Exactly N With More Than 3 Players

BIRS Communication Complexity Workshop (July 2022)

Lianna Hambardzumyan Toniann Pitassi Suhail Sherif **Morgan Shirley** Adi Shraibman 3-party communication complexity

Charlie

3-party communication complexity

This is the *number-in-hand* model (NIH)

3-party communication complexity

This is the number-on-forehead model (NOF)

Why we care about NOF complexity

Applications to other fields!

- Strong NOF lower bounds give ACC₀ lower bounds [Y90,HG91]
- Lower bounds for Lovász-Schrijver systems in proof complexity [BPS07]
- Explicit pseudorandom generator constructions [BNS92]
- Time-space trade-offs in Turing Machines [BNS92]
- This talk: applications to additive combinatorics

NIH vs. NOF

NOF lower bounds seem harder to prove than NIH lower bounds.

Example: EQUALITY					
Model	Det.	Rand.	Notes		
2-party	Hard	Easy	Yao, folklore		
NIH	Hard	Easy	by reduction to 2-party model		
NOF	Easy	Easy	Charlie announces $x = y$		
			Bob announces $x = z$		

NIH vs. NOF

NOF lower bounds seem harder to prove than NIH lower bounds.

Example: EQUALITY					
Model	Det.	Rand.	Notes		
2-party	Hard	Easy	Yao, folklore		
NIH	Hard	Easy	by reduction to 2-party model		
NOF	Easy	Easy	Charlie announces $x = y$		
			Bob announces $x = z$		

Can we separate randomized and deterministic communication in the NOF model?

The EXACTLYN function

Inputs $x_1, ..., x_k$ are in $\{0, ..., N\}$.

EXACTLY
$$N(x_1, \ldots, x_k) = 1$$
 if $\sum_{i=1}^k x_i = N$

 $\operatorname{ExaCTLY} N$ has an easy randomized protocol

EXACTLY N is a candidate hard function for deterministic NOF communication...

The EXACTLYN function

Inputs x_1, \ldots, x_k are in $\{0, \ldots, N\}$.

EXACTLY
$$N(x_1, \ldots, x_k) = 1$$
 if $\sum_{i=1}^k x_i = N$

 $\operatorname{EXACTLY} N$ has an easy randomized protocol

EXACTLY N is a candidate hard function for deterministic NOF communication...but it isn't maximally hard!

A maximally hard function would take $O(\log N)$ bits of communication.

EXACTLYN can be done with less.

$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

Let
$$\Delta = N - (x + y + z)$$

$$x' = N - y - z \qquad \qquad y' = N - x - z \qquad \qquad z' = N - x - y$$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x)=(y'-y)=(z'-z)=\Delta$$

$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x)=(y'-y)=(z'-z)=\Delta$$

$$x' = N - y - z$$
 $y' = N - x - z$ $z' = N - x - y$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x)=(y'-y)=(z'-z)=\Delta$$

$$T_x = x' + 2y + 3z$$

$$x' = N - y - z \qquad \qquad y' = N - x - z \qquad \qquad z' = N - x - y$$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x)=(y'-y)=(z'-z)=\Delta$$

$$T_x = x' + 2y + 3z = T - \Delta$$

$$x' = N - y - z \qquad \qquad y' = N - x - z \qquad \qquad z' = N - x - y$$

Let
$$\Delta = N - (x + y + z)$$

$$(x'-x)=(y'-y)=(z'-z)=\Delta$$

$$T_x = x' + 2y + 3z = T - \Delta$$

 $T_y = x + 2y' + 3z = T - 2\Delta$
 $T_z = x + 2y + 3z' = T - 3\Delta$

T_x, T_y, T_z comprise a 3-term arithmetic progression

Arithmetic progressions

A k-term arithmetic progression (k-AP) is a set of the form

$$\{a, a+b, \ldots, a+(k-1)b\}.$$

A *k*-AP is *trivial* if b = 0 (i.e. if it is a singleton).

