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Why we care about NOF complexity

Applications to other fields!

▶ Strong NOF lower bounds give ACC0 lower bounds
[Y90,HG91]

▶ Lower bounds for Lovász-Schrijver systems in proof complexity
[BPS07]

▶ Explicit pseudorandom generator constructions [BNS92]

▶ Time-space trade-offs in Turing Machines [BNS92]

▶ This talk: applications to additive combinatorics



NIH vs. NOF

NOF lower bounds seem harder to prove than NIH lower
bounds.

Example: Equality
Model Det. Rand. Notes

2-party Hard Easy Yao, folklore

NIH Hard Easy by reduction to 2-party model

NOF Easy Easy
Charlie announces x = y
Bob announces x = z

Can we separate randomized and deterministic communication in
the NOF model?
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The ExactlyN function

Inputs x1, . . . , xk are in {0, . . . ,N}.

ExactlyN(x1, . . . , xk) = 1 if
∑k

i=1 xi = N

ExactlyN has an easy randomized protocol

ExactlyN is a candidate hard function for deterministic NOF
communication...

but it isn’t maximally hard!
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A maximally hard function would take O(logN) bits
of communication.

ExactlyN can be done with less.



Chandra/Furst/Lipton protocol for ExactlyN
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Chandra/Furst/Lipton protocol for ExactlyN

x ′ = N − y − z y ′ = N − x − z z ′ = N − x − y

Let ∆ = N − (x + y + z)

(x ′ − x) = (y ′ − y) = (z ′ − z) = ∆

Define T = x + 2y + 3z

Tx = x ′ + 2y + 3z = T −∆
Ty = x + 2y ′ + 3z = T − 2∆
Tz = x + 2y + 3z ′ = T − 3∆
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Arithmetic progressions

A k-term arithmetic progression (k-AP) is a set of the form

{a, a+ b, . . . , a+ (k − 1)b}.

A k-AP is trivial if b = 0 (i.e. if it is a singleton).
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Tx = x ′ + 2y + 3z = T −∆
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Tx ,Ty ,Tz comprise a 3-AP that is trivial ⇔ ∆ = 0.

∆ = N − (x + y + z), so ∆ = 0 ⇔ ExactlyN(x , y , z) = 1.
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We have reduced NOF ExactlyN to NIH
Equality where the inputs are promised to

comprise a k-AP!



NIH Equality
with k-AP promise

NOF ExactlyN

k-AP-free
coloring of [N]
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k-AP-free colorings

Theorem (Behrend): [N] has a 3-AP-free coloring with
2O(

√
logN) colors

So ExactlyN for 3 players can be solved using O(
√
logN) bits of

communication!



NIH Equality
with k-AP promise

NOF ExactlyN

k-AP-free
coloring of [N]



Behrend’s construction

Salem/Spencer: map [N] to vectors in [n]d by base-n
representation

Example: x = 184, N = 300

n = 10 vec(x) = (1, 8, 4)
n = 16 vec(x) = (0, 11, 8)



Behrend’s construction

Behrend’s idea: look at the lengths of the Salem/Spencer vectors

{a, a+ b, a+ 2b}

If 3 vectors have the same length, they can’t be a 3-AP!
Color x ∈ [N] by the (squared) length of vec(x).
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Behrend’s construction

Problem: x , y , z are a 3-AP ̸⇒ vec(x), vec(y), vec(z) are a 3-AP

Solution: Restrict to vectors with ℓ∞-norm ≤ n/3

Use a pigeonhole argument to find a large 3-AP-free set

From a large set, we can get a small coloring (by translation)
Behrend: set of size N/2O(

√
logN) ⇒ coloring of size 2O(

√
logN)
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What if the vectors have large ℓ∞ norm?



Linial/Pitassi/Shraibman protocol

Explicitly reason about the possibility of carries!

Alice announces her best guess for the carry vector of x + y + z

If the parties agree on the carry vector, they can use this to ensure
that the vectors for Tx ,Ty ,Tz are a 3-AP (details omitted).



Linial/Pitassi/Shraibman protocol

How much communication?

