Lianna Hambardzumyan

joint with Hamed and Pooya Hatami based on [HHH'21]

DIMENSION-FREE RELATIONS

IN COMMUNICATION COMPLEXXTY

McGill University
BIRS, July 28

DIMENSION-FREE RELATIONS

- Boolean matrix M

DIMENSION-FREE RELATIONS

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)

DIMENSION-FREE RELATIONS

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an increasing function $\mathbf{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$,

$$
\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M))
$$

DIMENSION-FREE RELATIONS

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an increasing function $\mathbf{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$,

$$
\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M))
$$

DIMENSION-FREE RELATIONS

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an increasing function $\mathbf{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$s.t.
$\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M))$ dimension-free bound
- If there is also an increasing function $\mathbf{g}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$s.t.

$$
\forall M \quad \beta(M) \leq \mathbf{g}(\alpha(M))
$$

DIMENSION-FREE RELATIONS

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an increasing function $\mathbf{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$s.t.
$\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M)) \quad$ dimension-free bound
- If there is also an increasing function $\mathbf{g}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$s.t.

$$
\forall M \quad \beta(M) \leq \mathbf{g}(\alpha(M))
$$

DIMENSION-FREE RELATIONS

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an increasing function $\mathbf{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$s.t.

$$
\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M)) \quad \text { dimension-free bound }
$$

- If there is also an increasing function $\mathrm{g}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$s.t.

$$
\forall M \quad \beta(M) \leq \mathbf{g}(\alpha(M))
$$

then we say α and β are qualitatively equivalent.

DIMENSION-FREE RELATIONS

- Boolean matrix M
- Matrix parameters α and β (norms, CC measures, etc.)
- Assume there is an increasing function $\mathbf{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$s.t.

$$
\forall M \quad \alpha(M) \leq \mathbf{f}(\beta(M)) \quad \text { dimension-free bound }
$$

- If there is also an increasing function $\mathrm{g}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$s.t.

$$
\forall M \quad \beta(M) \leq \mathbf{g}(\alpha(M))
$$

then we say α and β are qualitatively equivalent.

$$
\alpha \longleftrightarrow \beta
$$

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $\operatorname{rank}(M)-\operatorname{rank}$ of M

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $\operatorname{rank}(M)$ - rank of M

$$
\log \operatorname{rank}(M) \leq D(M) \leq \operatorname{rank}(M)
$$

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $\operatorname{rank}(M)-\operatorname{rank}$ of M

$$
\begin{gathered}
\log _{2} \operatorname{rank}(M) \leq D(M) \leq \operatorname{rank}(M) \\
D(\cdot) \longleftrightarrow \operatorname{rank}(\cdot)
\end{gathered}
$$

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $\operatorname{rank}(M)-\operatorname{rank}$ of M

$$
\begin{gathered}
\log \operatorname{rank}(M) \leq D(M) \leq \operatorname{rank}(M) \\
D(\cdot) \longleftrightarrow \operatorname{rank}(\cdot)
\end{gathered}
$$

- In contrast to the Log-rank conjecture:

$$
\exists C \quad \log \operatorname{rank}(M) \leq D(M) \leq(\log \operatorname{rank}(M))^{C}
$$

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $R(M)$ - (public) randomized CC of M

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $R(M)$ - (public) randomized CC of M

$$
R(M) \leq D(M)
$$

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $R(M)$ - (public) randomized CC of M

$$
\begin{aligned}
R(M) & \leq D(M) \quad \\
\exists \mathbf{g} \text { s.t. } D(M) & \leq \mathbf{g}(R(M))
\end{aligned}
$$

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $R(M)$ - (public) randomized CC of M

$$
\begin{aligned}
R(M) & \leq D(M) \quad \checkmark \\
\exists \mathbf{g} \text { s.t. } D(M) & \leq \mathbf{g}(R(M)) \boldsymbol{x}
\end{aligned}
$$

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $R(M)$ - (public) randomized CC of M

$$
\begin{aligned}
R(M) & \leq D(M) \quad \checkmark \\
\exists \mathbf{g} \text { s.t. } D(M) & \leq \mathbf{g}(R(M)) \boldsymbol{x}
\end{aligned}
$$

