Exactly N With More Than 3 Players

BIRS Communication Complexity Workshop (July 2022)

Lianna Hambardzumyan Toniann Pitassi
Suhail Sherif Morgan Shirley Adi Shraibman

3-party communication complexity

Bob

Charlie

3-party communication complexity

This is the number-in-hand model (NIH)

3-party communication complexity

This is the number-on-forehead model (NOF)

Why we care about NOF complexity

Applications to other fields!

- Strong NOF lower bounds give ACC_{0} lower bounds [Y90,HG91]
- Lower bounds for Lovász-Schrijver systems in proof complexity [BPS07]
- Explicit pseudorandom generator constructions [BNS92]
- Time-space trade-offs in Turing Machines [BNS92]
- This talk: applications to additive combinatorics

NIH vs. NOF

NOF lower bounds seem harder to prove than NIH lower bounds.

Example: Equality

Model	Det.	Rand.	Notes
2-party	Hard	Easy	Yao, folklore
NIH	Hard	Easy	by reduction to 2-party model
NOF	Easy	Easy	Charlie announces $x=y$ Bob announces $x=z$

NIH vs. NOF

NOF lower bounds seem harder to prove than NIH lower bounds.

Example: Equality

Model	Det.	Rand.	Notes
2-party	Hard	Easy	Yao, folklore
NIH	Hard	Easy	by reduction to 2-party model
NOF	Easy	Easy	Charlie announces $x=y$ Bob announces $x=z$

Can we separate randomized and deterministic communication in the NOF model?

The Exactly N function

Inputs x_{1}, \ldots, x_{k} are in $\{0, \ldots, N\}$.
$\operatorname{Exactly} N\left(x_{1}, \ldots, x_{k}\right)=1$ if $\sum_{i=1}^{k} x_{i}=N$
$\operatorname{ExACtLy} N$ has an easy randomized protocol

Exactly N is a candidate hard function for deterministic NOF communication...

The Exactly N function

Inputs x_{1}, \ldots, x_{k} are in $\{0, \ldots, N\}$.
$\operatorname{Exactly} N\left(x_{1}, \ldots, x_{k}\right)=1$ if $\sum_{i=1}^{k} x_{i}=N$
$\operatorname{ExACtLy} N$ has an easy randomized protocol
$\operatorname{Exactly} N$ is a candidate hard function for deterministic NOF communication...but it isn't maximally hard!

A maximally hard function would take $O(\log N)$ bits of communication.
$\operatorname{Exactly} N$ can be done with less.

Chandra/Furst/Lipton protocol for Exactly N

Chandra/Furst/Lipton protocol for Exactly N

Chandra/Furst/Lipton protocol for Exactly N

Chandra/Furst/Lipton protocol for Exactly N

Chandra/Furst/Lipton protocol for Exactly N

Chandra/Furst/Lipton protocol for Exactly N

$$
x^{\prime}=N-y-z \quad y^{\prime}=N-x-z \quad z^{\prime}=N-x-y
$$

Chandra/Furst/Lipton protocol for Exactly N

$$
x^{\prime}=N-y-z \quad y^{\prime}=N-x-z \quad z^{\prime}=N-x-y
$$

Let $\Delta=N-(x+y+z)$

Chandra/Furst/Lipton protocol for Exactly N

$$
x^{\prime}=N-y-z \quad y^{\prime}=N-x-z \quad z^{\prime}=N-x-y
$$

Let $\Delta=N-(x+y+z)$

$$
\left(x^{\prime}-x\right)=\left(y^{\prime}-y\right)=\left(z^{\prime}-z\right)=\Delta
$$

Chandra/Furst/Lipton protocol for Exactly N

$$
x^{\prime}=N-y-z \quad y^{\prime}=N-x-z \quad z^{\prime}=N-x-y
$$

Let $\Delta=N-(x+y+z)$
$\left(x^{\prime}-x\right)=\left(y^{\prime}-y\right)=\left(z^{\prime}-z\right)=\Delta$

Define $T=x+2 y+3 z$

Chandra/Furst/Lipton protocol for Exactly N

$$
x^{\prime}=N-y-z \quad y^{\prime}=N-x-z \quad z^{\prime}=N-x-y
$$

Let $\Delta=N-(x+y+z)$
$\left(x^{\prime}-x\right)=\left(y^{\prime}-y\right)=\left(z^{\prime}-z\right)=\Delta$