$$T_x = x' + 2y + 3z = T - \Delta$$

$$T_y = x + 2y' + 3z = T - 2\Delta$$

$$T_z = x + 2y + 3z' = T - 3\Delta$$

 T_x, T_y, T_z comprise a 3-AP that is trivial $\Leftrightarrow \Delta = 0$.

$$T_x = x' + 2y + 3z = T - \Delta$$

$$T_y = x + 2y' + 3z = T - 2\Delta$$

$$T_z = x + 2y + 3z' = T - 3\Delta$$

 T_x, T_y, T_z comprise a 3-AP that is trivial $\Leftrightarrow \Delta = 0$.

$$\Delta = N - (x + y + z)$$
, so $\Delta = 0 \Leftrightarrow \operatorname{Exactly} N(x, y, z) = 1$.

We have reduced NOF EXACTLY *N* to NIH EQUALITY where the inputs are promised to comprise a k-AP!

Theorem (Behrend): [*N*] has a 3-AP-free coloring with $2^{O(\sqrt{\log N})}$ colors

So EXACTLY *N* for 3 players can be solved using $O(\sqrt{\log N})$ bits of communication!

Behrend's construction

Salem/Spencer: map [N] to vectors in $[n]^d$ by base-*n* representation

Example: x = 184, N = 300

$$n = 10$$
 $vec(x) = (1, 8, 4)$
 $n = 16$ $vec(x) = (0, 11, 8)$

Behrend's construction

Behrend's idea: look at the *lengths* of the Salem/Spencer vectors

Behrend's construction

Behrend's idea: look at the *lengths* of the Salem/Spencer vectors

Behrend's idea: look at the *lengths* of the Salem/Spencer vectors

Behrend's idea: look at the *lengths* of the Salem/Spencer vectors

If 3 vectors have the same length, they can't be a 3-AP! Color $x \in [N]$ by the (squared) length of vec(x).

Problem: x, y, z are a 3-AP \Rightarrow vec(x), vec(y), vec(z) are a 3-AP

Problem: x, y, z are a 3-AP \Rightarrow vec(x), vec(y), vec(z) are a 3-AP

Solution: Restrict to vectors with ℓ_{∞} -norm $\leq n/3$

Problem: x, y, z are a 3-AP \Rightarrow vec(x), vec(y), vec(z) are a 3-AP

Solution: Restrict to vectors with ℓ_{∞} -norm $\leq n/3$

Use a pigeonhole argument to find a large 3-AP-free set

From a large set, we can get a small coloring (by translation) Behrend: set of size $N/2^{O(\sqrt{\log N})} \Rightarrow$ coloring of size $2^{O(\sqrt{\log N})}$

Chandra/Furst/Lipton protocol for EXACTLYN

Chandra/Furst/Lipton protocol for EXACTLYN

$$\frac{\text{Charlie}}{\uparrow}$$
vec(T_z)

Chandra/Furst/Lipton protocol for EXACTLYN

Charlie
$$\uparrow$$
 vec (T_z)

What if the vectors have large ℓ_∞ norm?

Linial/Pitassi/Shraibman protocol

Explicitly reason about the possibility of carries!

Alice announces her best guess for the **carry vector** of x + y + z

If the parties agree on the carry vector, they can use this to ensure that the vectors for T_x , T_y , T_z are a 3-AP (details omitted).

Linial/Pitassi/Shraibman protocol

How much communication?

- Send (squared) vector length: O(log n) bits
- Bob and Charlie confirm: O(1) bits

Balanced at $d = O(\sqrt{\log N})$, $n = 2^{O(\sqrt{\log N})}$ (matches Behrend)

Q: Why do we care about explicit protocols?

Q: Why do we care about explicit protocols?

A: Another connection to combinatorics: corners!

Better corner-free colorings

Linial/Shraibman show that we don't need to communicate the whole carry vector!

This gives the best improvement on corner-free colorings since Behrend.

Green gives a further improvement.

What about when k > 3?

Behrend still works...

Behrend still works...

Behrend still works...

Behrend still works...

...but we can do better.