Counter-example $E Q: D(E Q)=n+1, \quad R(E Q)=O(1)$

DIMENSION-FREE RELATIONS: EXAMPLES

- $D(M)$ - deterministic CC of M
- $R(M)$ - (public) randomized CC of M

$$
\begin{aligned}
R(M) & \leq D(M) \quad \checkmark \\
\exists \mathbf{g} \text { s.t. } D(M) & \leq \mathbf{g}(R(M)) \boldsymbol{x}
\end{aligned}
$$

Counter-example $E Q: D(E Q)=n+1, \quad R(E Q)=O(1)$

$$
D(\cdot) \nleftarrow R(\cdot)
$$

DIMENSION-FREE RELATIONS: WHY?

$$
\alpha \longleftrightarrow \beta
$$

DIMENSION-FREE RELATIONS: WHY?

$$
\alpha \leftrightarrow \beta
$$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1)$

DIMENSION-FREE RELATIONS: WHY?

$\alpha \longleftrightarrow \beta$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1)$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of M

DIMENSION-FREE RELATIONS: WHY?

$\alpha \longleftrightarrow \beta$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1) \quad \forall M$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of $M \longleftarrow$ of M that partition M

DIMENSION-FREE RELATIONS: WHY?

$\alpha \longleftrightarrow \beta$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1) \quad \forall M$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of $M \longleftarrow$ of M that partition M

$$
\left.\log \chi(M) \leq D(M) \leq O\left(\log ^{2} \chi(M)\right)\right)
$$

DIMENSION-FREE RELATIONS: WHY?

$\alpha \longleftrightarrow \beta$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1) \quad \forall M$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of $M \longleftarrow$ of M that partition M

$$
\begin{gathered}
\left.\log \chi(M) \leq D(M) \leq O\left(\log ^{2} \chi(M)\right)\right) \\
D(\cdot) \longleftrightarrow \chi(\cdot)
\end{gathered}
$$

DIMENSION-FREE RELATIONS: WHY?

$$
\alpha \longleftrightarrow \beta
$$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1) \quad \forall M$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of $M \longleftarrow$ of M that partition M

$$
\begin{gathered}
\left.\log \chi(M) \leq D(M) \leq O\left(\log ^{2} \chi(M)\right)\right) \\
D(\cdot) \longleftrightarrow \chi(\cdot)
\end{gathered}
$$

$$
D(M)=O(1) \Leftrightarrow \chi(M)=O(1)
$$

DIMENSION-FREE RELATIONS: WHY?

$$
\alpha \longleftrightarrow \beta
$$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1) \quad \forall M$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of $M \longleftarrow$ of M that partition M

$$
\begin{gathered}
\left.\log \chi(M) \leq D(M) \leq O\left(\log ^{2} \chi(M)\right)\right) \\
D(\cdot) \longleftrightarrow \chi(\cdot)
\end{gathered}
$$

$$
D(M)=O(1) \Longleftrightarrow \chi(M)=O(1) \Longleftrightarrow M \text { has a "nice" structure }
$$

DIMENSION-FREE RELATIONS: WHY?

$$
\alpha \longleftrightarrow \beta
$$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1) \quad \forall M$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of $M \longleftarrow$ of M that partition M

$$
\begin{gathered}
\left.\log \chi(M) \leq D(M) \leq O\left(\log ^{2} \chi(M)\right)\right) \\
D(\cdot) \longleftrightarrow \chi(\cdot)
\end{gathered}
$$

can be partitioned into constantly many monochromatic rectangles

$$
D(M)=O(1) \Longleftrightarrow \chi(M)=O(1) \Longleftrightarrow M \text { has a "nice" structure }
$$

DIMENSION-FREE RELATIONS: WHY?

$$
\alpha \longleftrightarrow \beta
$$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1) \quad \forall M$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of $M \longleftarrow$ of M that partition M

$$
\begin{gathered}
\left.\log \chi(M) \leq D(M) \leq O\left(\log ^{2} \chi(M)\right)\right) \\
D(\cdot) \longleftrightarrow \chi(\cdot)
\end{gathered}
$$

can be partitioned into constantly many monochromatic rectangles

$$
D(M)=O(1) \Longleftrightarrow \chi(M)=O(1) \Longleftrightarrow M \text { has a "nice" structure }
$$

DIMENSION-FREE RELATIONS: WHY?

$$
\alpha \longleftrightarrow \beta
$$

- Alternative view: $\alpha(M)=O(1) \Longleftrightarrow \beta(M)=O(1) \quad \forall M$
- $D(M)$ - deterministic CC of M
- $\chi(M)$ - partition number of $M \longleftarrow$ of M that partition M

$$
\begin{gathered}
\left.\log \chi(M) \leq D(M) \leq O\left(\log ^{2} \chi(M)\right)\right) \\
D(\cdot) \longleftrightarrow \chi(\cdot)
\end{gathered}
$$

can be partitioned into constantly many monochromatic rectangles

DIMENSION-FREE BOUNDS: GOAL

- Prove dimension-free bounds of form $\alpha(M) \leq \mathbf{f}(\beta(M)) \quad \forall M$ where α characterizes a structure.