▶ Send carry vector: O(d) bits

▶ Send (squared) vector length: O(log n) bits

▶ Bob and Charlie confirm: O(1) bits

Balanced at d = O(
√
logN), n = 2O(

√
logN) (matches Behrend)



Q: Why do we care about explicit protocols?

A: Another connection to combinatorics: corners!
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NIH Equality
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NOF ExactlyN

k-AP-free
coloring of [N]

Corner-free
coloring of [N]k−1



Better corner-free colorings

Linial/Shraibman show that we don’t need to communicate the
whole carry vector!

This gives the best improvement on corner-free colorings since
Behrend.

Green gives a further improvement.



What about when k > 3?



k > 3

Behrend still works...

...but we can do better.
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Rankin gives a better construction of
k-AP-free colorings!



Higher-degree progressions

A degree-m k-term polynomial progression (k-PmP) is a set of the
form

{p(0), p(1), . . . , p(k − 1)}

where p is a polynomial of degree at most m.



Lifting to higher-degree progressions

Theorem (Rankin,  Laba/Lacey): If x1, . . . , xk are a k-PmP with:

▶ k > 2m

▶ vec(x1), . . . , vec(xk) have low ℓ∞-norm (less than n/cm)

▶ {x1, . . . , xk} is not a singleton

then ∥vec(x1)∥22, . . . , ∥vec(xk)∥22 is a non-trivial k-P2mP



Behrend’s construction as lifting

x1, x2, x3 are a 3-AP (3-P1P) with:

▶ k > 2m

▶ vec(x1), vec(x2), vec(x3) have low ℓ∞-norm

so if ∥vec(x1)∥22 = ∥vec(x2)∥22 = ∥vec(x3)∥22 it must be that
{x1, x2, x3} is a singleton.
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x1, x2, x3 are a 3-AP (3-P1P) with:

▶ 3 > 2

▶ vec(x1), vec(x2), vec(x3) have low ℓ∞-norm
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Rankin’s construction

Repeated apply lifting! Let k = 2r + 1

k-P1P → k-P2P → k-P4P → . . . → k-P2r−1P → k-P2rP

If the the k-P2rP is a singleton, the original k-P1P was also!

Each time the range of values shrinks from nd to n2d for some n, d

Theorem (Rankin): [N] has a k-AP-free coloring with

2O(logN1/ log(k−1)) colors



Previous explicit protocols can’t use
Rankin’s construction.



Rankin’s construction with carry vectors

ExactlyN over [N]

ExactlyN over [n]d

Equality with k-AP promise
over [n]d

Carry vector method

Equality with k-P2P promise
over [n2d ]

???

Not in NOF so carry method doesn’t work!
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small
vectors

Alice announces how much she needs to shift her vector to make it
small. We shift all of the vectors by this much!
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Our protocol

Rankin’s construction with shifts between rounds.

▶ Other players need different shifts: the vectors are not equal,
and so we’re done!

▶ Otherwise, we can proceed: the vectors are now short!

Communication cost:

▶ O(log k) rounds of shifts: d · ck communication each

▶ Length at final step (complicated expression)

This ends up being balanced by choosing

d ≈ O
(
(logN)1/(log(k−1))

)
every round, which matches Rankin



Ongoing work and future directions

▶ Can Linial/Shraibman corner result generalize with shifts?

▶ Can Green’s improvement of Linial/Shraibman be generalized?

▶ Use these techniques with other NOF functions.

Thanks!



Extra slides



Graph functions

Given x1, . . . , xk−1 there is at most one value g(x1, . . . , xk−1) for
xk such that F (x1, . . . , xk) = 1.

Easy with randomness: g(x1, . . . , xk−1) = xk?

Theorem (Beame, David, Pitassi, and Woelfel): There are
graph functions that are hard to compute deterministically.



k-AP-free colorings

Color [N] such that no color has a nontrivial k-AP.

NIH Equality
with k-AP promise

k-AP-free
coloring of [N]

Color w ∈ [N] with transcript of Equality protocol on (w ,w ,w).



k-AP-free colorings

Color [N] such that no color has a nontrivial k-AP.