Rankin gives a better construction of *k*-AP-free colorings!

A degree-*m* k-term polynomial progression $(k-P_mP)$ is a set of the form

$$\{p(0), p(1), \ldots, p(k-1)\}$$

where p is a polynomial of degree at most m.

Lifting to higher-degree progressions

Theorem (Rankin, Łaba/Lacey): If x_1, \ldots, x_k are a k-P_mP with:

k > 2m
vec(x₁),...,vec(x_k) have low ℓ_∞-norm (less than n/c_m)
{x₁,...,x_k} is not a singleton
then ||vec(x₁)||²₂,..., ||vec(x_k)||²₂ is a non-trivial k-P_{2m}P

Behrend's construction as lifting

 x_1, x_2, x_3 are a 3-AP (3-P₁P) with:

▶ *k* > 2*m*

▶ $\operatorname{vec}(x_1), \operatorname{vec}(x_2), \operatorname{vec}(x_3)$ have low ℓ_∞ -norm so if $\|\operatorname{vec}(x_1)\|_2^2 = \|\operatorname{vec}(x_2)\|_2^2 = \|\operatorname{vec}(x_3)\|_2^2$ it must be that $\{x_1, x_2, x_3\}$ is a singleton.

Behrend's construction as lifting

 x_1, x_2, x_3 are a 3-AP (3-P₁P) with:

▶ 3 > 2

▶ $\operatorname{vec}(x_1), \operatorname{vec}(x_2), \operatorname{vec}(x_3)$ have low ℓ_{∞} -norm so if $\|\operatorname{vec}(x_1)\|_2^2 = \|\operatorname{vec}(x_2)\|_2^2 = \|\operatorname{vec}(x_3)\|_2^2$ it must be that $\{x_1, x_2, x_3\}$ is a singleton.

Rankin's construction

Repeated apply lifting! Let $k = 2^r + 1$

$$k-P_1P \rightarrow k-P_2P \rightarrow k-P_4P \rightarrow \ldots \rightarrow k-P_{2^{r-1}}P \rightarrow k-P_{2^r}P$$

If the the k-P₂, P is a singleton, the original k-P₁P was also!

Each time the range of values shrinks from n^d to n^2d for some n, d

Theorem (Rankin): [N] has a *k*-AP-free coloring with $2^{O(\log N^{1/\log(k-1)})}$ colors

Previous explicit protocols can't use Rankin's construction.

In order to ensure that the vectors have small ℓ_∞ norm...

In order to ensure that the vectors have small ℓ_∞ norm...

Alice announces how much she needs to *shift* her vector to make it small. We shift all of the vectors by this much!

Our protocol

Rankin's construction with *shifts* between rounds.

- Other players need different shifts: the vectors are not equal, and so we're done!
- Otherwise, we can proceed: the vectors are now short!

Communication cost:

- $O(\log k)$ rounds of shifts: $d \cdot c_k$ communication each
- Length at final step (complicated expression)

This ends up being balanced by choosing

$$d \approx O\left((\log N)^{1/(\log(k-1))}\right)$$

every round, which matches Rankin

Ongoing work and future directions

- Can Linial/Shraibman corner result generalize with shifts?
- Can Green's improvement of Linial/Shraibman be generalized?
- Use these techniques with other NOF functions.

Thanks!

Extra slides
Graph functions

Given x_1, \ldots, x_{k-1} there is at most one value $g(x_1, \ldots, x_{k-1})$ for x_k such that $F(x_1, \ldots, x_k) = 1$.

Easy with randomness: $g(x_1, \ldots, x_{k-1}) = x_k$?

Theorem (Beame, David, Pitassi, and Woelfel): There are graph functions that are hard to compute deterministically.

k-AP-free colorings

Color [N] such that no color has a nontrivial k-AP.

Color $w \in [N]$ with transcript of EQUALITY protocol on (w, w, w).

k-AP-free colorings

Color [N] such that no color has a nontrivial k-AP.

Alice announces the color of her input. Bob and Charlie announce if they agree.