DIMENSION-FREE BOUNDS: GOAL

- Prove dimension-free bounds of form $\alpha(M) \leq \mathbf{f}(\beta(M)) \forall M$ where α characterizes a structure.
- Equivalently, $\beta(M)=O(1) \Longrightarrow M$ has a "nice" structure

DIMENSION-FREE BOUNDS: GOAL

- Prove dimension-free bounds of form $\alpha(M) \leq \mathbf{f}(\beta(M)) \forall M$ where α characterizes a structure.
- Equivalently, $\beta(M)=O(1) \Longrightarrow M$ has a "nice" structure

Conjecture template

CONJECTUREI

Recall: $D(\cdot) \longleftrightarrow \chi(\cdot)$

- $D(M)=O(1) \Longrightarrow M$ has a global structure

CONJECTUREI

Recall: $D(\cdot) \longleftrightarrow \chi(\cdot)$

- $D(M)=O(1) \Longrightarrow M$ has a global structure

Recall: $R(M) \nleftarrow \chi(M)$ (Equality)

CONJECTURE I

Recall: $D(\cdot) \longleftrightarrow \chi(\cdot)$

- $D(M)=O(1) \Longrightarrow M$ has a global structure

Recall: $R(M) \nleftarrow \chi(M)$ (Equality)

CONJECTURE I

Recall: $D(\cdot) \longleftrightarrow \chi(\cdot)$

- $D(M)=O(1) \Longrightarrow M$ has a global structure Recall: $R(M) \nsucc \chi(M)$ (Equality)

Equality has large 0-monochromatic rectangles

CONJECTURE I

Recall: $D(\cdot) \longleftrightarrow \chi(\cdot)$

- $D(M)=O(1) \Longrightarrow M$ has a global structure

Recall: $R(M) \nsucc \chi(M)$ (Equality)
Equality has large 0-monochromatic rectangles

Question: $R(M)=O(1) \Longrightarrow M$ has a large monochromatic rectangle?

CONJECTURE I

Conjecture I: For a Boolean matrix M of size $n \times n$, if
$R_{\epsilon}(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} is a constant depending on c.

CONJECTURE I: GENERAL

Conjecture [CLV19]: For a Boolean matrix M of size $n \times n$, if $R_{\epsilon}(M) \leq c(n)$ for some constant ϵ, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where $\delta_{c}=2^{-O(c(n))}$.

CONJECTURE I

Conjecture I: For a Boolean matrix M of size $n \times n$, if
$R_{\epsilon}(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} is a constant depending on c.

- End goal: fully characterize randomized protocols

CONJECTURE I

Conjecture I: For a Boolean matrix M of size $n \times n$, if
$R_{\epsilon}(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} is a constant depending on c.

- End goal: fully characterize randomized protocols
- Understand the "easy" randomized protocols

CONJECTURE I

Conjecture I: For a Boolean matrix M of size $n \times n$, if
$R_{\epsilon}(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} is a constant depending on c.

- End goal: fully characterize randomized protocols
- Understand the "easy" randomized protocols
- A barrier for the open problem of [BFS86, GPW18]:

$$
\mathbb{B P}^{P C C} \subset \mathbb{P}^{\mathbb{N P}^{C C}} ?
$$

CONJECTURE I

Conjecture I: For a Boolean matrix M of size $n \times n$, if
$R_{\epsilon}(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} is a constant depending on c.

- End goal: fully characterize randomized protocols
- Understand the "easy" randomized protocols
- A barrier for the open problem of [BFS86, GPW18]:

$$
\mathbb{B} \mathbb{P}^{C C} \subset \mathbb{P}^{\mathbb{N} \mathbb{P}^{C C}} ?
$$

- If Conjecture I is false, then there is a separation between these classes.

CONJECTURE I: ONE-SIDED ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R^{1}(M) \leq c$, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} depends on c.