Define $T=x+2 y+3 z$

$$
T_{x}=x^{\prime}+2 y+3 z
$$

Chandra/Furst/Lipton protocol for Exactly N

$$
x^{\prime}=N-y-z \quad y^{\prime}=N-x-z \quad z^{\prime}=N-x-y
$$

Let $\Delta=N-(x+y+z)$
$\left(x^{\prime}-x\right)=\left(y^{\prime}-y\right)=\left(z^{\prime}-z\right)=\Delta$

Define $T=x+2 y+3 z$

$$
T_{x}=x^{\prime}+2 y+3 z=T-\Delta
$$

Chandra/Furst/Lipton protocol for Exactly N

$$
x^{\prime}=N-y-z \quad y^{\prime}=N-x-z \quad z^{\prime}=N-x-y
$$

Let $\Delta=N-(x+y+z)$
$\left(x^{\prime}-x\right)=\left(y^{\prime}-y\right)=\left(z^{\prime}-z\right)=\Delta$

Define $T=x+2 y+3 z$

$$
\begin{aligned}
& T_{x}=x^{\prime}+2 y+3 z=T-\Delta \\
& T_{y}=x+2 y^{\prime}+3 z=T-2 \Delta \\
& T_{z}=x+2 y+3 z^{\prime}=T-3 \Delta
\end{aligned}
$$

T_{x}, T_{y}, T_{z} comprise a 3-term arithmetic progression

Arithmetic progressions

A k-term arithmetic progression (k-AP) is a set of the form

$$
\{a, a+b, \ldots, a+(k-1) b\}
$$

A k-AP is trivial if $b=0$ (i.e. if it is a singleton).

Chandra/Furst/Lipton protocol for Exactly N

$$
\begin{aligned}
& T_{x}=x^{\prime}+2 y+3 z=T-\Delta \\
& T_{y}=x+2 y^{\prime}+3 z=T-2 \Delta \\
& T_{z}=x+2 y+3 z^{\prime}=T-3 \Delta
\end{aligned}
$$

T_{x}, T_{y}, T_{z} comprise a 3-AP that is trivial $\Leftrightarrow \Delta=0$.

Chandra/Furst/Lipton protocol for Exactly N

$$
\begin{aligned}
& T_{x}=x^{\prime}+2 y+3 z=T-\Delta \\
& T_{y}=x+2 y^{\prime}+3 z=T-2 \Delta \\
& T_{z}=x+2 y+3 z^{\prime}=T-3 \Delta
\end{aligned}
$$

T_{x}, T_{y}, T_{z} comprise a 3-AP that is trivial $\Leftrightarrow \Delta=0$.
$\Delta=N-(x+y+z)$, so $\Delta=0 \Leftrightarrow \operatorname{Exactly} N(x, y, z)=1$.

Chandra/Furst/Lipton protocol for Exactly N

Chandra/Furst/Lipton protocol for Exactly N

Charlie

T_{z}

We have reduced NOF Exactly N to NIH Equality where the inputs are promised to comprise a k-AP!

$k-A P-f r e e ~ c o l o r i n g s ~$

Theorem (Behrend): [N] has a 3-AP-free coloring with $2^{O}(\sqrt{\log N})$ colors

So EXACTLY N for 3 players can be solved using $O(\sqrt{\log N})$ bits of communication!

Behrend's construction

Salem/Spencer: map $[N]$ to vectors in $[n]^{d}$ by base- n representation

Example: $x=184, N=300$

$$
\begin{array}{ll}
n=10 & \operatorname{vec}(x)=(1,8,4) \\
n=16 & \operatorname{vec}(x)=(0,11,8)
\end{array}
$$

Behrend's construction

Behrend's idea: look at the lengths of the Salem/Spencer vectors

Behrend's construction

Behrend's idea: look at the lengths of the Salem/Spencer vectors

Behrend's construction

Behrend's idea: look at the lengths of the Salem/Spencer vectors

Behrend's construction

Behrend's idea: look at the lengths of the Salem/Spencer vectors

If 3 vectors have the same length, they can't be a 3-AP!
Color $x \in[N]$ by the (squared) length of $\operatorname{vec}(x)$.

