{i} |\alpha_{i}| : M = \sum_{i} \alpha_{i}R_{i} \right\}$$
,
where R_{i} are rank-1 matrices and $\alpha_{i} \in \mathbb{R}$.

 $R(M) = \Omega(\log \|M\|_{\mu,\epsilon})$ and $R(M) = O(\|M\|_{\mu,\epsilon}^2)$

$$R(\ \cdot\)\longleftrightarrow \|\ \cdot\ \|_{\mu,\epsilon}$$

Recall:
$$||M||_{\mu} = \min\left\{\sum_{i} |\alpha_{i}| : M = \sum_{i} \alpha_{i}R_{i}\right\}$$
,
where R_{i} are rank-1 matrices and $\alpha_{i} \in \mathbb{R}$.

 $R(M) = \Omega(\log \|M\|_{\mu,\epsilon})$ and $R(M) = O(\|M\|_{\mu,\epsilon}^2)$

$$R(\ \cdot\)\longleftrightarrow \|\ \cdot\ \|_{\mu,\epsilon}$$

Conjecture I (Equivalent): $||M||_{\mu, \ell} \le c \implies M$ has a mon. rec. of size $\delta_c n \times \delta_c n$.

Blow-up of identity matrix

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Blow-up of identity matrix

Blocky rank:
$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Blocky rank:
$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Equivalent versions:
$$||M||_{\mu} = O(1) \xrightarrow{?} br(M) = O(1)$$

Blocky rank:
$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Equivalent versions:

$$\begin{split} \|M\|_{\mu} &= O(1) \\ \|M\|_{\nu} &= O(1) \quad \stackrel{?}{\Longrightarrow} \quad br(M) = O(1) \\ \|M\|_{\gamma_2} &= O(1) \end{split}$$

1 1 1 0																	
1 1 1 0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
1 1 1 0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
0 0 0 1 1 1 0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
0 0 0 1 1 1 0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
0 0 0 1 1 1 0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	
0 0 0 0 0 1 1 0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	
0 0 0 0 1 1 0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	
0 0 0 0 0 0 1 1 1 0 0 0 0 0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	
0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Graph theory - equivalence graphs

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory equivalence graphs
- Complexity theory fat matchings

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

- Graph theory equivalence graphs
- Complexity theory fat matchings
- Operator theory contractive idempotents

```
0 0 0 0 0
                   0
    1
                     0
                       0
                         0
                            0
                              0
                                0
      1 0
            0
          0
               0
                 0
                   0
                     0
                        0
                                0
                              0
      1 0 0 0 0 0 0 0
                       0 0
                              0 0
   1 1 0 0 0 0 0
1 1
                   0 0
                              0 0
                       0
 0
    0
      0 1 1
0
             1
               0 0
                   0
                     0
0 0
    0
      0 1 1
            1 0 0
                   0 0
                       0
                              0 0
0 0
    0
      0 1 1 1 0 0 0 0
                       0
                              0 0
                         0
                            0
     0 0 0 0 1 1 0 0 0 0
0 0 0
                           0 0 0
        0 0 0 1 1 0 0 0 0
      0
                            0 0 0
    0
0 0
        0 0 0 0 0 1 1 1
      0
                              0 0
0 0
    0
                          0 0
0 0
        0 0 0 0 0 1 1 1 0
                            0
                              0
    0
      0
0 0
    0
      0
        0 0 0 0 0 1 1 1 0 0 0 0
        0 0 0 0 0 1 1 1 0 0 0 0
0 0
    0
      0
            0 0 0 0 0 0 1 1 1 1
0 0
    0
      0
        0 0
        0 0 0 0 0 0 0 0 1 1 1 1
0 0
    0
      0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
```

- Graph theory equivalence graphs
- Complexity theory fat matchings
- Operator theory contractive idempotents

Blocky rank:

$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

- Graph theory equivalence graphs
- Complexity theory fat matchings
- Operator theory contractive idempotents

Blocky rank:

$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Question: Is there a $n \times n$ matrix M that has R(M) = O(1) and $D^{EQ}(M) = \Omega(\log n)$?

- Graph theory equivalence graphs
- Complexity theory fat matchings
- Operator theory contractive idempotents

Blocky rank:

$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Question: Is there a $n \times n$ matrix M that has R(M) = O(1) and $D^{EQ}(M) = \Omega(\log n)$?

Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

- Graph theory equivalence graphs
- Complexity theory fat matchings
- Operator theory contractive idempotents

Blocky rank:

$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Question: Is there a $n \times n$ matrix M that has R(M) = O(1) and $D^{EQ}(M) = \Omega(\log n)$?

Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

 $1/2\log_2 br(M) \le D^{EQ}(M) \le br(M)$

- Graph theory equivalence graphs
- Complexity theory fat matchings
- Operator theory contractive idempotents

Blocky rank:

$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Question: Is there a $n \times n$ matrix M that has R(M) = O(1) and $D^{EQ}(M) = \Omega(\log n)$?

Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

 $1/2\log_2 br(M) \le D^{EQ}(M) \le br(M)$

$$D^{EQ}(\ \cdot\) \longleftrightarrow br(\ \cdot\)$$

Blocky rank:
$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Equivalent versions:

$$\begin{split} \|M\|_{\mu} &= O(1) \\ \|M\|_{\nu} &= O(1) \quad \stackrel{?}{\Longrightarrow} \quad br(M) = O(1) \\ D^{EQ}(M) &= O(1) \\ \|M\|_{\gamma_2} &= O(1) \end{split}$$

- Graph theory equivalence graphs
- Complexity theory fat matchings
- Operator theory contractive idempotents

Blocky rank:

$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Question: Is there a $n \times n$ matrix M that has R(M) = O(1) and $D^{EQ}(M) = \Omega(\log n)$?

Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

 $1/2\log_2 br(M) \le D^{EQ}(M) \le br(M)$

- Graph theory equivalence graphs
- Complexity theory fat matchings
- Operator theory contractive idempotents

Blocky rank:

$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Question: Is there a $n \times n$ matrix M that has R(M) = O(1) and $D^{EQ}(M) = \Omega(\log n)$?

Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

 $1/2\log_2 br(M) \le D^{EQ}(M) \le br(M)$

 $\Omega(\log_2 \|M\|_{\mu}) \le br(M)$

Conjecture III [HHH21]: If $||M||_{\mu} \leq c \implies M$ can be written as a linear combination of k_c blocky matrices.

Blocky rank:
$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Equivalent versions:

$$\begin{split} \|M\|_{\mu} &= O(1) \\ \|M\|_{\nu} &= O(1) \\ \|M\|_{\nu} &= O(1) \\ \|M\|_{\gamma_2} &= O(1) \\ \|M\|_{\gamma_2} &= O(1) \end{split}$$

Conjecture III [HHH21]: If $||M||_{\mu} \leq c \implies M$ can be written as a linear combination of k_c blocky matrices.

Blocky rank:
$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Equivalent versions:

$$\begin{split} \| \cdot \|_{\mu} & \stackrel{?}{\longleftrightarrow} & br(\cdot) \\ \| \cdot \|_{\nu} & \longleftrightarrow & D^{EQ}(\cdot) \\ \| \cdot \|_{\gamma_{2}} & \end{split}$$

Conjecture III [HHH21]: If $||M||_{\mu} \leq c \implies M$ can be written as a linear combination of k_c blocky matrices.

Blocky rank:
$$br(M) = \min \{r : M = \sum_{i=1}^{r} \alpha_i B_i\}$$
, where B_i is a blocky matrix

Equivalent versions:

$$\begin{split} \| \cdot \|_{\mu} & \stackrel{?}{\longleftrightarrow} & br(\cdot) \\ \| \cdot \|_{\nu} & \longleftrightarrow & D^{EQ}(\cdot) \\ \| \cdot \|_{\gamma_2} & \end{split}$$

Theorem [HHH21]: Conjecture III holds for matrices of form $F(x, y) = f(y^{-1}x)$, where $f: G \to \{0,1\}$ and G is any finite group. **Conjecture III** [HHH21]: If $||M||_{\mu} \le c \implies M$ can be written as a linear combination of k_c blocky matrices.

Conjecture III [HHH21]: If $||M||_{\mu} \le c \implies M$ can be written as a linear combination of k_c blocky matrices.

Conjecture †: The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of *finitely* many contractive idempotents.

Conjecture III [HHH21]: If $||M||_{\mu} \le c \implies M$ can be written as a linear combination of k_c blocky matrices.

Conjecture †: The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of *finitely* many contractive idempotents.

Matrix

Algebra of Schur multipliers

Conjecture III [HHH21]: If $||M||_{\mu} \le c \implies M$ can be written as a linear combination of k_c blocky matrices.

Conjecture †: The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of *finitely* many contractive idempotents.

Matrix

Algebra of Schur multipliers

Boolean matrix

Conjecture III [HHH21]: If $||M||_{\mu} \le c \implies M$ can be written as a linear combination of k_c blocky matrices.

Conjecture †: The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of *finitely* many contractive idempotents.

MatrixAlgebra of Schur multipliersBoolean matrixIdempotent

Conjecture III [HHH21]: If $||M||_{\mu} \le c \implies M$ can be written as a linear combination of k_c blocky matrices.

Conjecture †: The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of *finitely* many contractive idempotents.

MatrixAlgebra of Schur multipliersBoolean matrixIdempotent

Blocky matrix

Conjecture III [HHH21]: If $||M||_{\mu} \leq c \implies M$ can be written as a linear combination of k_c blocky matrices.

Conjecture †: The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of *finitely* many contractive idempotents.

Matrix		Algebra of Schur multipliers
Boolean matrix	—	Idempotent
Blocky matrix		Contractive Idempotent

Conjecture III [HHH21]: If $||M||_{\mu} \le c \implies M$ can be written as a linear combination of k_c blocky matrices.

Conjecture ★: The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of *finitely* many contractive idempotents.

Matrix		Algebra of Schur multipliers
Boolean matrix	=	Idempotent
Blocky matrix		Contractive Idempotent

Theorem [HHH21]: Conjecture III is equivalent to Conjecture **★**.

ALICE AND BOB

Thank you!