CONJECTURE I: ONE-SIDED ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R^{1}(M) \leq c$, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} depends on c.

- This theorem applies to all the matrices for which the randomized protocol with constant complexity uses hashing technique.

CONJECTURE I: ONE-SIDED ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R^{1}(M) \leq c$, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} depends on c.

- This theorem covers all the matrices for which the randomized protocol with constant complexity uses hashing technique.
- In particular, this includes EQ, Hamming-Distance- d for constant d.

CONJECTURE I: ONE-SIDED ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R^{1}(M) \leq c$, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} depends on c.

Proof idea:

- Forbid a submatrix that is hard for one-sided error randomized protocol.

Recall: $R^{1}\left(E Q_{k}\right)=\Theta(k)$ (if the protocol doesn't make an error on 0's).

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

Dimension-free relation:

$$
\forall M \quad \log \log \operatorname{rank}(M) \leq R_{0}(M) \leq \operatorname{rank}(M)
$$

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

Dimension-free relation:

$$
\forall M \quad \log \log \operatorname{rank}(M) \leq R_{0}(M) \leq \operatorname{rank}(M),
$$

which implies

$$
R_{0}(\cdot) \longleftrightarrow \operatorname{rank}(\cdot)
$$

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

Dimension-free relation:

$$
\forall M \quad \log \log \operatorname{rank}(M) \leq R_{0}(M) \leq \operatorname{rank}(M),
$$

which implies

$$
R_{0}(\cdot) \longleftrightarrow \operatorname{rank}(\cdot) \longleftrightarrow D(\cdot)
$$

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

Dimension-free relation:

$$
\forall M \quad \log \log \operatorname{rank}(M) \leq R_{0}(M) \leq \operatorname{rank}(M),
$$

which implies

$$
R_{0}(\cdot) \longleftrightarrow \operatorname{rank}(\cdot) \longleftrightarrow D(\cdot) \longleftrightarrow \chi(\cdot)
$$

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

Dimension-free relation:

$$
\forall M \quad \log \log \operatorname{rank}(M) \leq R_{0}(M) \leq \operatorname{rank}(M),
$$

which implies

$$
R_{0}(\cdot) \longleftrightarrow \operatorname{rank}(\cdot) \stackrel{\mathrm{GS} 19}{\longleftrightarrow} \operatorname{rank}_{\epsilon}(\cdot) \longleftrightarrow D(\cdot) \longleftrightarrow \chi(\cdot)
$$

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

Dimension-free relation:

$$
\forall M \quad \log \log \operatorname{rank}(M) \leq R_{0}(M) \leq \operatorname{rank}(M),
$$

which implies
$R_{0}(\cdot) \longleftrightarrow \operatorname{rank}(\cdot) \stackrel{\text { GS19 }}{\longleftrightarrow} \operatorname{rank}_{\epsilon}(\cdot) \longleftrightarrow D(\cdot) \longleftrightarrow R^{p r i}(\cdot) \longleftrightarrow \chi(\cdot)$

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

Proof idea:

- Forbid a submatrix that is hard for zero error randomized protocol.

CONJECTURE I: ZERO ERROR

Theorem [HHH21]: Let M be a Boolean matrix of size $n \times n$. If $R_{0}(M) \leq c$, then M can be partitioned into δ_{c} monochromatic rectangles, where δ_{c} depends only on c.

Proof idea:

- Forbid a submatrix that is hard for zero error randomized protocol.

Recall: $R_{0}\left(E Q_{k}\right)=\Theta(k), \quad R_{0}\left(G T_{k}\right)=\Theta(k)$

$$
R_{0}\left(\overline{E Q}_{k}\right)=\Theta(k), \quad R_{0}\left(\overline{G T}_{k}\right)=\Theta(k)
$$

CONJECTURE I

Conjecture I: For a Boolean matrix M of size $n \times n$, if
$R_{\epsilon}(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} is a constant depending on c.

CONJECTURE I

Conjecture I: For a Boolean matrix M of size $n \times n$, if
$R_{\epsilon}(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} is a constant depending on c.

Proof idea:

- Forbid a submatrix that is hard for two-sided error randomized protocol.

CONJECTURE I

Conjecture I: For a Boolean matrix M of size $n \times n$, if
$R_{\epsilon}(M) \leq c$ for some constant c, then M has a monochromatic rectangle of size $\delta_{c} n \times \delta_{c} n$, where δ_{c} is a constant depending on c.