Behrend's construction

Problem: x, y, z are a $3-\mathrm{AP} \nRightarrow \operatorname{vec}(x), \operatorname{vec}(y), \operatorname{vec}(z)$ are a $3-\mathrm{AP}$

Behrend's construction

Problem: x, y, z are a $3-\mathrm{AP} \nRightarrow \operatorname{vec}(x), \operatorname{vec}(y), \operatorname{vec}(z)$ are a $3-\mathrm{AP}$

Solution: Restrict to vectors with ℓ_{∞}-norm $\leq n / 3$

Behrend's construction

Problem: x, y, z are a $3-\mathrm{AP} \nRightarrow \operatorname{vec}(x), \operatorname{vec}(y), \operatorname{vec}(z)$ are a $3-\mathrm{AP}$

Solution: Restrict to vectors with ℓ_{∞}-norm $\leq n / 3$

Use a pigeonhole argument to find a large 3-AP-free set

From a large set, we can get a small coloring (by translation)
Behrend: set of size $N / 2^{O(\sqrt{\log N})} \Rightarrow$ coloring of size $2^{O}(\sqrt{\log N})$

Chandra/Furst/Lipton protocol for Exactly N

Charlie

$$
T_{z}
$$

Chandra/Furst/Lipton protocol for Exactly N

Chandra/Furst/Lipton protocol for Exactly N

What if the vectors have large ℓ_{∞} norm?

Linial/Pitassi/Shraibman protocol

Explicitly reason about the possibility of carries!

Alice announces her best guess for the carry vector of $x+y+z$

If the parties agree on the carry vector, they can use this to ensure that the vectors for T_{x}, T_{y}, T_{z} are a 3-AP (details omitted).

Linial/Pitassi/Shraibman protocol

How much communication?

- Send carry vector: $O(d)$ bits
- Send (squared) vector length: $O(\log n)$ bits
- Bob and Charlie confirm: $O(1)$ bits

$$
\text { Balanced at } d=O(\sqrt{\log N}), n=2^{O(\sqrt{\log N})} \text { (matches Behrend) }
$$

Q: Why do we care about explicit protocols?

Q: Why do we care about explicit protocols?

A: Another connection to combinatorics: corners!

Better corner-free colorings

Linial/Shraibman show that we don't need to communicate the whole carry vector!

This gives the best improvement on corner-free colorings since Behrend.

Green gives a further improvement.

What about when $k>3$?

$k>3$

Behrend still works...

$k>3$

Behrend still works...

Behrend still works...

$k>3$

Behrend still works...

...but we can do better.

Rankin gives a better construction of k-AP-free colorings!

Higher-degree progressions

A degree- m k-term polynomial progression $\left(k-\mathrm{P}_{m} \mathrm{P}\right)$ is a set of the form

$$
\{p(0), p(1), \ldots, p(k-1)\}
$$

where p is a polynomial of degree at most m.

Lifting to higher-degree progressions

Theorem (Rankin, Łaba/Lacey): If x_{1}, \ldots, x_{k} are a $k-\mathrm{P}_{m} \mathrm{P}$ with:

- $k>2 m$
- $\operatorname{vec}\left(x_{1}\right), \ldots, \operatorname{vec}\left(x_{k}\right)$ have low ℓ_{∞}-norm (less than n / c_{m})
- $\left\{x_{1}, \ldots, x_{k}\right\}$ is not a singleton then $\left\|\operatorname{vec}\left(x_{1}\right)\right\|_{2}^{2}, \ldots,\left\|\operatorname{vec}\left(x_{k}\right)\right\|_{2}^{2}$ is a non-trivial $k-\mathrm{P}_{2 m} \mathrm{P}$

Behrend's construction as lifting

x_{1}, x_{2}, x_{3} are a $3-A P\left(3-P_{1} P\right)$ with:

- $k>2 m$
- $\operatorname{vec}\left(x_{1}\right), \operatorname{vec}\left(x_{2}\right), \operatorname{vec}\left(x_{3}\right)$ have low ℓ_{∞}-norm so if $\left\|\operatorname{vec}\left(x_{1}\right)\right\|_{2}^{2}=\left\|\operatorname{vec}\left(x_{2}\right)\right\|_{2}^{2}=\left\|\operatorname{vec}\left(x_{3}\right)\right\|_{2}^{2}$ it must be that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a singleton.