NIH Equality
with k-AP promise

k-AP-free
coloring of [N]

Alice announces the color of her input.
Bob and Charlie announce if they agree.



Linial/Pitassi/Shraibman protocol

Alice announces her best guess for the carry vector of x + y + z
Ni + (Ci − 1)n < yi + zi + Ci−1 ≤ Ni + (Ci )n

Example: N = 300, n = 10, vec(N) = (3, 0, 0)

vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20
8 + 0 + 2 ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2)



Linial/Pitassi/Shraibman protocol

Alice announces C (y , z)
Bob and Charlie announce whether C (y , z) = C (x , z) = C (x , y)

(As observed previously) if x + y + z = N, the guessed carry
vectors are all the same.
Abort otherwise.

vec(x) = (1, 0, ) vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20 +7 + 0 ≤ 0 + 20 +4 + 0 ≤ 0 + 0
8 + 0 + 2 ≤ 0 + 10 0 + 0 + 2 ≤ 0 + 10 8 + 0+ ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0 1 + 0 + 1 ≤ 3 + 0 1 + 1 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2) C (x , z) = (0, 1, 2) C (x , y) = (0, 1, )



Linial/Pitassi/Shraibman protocol

Alice announces C (y , z)
Bob and Charlie announce whether C (y , z) = C (x , z) = C (x , y)

(As observed previously) if x + y + z = N, the guessed carry
vectors are all the same.
Abort otherwise.

vec(x) = (1, 0, 9) vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20 9 + 7 + 0 ≤ 0 + 20 9 + 4 + 0 ≤ 0 + 20
8 + 0 + 2 ≤ 0 + 10 0 + 0 + 2 ≤ 0 + 10 8 + 0 + 2 ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0 1 + 0 + 1 ≤ 3 + 0 1 + 1 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2) C (x , z) = (0, 1, 2) C (x , y) = (0, 1, 2)



Linial/Pitassi/Shraibman protocol

Alice announces C (y , z)
Bob and Charlie announce whether C (y , z) = C (x , z) = C (x , y)

(As observed previously) if x + y + z = N, the guessed carry
vectors are all the same.
Abort otherwise.

vec(x) = (1, 0, 6) vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20 6 + 7 + 0 ≤ 0 + 20 6 + 4 + 0 ≤ 0 + 10
8 + 0 + 2 ≤ 0 + 10 0 + 0 + 2 ≤ 0 + 10 8 + 0 + 1 ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0 1 + 0 + 1 ≤ 3 + 0 1 + 1 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2) C (x , z) = (0, 1, 2) C (x , y) = (0, 1, 1)



Linial/Pitassi/Shraibman protocol

Alice announces C (y , z)
Bob and Charlie announce whether C (y , z) = C (x , z) = C (x , y)

(As observed previously) if x + y + z = N, the guessed carry
vectors are all the same.
Abort otherwise.

vec(x) = (1, 0, 8) vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20 8 + 7 + 0 ≤ 0 + 20 8 + 4 + 0 ≤ 0 + 20
8 + 0 + 2 ≤ 0 + 10 0 + 0 + 2 ≤ 0 + 10 8 + 0 + 2 ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0 1 + 0 + 1 ≤ 3 + 0 1 + 1 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2) C (x , z) = (0, 1, 2) C (x , y) = (0, 1, 2)



Corners

A corner in [N]× [N] is a set of the form

{(x , y), (x + ξ, y), (x , y + ξ)}

for ξ ̸= 0.



Corner-free colorings from ExactlyN protocols

Color (y , z) by the message that Alice sends.

Let x⋆ = N − y − z − ξ
Bob can’t distinguish between (x⋆, y , z) and (x⋆, y + ξ, z)
Charlie can’t distinguish between (x⋆, y , z) and (x⋆, y , z + ξ)
So if {(y , z), (y + ξ, z), (y , z + ξ)} are colored the same, the
protocol claims x⋆ + y + z = N, which is only true when ξ = 0.



ExactlyN protocols from corner-free colorings

Compare the colors of (N − y − z , y), (x ,N − x − z), and (x , y).
This is {(x + ξ, y), (x , y + ξ), (x , y)} with ξ = ∆.