Proof idea:

- Forbid a submatrix that is hard for two-sided error randomized protocol.

CONJECTURE I: PROOF BARRIER

Barrier theorem [HHH21]: For all sufficiently large n, there exists an $n \times n$ Boolean matrix M s.t.
(1) Every $n^{1 / 4} \times n^{1 / 4}$ submatrix F of M has $R_{\epsilon}(F)=O(1)$.
(2) M doesn't contain a monochromatic rectangle of size $n^{0.99} \times n^{0.99}$.
$R(M) \geq \Omega(\log n)$

CONJECTURE I: PROOF BARRIER

Barrier theorem [HHH21]: For all sufficiently large n, there exists an $n \times n$ Boolean matrix M s.t.
(1) Every $n^{1 / 4} \times n^{1 / 4}$ submatrix F of M has $R_{\epsilon}(F)=O(1)$.
(2) M doesn't contain a monochromatic rectangle of size $n^{0.99} \times n^{0.99}$.
$R(M) \geq \Omega(\log n), M$ is a random graph.

CONJECTURE I: PROOF BARRIER

Barrier theorem [HHH21]: For all sufficiently large n, there exists an $n \times n$ Boolean matrix M s.t.
(1) Every $n^{1 / 4} \times n^{1 / 4}$ submatrix F of M has $R_{\epsilon}(F)=O(1)$.
(2) M doesn't contain a monochromatic rectangle of size $n^{0.99} \times n^{0.99}$.
$R(M) \geq \Omega(\log n), M$ is a random graph.

- [HHH21]: Barrier theorem refuted the Probabilistic Universal Graph Conjecture of Harms, Wild, and Zamaraev [HWZ21].

CONJECTURE I: PROOF BARRIER

Barrier theorem [HHH21]: For all sufficiently large n, there exists an $n \times n$ Boolean matrix M s.t.
(1) Every $n^{1 / 4} \times n^{1 / 4}$ submatrix F of M has $R_{\epsilon}(F)=O(1)$.
(2) M doesn't contain a monochromatic rectangle of size $n^{0.99} \times n^{0.99}$.
$R(M) \geq \Omega(\log n), M$ is a random graph.

- [HHH21]: Barrier theorem refuted the Probabilistic Universal Graph Conjecture of Harms, Wild, and Zamaraev [HWZ21].
- [HH21]: Barrier theorem + counting argument refuted the Implicit Graph Conjecture [HWZ21].

CONJECTURE I: OTHER APPROACH

Idea: Study randomized CC via matrix norms

CONJECTURE I: OTHER APPROACH

Idea: Study randomized CC via matrix norms

1. Trace norm, $\|M\|_{t r}:=\sum_{i=1}^{k}\left|\lambda_{i}\right|$, where λ_{i} are eigenvalues of M

CONJECTURE I: OTHER APPROACH

Idea: Study randomized CC via matrix norms

1. Trace norm, $\|M\|_{t r}:=\sum_{i=1}^{k}\left|\lambda_{i}\right|$, where λ_{i} are eigenvalues of M
2. μ-norm $\longleftrightarrow \nu$ - norm $\longleftrightarrow \gamma_{2}$ - norm (Schur norm)

CONJECTURE I: OTHER APPROACH

Idea: Study randomized CC via matrix norms

1. Trace norm, $\|M\|_{t r}:=\sum_{i=1}^{k}\left|\lambda_{i}\right|$, where λ_{i} are eigenvalues of M
2. μ-norm $\longleftrightarrow \nu$ - norm $\longleftrightarrow \gamma_{2}$ - norm (Schur norm)

- Approximates of these norms lower bound $R(M)$

CONJECTURE I: OTHER APPROACH

Idea: Study randomized CC via matrix norms

1. Trace norm, $\|M\|_{t r}:=\sum_{i=1}^{k}\left|\lambda_{i}\right|$, where λ_{i} are eigenvalues of M
2. μ-norm $\longleftrightarrow \nu$ - norm $\longleftrightarrow \gamma_{2}$ - norm (Schur norm)

- Approximates of these norms lower bound $R(M)$
- $\|M\|_{o, \epsilon}=\min _{M^{\prime}}\left\{\left\|M^{\prime}\right\|_{0}: \forall(x, y) \quad\left|M(x, y)-M^{\prime}(x, y)\right| \leq \epsilon\right.$ and M^{\prime} is real-valued $\}$