Alice announces her best guess for the **carry vector** of x + y + z $N_i + (C_i - 1)n < y_i + z_i + C_{i-1} \le N_i + (C_i)n$

Example: N = 300, n = 10, vec(N) = (3, 0, 0)

$$vec(y) = (1, 8, 4)$$
 $vec(z) = (0, 0, 7)$

```
\begin{array}{l} 4+7+0 \leq 0+20 \\ 8+0+2 \leq 0+10 \\ 1+0+1 \leq 3+0 \\ C(y,z)=(0,1,2) \end{array}
```

Alice announces C(y, z)Bob and Charlie announce whether C(y, z) = C(x, z) = C(x, y)

Alice announces C(y, z)Bob and Charlie announce whether C(y, z) = C(x, z) = C(x, y)

$$vec(x) = (1,0,9)$$
 $vec(y) = (1,8,4)$ $vec(z) = (0,0,7)$

$$\begin{array}{lll} 4+7+0 \leq 0+20 & 9+7+0 \leq 0+20 & 9+4+0 \leq 0+20 \\ 8+0+2 \leq 0+10 & 0+0+2 \leq 0+10 & 8+0+2 \leq 0+10 \\ 1+0+1 \leq 3+0 & 1+0+1 \leq 3+0 & 1+1+1 \leq 3+0 \\ \mathcal{C}(y,z)=(0,1,2) & \mathcal{C}(x,z)=(0,1,2) & \mathcal{C}(x,y)=(0,1,2) \end{array}$$

Alice announces C(y, z)Bob and Charlie announce whether C(y, z) = C(x, z) = C(x, y)

$$vec(x) = (1, 0, 6)$$
 $vec(y) = (1, 8, 4)$ $vec(z) = (0, 0, 7)$

$$\begin{array}{lll} 4+7+0 \leq 0+20 & 6+7+0 \leq 0+20 & 6+4+0 \leq 0+10 \\ 8+0+2 \leq 0+10 & 0+0+2 \leq 0+10 & 8+0+1 \leq 0+10 \\ 1+0+1 \leq 3+0 & 1+0+1 \leq 3+0 & 1+1+1 \leq 3+0 \\ C(y,z)=(0,1,2) & C(x,z)=(0,1,2) & C(x,y)=(0,1,1) \end{array}$$

Alice announces C(y, z)Bob and Charlie announce whether C(y, z) = C(x, z) = C(x, y)

$$vec(x) = (1, 0, 8)$$
 $vec(y) = (1, 8, 4)$ $vec(z) = (0, 0, 7)$

$$\begin{array}{lll} 4+7+0 \leq 0+20 & 8+7+0 \leq 0+20 & 8+4+0 \leq 0+20 \\ 8+0+2 \leq 0+10 & 0+0+2 \leq 0+10 & 8+0+2 \leq 0+10 \\ 1+0+1 \leq 3+0 & 1+0+1 \leq 3+0 & 1+1+1 \leq 3+0 \\ C(y,z)=(0,1,2) & C(x,z)=(0,1,2) & C(x,y)=(0,1,2) \end{array}$$

A corner in $[N] \times [N]$ is a set of the form

 $\{(x, y), (x + \xi, y), (x, y + \xi)\}$

for $\xi \neq 0$.

Corner-free colorings from EXACTLYN protocols

Color (y, z) by the message that Alice sends.

Let $x^* = N - y - z - \xi$ Bob can't distinguish between (x^*, y, z) and $(x^*, y + \xi, z)$ Charlie can't distinguish between (x^*, y, z) and $(x^*, y, z + \xi)$ So if $\{(y, z), (y + \xi, z), (y, z + \xi)\}$ are colored the same, the protocol claims $x^* + y + z = N$, which is only true when $\xi = 0$.

EXACTLY N protocols from corner-free colorings

Compare the colors of (N - y - z, y), (x, N - x - z), and (x, y). This is $\{(x + \xi, y), (x, y + \xi), (x, y)\}$ with $\xi = \Delta$.