Behrend's construction as lifting

x_{1}, x_{2}, x_{3} are a $3-A P\left(3-P_{1} P\right)$ with:

- $3>2$
- $\operatorname{vec}\left(x_{1}\right), \operatorname{vec}\left(x_{2}\right), \operatorname{vec}\left(x_{3}\right)$ have low ℓ_{∞}-norm so if $\left\|\operatorname{vec}\left(x_{1}\right)\right\|_{2}^{2}=\left\|\operatorname{vec}\left(x_{2}\right)\right\|_{2}^{2}=\left\|\operatorname{vec}\left(x_{3}\right)\right\|_{2}^{2}$ it must be that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a singleton.

Rankin's construction

Repeated apply lifting! Let $k=2^{r}+1$
$k-\mathrm{P}_{1} \mathrm{P} \rightarrow k-\mathrm{P}_{2} \mathrm{P} \rightarrow k-\mathrm{P}_{4} \mathrm{P} \rightarrow \ldots \rightarrow k-\mathrm{P}_{2^{r-1}} \mathrm{P} \rightarrow k-\mathrm{P}_{2^{r}} \mathrm{P}$

If the the $k-\mathrm{P}_{2^{r}} \mathrm{P}$ is a singleton, the original $k-\mathrm{P}_{1} \mathrm{P}$ was also!

Each time the range of values shrinks from n^{d} to $n^{2} d$ for some n, d

Theorem (Rankin): [N] has a k-AP-free coloring with $2^{O\left(\log N^{1 / \log (k-1)}\right)}$ colors

Previous explicit protocols can't use Rankin's construction.

Rankin's construction with carry vectors

Rankin's construction with carry vectors

Exactly N over [N]

Rankin's construction with carry vectors

Rankin's construction with carry vectors

Rankin's construction with carry vectors

Not in NOF so carry method doesn't work!

In order to ensure that the vectors have small ℓ_{∞} norm...

In order to ensure that the vectors have small ℓ_{∞} norm...

Alice announces how much she needs to shift her vector to make it small. We shift all of the vectors by this much!

Our protocol

Rankin's construction with shifts between rounds.

- Other players need different shifts: the vectors are not equal, and so we're done!
- Otherwise, we can proceed: the vectors are now short!

Communication cost:

- $O(\log k)$ rounds of shifts: $d \cdot c_{k}$ communication each
- Length at final step (complicated expression)

This ends up being balanced by choosing

$$
d \approx O\left((\log N)^{1 /(\log (k-1))}\right)
$$

every round, which matches Rankin

Ongoing work and future directions

- Can Linial/Shraibman corner result generalize with shifts?
- Can Green's improvement of Linial/Shraibman be generalized?
- Use these techniques with other NOF functions.

Thanks!

Extra slides

Graph functions

Given x_{1}, \ldots, x_{k-1} there is at most one value $g\left(x_{1}, \ldots, x_{k-1}\right)$ for x_{k} such that $F\left(x_{1}, \ldots, x_{k}\right)=1$.

Easy with randomness: $g\left(x_{1}, \ldots, x_{k-1}\right)=x_{k}$?

Theorem (Beame, David, Pitassi, and Woelfel): There are graph functions that are hard to compute deterministically.

$k-A P-f r e e ~ c o l o r i n g s ~$

Color [N] such that no color has a nontrivial $k-A P$.

NIH EQUALITY
with k-AP promise
:---:

Color $w \in[N]$ with transcript of EQUALITY protocol on (w, w, w).

$k-A P-f r e e ~ c o l o r i n g s ~$

Color [N] such that no color has a nontrivial $k-A P$.

Alice announces the color of her input.
Bob and Charlie announce if they agree.

Linial/Pitassi/Shraibman protocol

Alice announces her best guess for the carry vector of $x+y+z$ $N_{i}+\left(C_{i}-1\right) n<y_{i}+z_{i}+C_{i-1} \leq N_{i}+\left(C_{i}\right) n$

Example: $N=300, n=10, \operatorname{vec}(N)=(3,0,0)$

$$
\operatorname{vec}(y)=(1,8,4) \quad \operatorname{vec}(z)=(0,0,7)
$$

$$
\begin{aligned}
& 4+7+0 \leq 0+20 \\
& 8+0+2 \leq 0+10 \\
& 1+0+1 \leq 3+0 \\
& C(y, z)=(0,1,2)
\end{aligned}
$$

Linial/Pitassi/Shraibman protocol

Alice announces $C(y, z)$
Bob and Charlie announce whether $C(y, z)=C(x, z)=C(x, y)$
(As observed previously) if $x+y+z=N$, the guessed carry vectors are all the same.
Abort otherwise.