CONJECTURE I: TRACE NORM

$$
R_{\epsilon}(M) \geq \log \frac{\|M\|_{t r, \epsilon}}{n}
$$

CONJECTURE I: TRACE NORM

$$
R_{\epsilon}(M) \geq \log \frac{\|M\|_{t r, \epsilon}}{n}
$$

M is $n \times n$-sized

Strong Conjecture I: $\frac{\|M\|_{t r, \epsilon}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

CONJECTURE I: TRACE NORM

$$
R_{\epsilon}(M) \geq \log \frac{\|M\|_{t r, \epsilon}}{n}
$$

M is $n \times n$-sized

Strong Conjecture I: $\frac{\|M\|_{t r, \ell}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

CONJECTURE I: TRACE NORM

$$
R_{\epsilon}(M) \geq \log \frac{\|M\|_{t r, \epsilon}}{n}
$$

M is $n \times n$-sized

Strong Conjecture I: $\frac{\|M\|_{t r, \epsilon}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

CONJECTURE I: TRACE NORM

$$
R_{\epsilon}(M) \geq \log \frac{\|M\|_{t r, \epsilon}}{n}
$$

M is $n \times n$-sized

Strong Conjecture I: $\frac{\|M\|_{\text {tr. }}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Theorem [HHH21]: Conjecture II holds for matrices of form $F(x, y)=f\left(y^{-1} x\right)$, where $f: G \rightarrow\{0,1\}$ and G is any finite group.

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

Bipartite graph

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

Bipartite graph

Trace norm

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

Trace norm
=

Bipartite graph
Graph energy

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

Trace norm

Bipartite graph
Graph energy

Monochromatic rectangle

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

Trace norm
Monochromatic rectangle

Bipartite graph
Graph energy
Complete bipartite subgraph*

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

Trace norm
Monochromatic rectangle
has a large mon. rect.

Bipartite graph
Graph energy
Complete bipartite subgraph*

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

Trace norm
Monochromatic rectangle
has a large mon. rect.

Bipartite graph
Graph energy
Complete bipartite subgraph*
satisfies Strong Erdős-Hajnal property

CONJECTURE II: GRAPH THEORY

Conjecture II: $\frac{\|M\|_{t r}}{n} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$

Matrix

Trace norm
Monochromatic rectangle
has a large mon. rect.

Bipartite graph
Graph energy
$=$ Complete bipartite subgraph*
satisfies Strong Erdős-Hajnal property

Conjecture II (graph theoretic): If a bipartite graph has small graph energy, then it satisfies the Strong Erdős-Hajnal property.

CONJECTURE I: μ-NORM

$$
\text { Recall: }\|M\|_{\mu}=\min \left\{\sum_{i}\left|\alpha_{i}\right|: M=\sum_{i} \alpha_{i} R_{i}\right\},
$$

where R_{i} are rank- 1 matrices and $\alpha_{i} \in \mathbb{R}$.

CONJECTURE I: μ-NORM

Recall: $\|M\|_{\mu}=\min \left\{\sum_{i}\left|\alpha_{i}\right|: M=\sum_{i} \alpha_{i} R_{i}\right\}$, where R_{i} are rank- 1 matrices and $\alpha_{i} \in \mathbb{R}$.

$$
R(M)=\Omega\left(\log \|M\|_{\mu, \epsilon}\right)
$$

CONJECTURE I: μ-NORM

Recall: $\|M\|_{\mu}=\min \left\{\sum_{i}\left|\alpha_{i}\right|: M=\sum_{i} \alpha_{i} R_{i}\right\}$,
where R_{i} are rank- 1 matrices and $\alpha_{i} \in \mathbb{R}$.

$$
R(M)=\Omega\left(\log \|M\|_{\mu, \epsilon}\right) \text { and } \quad R(M)=O\left(\|M\|_{\mu, \epsilon}^{2}\right)
$$

CONJECTURE I: μ-NORM

Recall: $\|M\|_{\mu}=\min \left\{\sum_{i}\left|\alpha_{i}\right|: M=\sum_{i} \alpha_{i} R_{i}\right\}$,
where R_{i} are rank- 1 matrices and $\alpha_{i} \in \mathbb{R}$.

$$
R(M)=\Omega\left(\log \|M\|_{\mu, \epsilon}\right) \text { and } \quad R(M)=O\left(\|M\|_{\mu, \epsilon}^{2}\right)
$$

$$
R(\cdot) \longleftrightarrow\|\cdot\|_{\mu, \epsilon}
$$

CONJECTURE I: μ-NORM

Recall: $\|M\|_{\mu}=\min \left\{\sum_{i}\left|\alpha_{i}\right|: M=\sum_{i} \alpha_{i} R_{i}\right\}$,
where R_{i} are rank- 1 matrices and $\alpha_{i} \in \mathbb{R}$.

$$
\begin{gathered}
R(M)=\Omega\left(\log \|M\|_{\mu, \epsilon}\right) \text { and } \quad R(M)=O\left(\|M\|_{\mu, \epsilon}^{2}\right) \\
R(\cdot) \longleftrightarrow\|\cdot\|_{\mu, \epsilon}
\end{gathered}
$$

Conjecture I (Equivalent): $\|M\|_{\mu,} \leq c \Longrightarrow M$ has a mon. rec. of size $\delta_{c} n \times \delta_{c} n$.

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.
CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.Blow-up of identity matrix

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

\rightarrow Blow-up of identity matrix

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.Blocky rank: $\operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\}$, where B_{i} is a blocky matrix

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.$$
\text { Blocky rank: } \operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\} \text {, where } B_{i} \text { is a blocky matrix }
$$

Equivalent versions: $\quad\|M\|_{\mu}=O(1) \quad \stackrel{?}{\Longrightarrow} \quad b r(M)=O(1)$

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.$$
\text { Blocky rank: } \operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\} \text {, where } B_{i} \text { is a blocky matrix }
$$

Equivalent versions: $\quad\|M\|_{\mu}=O(1)$

$$
\begin{aligned}
& \|M\|_{\nu}=O(1) \quad \stackrel{?}{\Longrightarrow} \operatorname{br}(M)=O(1) \\
& \|M\|_{\gamma_{2}}=O(1)
\end{aligned}
$$

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings
- Operator theory - contractive idempotents

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings
- Operator theory - contractive idempotents

Blocky rank:

$$
\operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\}, \text { where } B_{i} \text { is a blocky matrix }
$$

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings
- Operator theory - contractive idempotents

Blocky rank:

$\operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\}$, where B_{i} is a blocky matrix

Question: Is there a $n \times n$ matrix M that has $R(M)=O(1)$ and $D^{E Q}(M)=\Omega(\log n)$?

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings
- Operator theory - contractive idempotents

Blocky rank:

$$
\operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\}, \text { where } B_{i} \text { is a blocky matrix }
$$

Question: Is there a $n \times n$ matrix M that has $R(M)=O(1)$ and $D^{E Q}(M)=\Omega(\log n)$?
Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings
- Operator theory - contractive idempotents

Blocky rank:

$$
\operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\}, \text { where } B_{i} \text { is a blocky matrix }
$$

Question: Is there a $n \times n$ matrix M that has $R(M)=O(1)$ and $D^{E Q}(M)=\Omega(\log n)$?
Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

$$
1 / 2 \log _{2} b r(M) \leq D^{E Q}(M) \leq b r(M)
$$

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings
- Operator theory - contractive idempotents

Blocky rank:
$\operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\}$, where B_{i} is a blocky matrix

Question: Is there a $n \times n$ matrix M that has $R(M)=O(1)$ and $D^{E Q}(M)=\Omega(\log n)$?
Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

$$
1 / 2 \log _{2} b r(M) \leq D^{E Q}(M) \leq b r(M)
$$

$$
D^{E Q}(\cdot) \longleftrightarrow b r(\cdot)
$$

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.$$
\text { Blocky rank: } \operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\} \text {, where } B_{i} \text { is a blocky matrix }
$$

Equivalent versions: $\quad\|M\|_{\mu}=O(1)$

$$
\begin{array}{ll}
\|M\|_{\nu}=O(1) & \stackrel{?}{\Longrightarrow} \\
\|M\|_{\gamma_{2}}=O(1)
\end{array} \quad \begin{aligned}
& b r(M)=O(1) \\
& D^{E Q}(M)=O(1)
\end{aligned}
$$

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings
- Operator theory - contractive idempotents

Blocky rank:

$$
\operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\}, \text { where } B_{i} \text { is a blocky matrix }
$$