Linial/Pitassi/Shraibman protocol

Alice announces $C(y, z)$
Bob and Charlie announce whether $C(y, z)=C(x, z)=C(x, y)$
(As observed previously) if $x+y+z=N$, the guessed carry vectors are all the same.
Abort otherwise.

$$
\begin{array}{lll}
\operatorname{vec}(x)=(1,0,9) & \operatorname{vec}(y)=(1,8,4) & \operatorname{vec}(z)=(0,0,7) \\
& & \\
4+7+0 \leq 0+20 & 9+7+0 \leq 0+20 & 9+4+0 \leq 0+20 \\
8+0+2 \leq 0+10 & 0+0+2 \leq 0+10 & 8+0+2 \leq 0+10 \\
1+0+1 \leq 3+0 & 1+0+1 \leq 3+0 & 1+1+1 \leq 3+0 \\
C(y, z)=(0,1,2) & C(x, z)=(0,1,2) & C(x, y)=(0,1,2)
\end{array}
$$

Linial/Pitassi/Shraibman protocol

Alice announces $C(y, z)$
Bob and Charlie announce whether $C(y, z)=C(x, z)=C(x, y)$
(As observed previously) if $x+y+z=N$, the guessed carry vectors are all the same.
Abort otherwise.

$$
\begin{array}{lll}
\operatorname{vec}(x)=(1,0,6) & \operatorname{vec}(y)=(1,8,4) & \operatorname{vec}(z)=(0,0,7) \\
& & \\
4+7+0 \leq 0+20 & 6+7+0 \leq 0+20 & 6+4+0 \leq 0+10 \\
8+0+2 \leq 0+10 & 0+0+2 \leq 0+10 & 8+0+1 \leq 0+10 \\
1+0+1 \leq 3+0 & 1+0+1 \leq 3+0 & 1+1+1 \leq 3+0 \\
C(y, z)=(0,1,2) & C(x, z)=(0,1,2) & C(x, y)=(0,1,1)
\end{array}
$$

Linial/Pitassi/Shraibman protocol

Alice announces $C(y, z)$
Bob and Charlie announce whether $C(y, z)=C(x, z)=C(x, y)$
(As observed previously) if $x+y+z=N$, the guessed carry vectors are all the same.
Abort otherwise.

$$
\begin{array}{lll}
\operatorname{vec}(x)=(1,0,8) & \operatorname{vec}(y)=(1,8,4) & \operatorname{vec}(z)=(0,0,7) \\
& & \\
4+7+0 \leq 0+20 & 8+7+0 \leq 0+20 & 8+4+0 \leq 0+20 \\
8+0+2 \leq 0+10 & 0+0+2 \leq 0+10 & 8+0+2 \leq 0+10 \\
1+0+1 \leq 3+0 & 1+0+1 \leq 3+0 & 1+1+1 \leq 3+0 \\
C(y, z)=(0,1,2) & C(x, z)=(0,1,2) & C(x, y)=(0,1,2)
\end{array}
$$

Corners

A corner in $[N] \times[N]$ is a set of the form

$$
\{(x, y),(x+\xi, y),(x, y+\xi)\}
$$

for $\xi \neq 0$.

Corner-free colorings from Exactly N protocols

Color (y, z) by the message that Alice sends.

Let $x^{\star}=N-y-z-\xi$
Bob can't distinguish between $\left(x^{\star}, y, z\right)$ and $\left(x^{\star}, y+\xi, z\right)$
Charlie can't distinguish between (x^{\star}, y, z) and ($x^{\star}, y, z+\xi$) So if $\{(y, z),(y+\xi, z),(y, z+\xi)\}$ are colored the same, the protocol claims $x^{\star}+y+z=N$, which is only true when $\xi=0$.

Exactly N protocols from corner-free colorings

Compare the colors of $(N-y-z, y),(x, N-x-z)$, and (x, y). This is $\{(x+\xi, y),(x, y+\xi),(x, y)\}$ with $\xi=\Delta$.