Question: Is there a $n \times n$ matrix M that has $R(M)=O(1)$ and $D^{E Q}(M)=\Omega(\log n)$?
Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

$$
1 / 2 \log _{2} b r(M) \leq D^{E Q}(M) \leq b r(M)
$$

CONJECTURE III: BLOCKY MATRICES

1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

- Graph theory - equivalence graphs
- Complexity theory - fat matchings
- Operator theory - contractive idempotents

Blocky rank:
$\operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\}$, where B_{i} is a blocky matrix

Question: Is there a $n \times n$ matrix M that has $R(M)=O(1)$ and $D^{E Q}(M)=\Omega(\log n)$?
Answer [HHH21, HWZ21]: Hypercube [HHH21, HWZ21]

$$
1 / 2 \log _{2} b r(M) \leq D^{E Q}(M) \leq b r(M)
$$

$$
\Omega\left(\log _{2}\|M\|_{\mu}\right) \leq b r(M)
$$

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

$$
\text { Blocky rank: } \operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\} \text {, where } B_{i} \text { is a blocky matrix }
$$

Equivalent versions: $\quad\|M\|_{\mu}=O(1)$

$$
\|M\|_{\nu}=O(1)
$$

$$
\begin{array}{ll}
\stackrel{?}{\Longleftrightarrow} & b r(M)=O(1) \\
\Longleftarrow & D^{E Q}(M)=O(1)
\end{array}
$$

$$
\|M\|_{\gamma_{2}}=O(1)
$$

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.$$
\text { Blocky rank: } \operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\} \text {, where } B_{i} \text { is a blocky matrix }
$$

Equivalent versions: $\|\cdot\|_{\mu}$

$$
\|\cdot\|_{\nu} \quad \stackrel{?}{\longleftrightarrow} \quad \begin{gathered}
b r(\cdot) \\
D^{E Q}(\cdot)
\end{gathered}
$$

$$
\|\cdot\|_{\gamma_{2}}
$$

CONJECTURE III

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written

 as a linear combination of k_{c} blocky matrices.$$
\text { Blocky rank: } \operatorname{br}(M)=\min \left\{r: M=\sum_{i=1}^{r} \alpha_{i} B_{i}\right\} \text {, where } B_{i} \text { is a blocky matrix }
$$

Equivalent versions: $\|\cdot\|_{\mu}$

$$
\|\cdot\|_{\nu} \quad \stackrel{?}{\longleftrightarrow} \quad \begin{aligned}
& \operatorname{br}(\cdot) \\
& D^{E Q}(\cdot)
\end{aligned}
$$

$$
\|\cdot\|_{\gamma_{2}}
$$

Theorem [HHH21]: Conjecture III holds for matrices of form $F(x, y)=f\left(y^{-1} x\right)$, where $f: G \rightarrow\{0,1\}$ and G is any finite group.

CONJECTURE III: OPERATOR THEORY

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

CONJECTURE III: OPERATOR THEORY

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

Conjecture \star : The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of finitely many contractive idempotents.

CONJECTURE III: OPERATOR THEORY

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

Conjecture t : The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of finitely many contractive idempotents.

CONJECTURE III: OPERATOR THEORY

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

Conjecture t : The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of finitely many contractive idempotents.

Matrix
Boolean matrix

Algebra of Schur multipliers

CONJECTURE III: OPERATOR THEORY

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

Conjecture t : The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of finitely many contractive idempotents.

Matrix
Boolean matrix

Algebra of Schur multipliers
Idempotent

CONJECTURE III: OPERATOR THEORY

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

Conjecture \star : The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of finitely many contractive idempotents.

Matrix
Boolean matrix

Algebra of Schur multipliers
Idempotent

Blocky matrix

CONJECTURE III: OPERATOR THEORY

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

Conjecture \star : The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of finitely many contractive idempotents.

Matrix
Boolean matrix
Blocky matrix

Algebra of Schur multipliers Idempotent

Contractive Idempotent

CONJECTURE III: OPERATOR THEORY

Conjecture III [HHH21]: If $\|M\|_{\mu} \leq c \Longrightarrow M$ can be written as a linear combination of k_{c} blocky matrices.

Conjecture t : The idempotent Schur multipliers are exactly those Boolean matrices that can be written as a linear combination of finitely many contractive idempotents.

Matrix
Boolean matrix
Blocky matrix

Algebra of Schur multipliers
Idempotent
Contractive Idempotent

Theorem [HHH21]: Conjecture III is equivalent to Conjecture \star.

ALICE AND BOB

Thank you!

