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Why we care about NOF complexity

Applications to other fields!

▶ Strong NOF lower bounds give ACC0 lower bounds
[Y90,HG91]

▶ Lower bounds for Lovász-Schrijver systems in proof complexity
[BPS07]

▶ Explicit pseudorandom generator constructions [BNS92]

▶ Time-space trade-offs in Turing Machines [BNS92]

▶ This talk: applications to additive combinatorics



NIH vs. NOF

NOF lower bounds seem harder to prove than NIH lower
bounds.

Example: Equality
Model Det. Rand. Notes

2-party Hard Easy Yao, folklore

NIH Hard Easy by reduction to 2-party model

NOF Easy Easy
Charlie announces x = y
Bob announces x = z

Can we separate randomized and deterministic communication in
the NOF model?
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The ExactlyN function

Inputs x1, . . . , xk are in {0, . . . ,N}.

ExactlyN(x1, . . . , xk) = 1 if
∑k

i=1 xi = N

ExactlyN has an easy randomized protocol

ExactlyN is a candidate hard function for deterministic NOF
communication...

but it isn’t maximally hard!
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A maximally hard function would take O(logN) bits
of communication.

ExactlyN can be done with less.
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Chandra/Furst/Lipton protocol for ExactlyN

x ′ = N − y − z y ′ = N − x − z z ′ = N − x − y

Let ∆ = N − (x + y + z)

(x ′ − x) = (y ′ − y) = (z ′ − z) = ∆

Define T = x + 2y + 3z

Tx = x ′ + 2y + 3z = T −∆
Ty = x + 2y ′ + 3z = T − 2∆
Tz = x + 2y + 3z ′ = T − 3∆
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Arithmetic progressions

A k-term arithmetic progression (k-AP) is a set of the form

{a, a+ b, . . . , a+ (k − 1)b}.

A k-AP is trivial if b = 0 (i.e. if it is a singleton).
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Tx = x ′ + 2y + 3z = T −∆
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Tz = x + 2y + 3z ′ = T − 3∆

Tx ,Ty ,Tz comprise a 3-AP that is trivial ⇔ ∆ = 0.

∆ = N − (x + y + z), so ∆ = 0 ⇔ ExactlyN(x , y , z) = 1.
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We have reduced NOF ExactlyN to NIH
Equality where the inputs are promised to

comprise a k-AP!



NIH Equality
with k-AP promise

NOF ExactlyN

k-AP-free
coloring of [N]
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k-AP-free colorings

Theorem (Behrend): [N] has a 3-AP-free coloring with
2O(

√
logN) colors

So ExactlyN for 3 players can be solved using O(
√
logN) bits of

communication!



NIH Equality
with k-AP promise

NOF ExactlyN

k-AP-free
coloring of [N]



Behrend’s construction

Salem/Spencer: map [N] to vectors in [n]d by base-n
representation

Example: x = 184, N = 300

n = 10 vec(x) = (1, 8, 4)
n = 16 vec(x) = (0, 11, 8)



Behrend’s construction

Behrend’s idea: look at the lengths of the Salem/Spencer vectors

{a, a+ b, a+ 2b}

If 3 vectors have the same length, they can’t be a 3-AP!
Color x ∈ [N] by the (squared) length of vec(x).
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Behrend’s construction

Problem: x , y , z are a 3-AP ̸⇒ vec(x), vec(y), vec(z) are a 3-AP

Solution: Restrict to vectors with ℓ∞-norm ≤ n/3

Use a pigeonhole argument to find a large 3-AP-free set

From a large set, we can get a small coloring (by translation)
Behrend: set of size N/2O(

√
logN) ⇒ coloring of size 2O(

√
logN)
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What if the vectors have large ℓ∞ norm?



Linial/Pitassi/Shraibman protocol

Explicitly reason about the possibility of carries!

Alice announces her best guess for the carry vector of x + y + z

If the parties agree on the carry vector, they can use this to ensure
that the vectors for Tx ,Ty ,Tz are a 3-AP (details omitted).



Linial/Pitassi/Shraibman protocol

How much communication?

▶ Send carry vector: O(d) bits

▶ Send (squared) vector length: O(log n) bits

▶ Bob and Charlie confirm: O(1) bits

Balanced at d = O(
√
logN), n = 2O(

√
logN) (matches Behrend)



Q: Why do we care about explicit protocols?

A: Another connection to combinatorics: corners!
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NIH Equality
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NOF ExactlyN

k-AP-free
coloring of [N]

Corner-free
coloring of [N]k−1



Better corner-free colorings

Linial/Shraibman show that we don’t need to communicate the
whole carry vector!

This gives the best improvement on corner-free colorings since
Behrend.

Green gives a further improvement.



What about when k > 3?



k > 3

Behrend still works...

...but we can do better.
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Rankin gives a better construction of
k-AP-free colorings!



Higher-degree progressions

A degree-m k-term polynomial progression (k-PmP) is a set of the
form

{p(0), p(1), . . . , p(k − 1)}

where p is a polynomial of degree at most m.



Lifting to higher-degree progressions

Theorem (Rankin,  Laba/Lacey): If x1, . . . , xk are a k-PmP with:

▶ k > 2m

▶ vec(x1), . . . , vec(xk) have low ℓ∞-norm (less than n/cm)

▶ {x1, . . . , xk} is not a singleton

then ∥vec(x1)∥22, . . . , ∥vec(xk)∥22 is a non-trivial k-P2mP



Behrend’s construction as lifting

x1, x2, x3 are a 3-AP (3-P1P) with:

▶ k > 2m

▶ vec(x1), vec(x2), vec(x3) have low ℓ∞-norm

so if ∥vec(x1)∥22 = ∥vec(x2)∥22 = ∥vec(x3)∥22 it must be that
{x1, x2, x3} is a singleton.



Behrend’s construction as lifting

x1, x2, x3 are a 3-AP (3-P1P) with:

▶ 3 > 2

▶ vec(x1), vec(x2), vec(x3) have low ℓ∞-norm
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Rankin’s construction

Repeated apply lifting! Let k = 2r + 1

k-P1P → k-P2P → k-P4P → . . . → k-P2r−1P → k-P2rP

If the the k-P2rP is a singleton, the original k-P1P was also!

Each time the range of values shrinks from nd to n2d for some n, d

Theorem (Rankin): [N] has a k-AP-free coloring with

2O(logN1/ log(k−1)) colors



Previous explicit protocols can’t use
Rankin’s construction.



Rankin’s construction with carry vectors

ExactlyN over [N]

ExactlyN over [n]d

Equality with k-AP promise
over [n]d

Carry vector method

Equality with k-P2P promise
over [n2d ]

???

Not in NOF so carry method doesn’t work!
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small
vectors

Alice announces how much she needs to shift her vector to make it
small. We shift all of the vectors by this much!



In order to ensure that the vectors have small ℓ∞ norm...

small
vectors

Alice announces how much she needs to shift her vector to make it
small. We shift all of the vectors by this much!



Our protocol

Rankin’s construction with shifts between rounds.

▶ Other players need different shifts: the vectors are not equal,
and so we’re done!

▶ Otherwise, we can proceed: the vectors are now short!

Communication cost:

▶ O(log k) rounds of shifts: d · ck communication each

▶ Length at final step (complicated expression)

This ends up being balanced by choosing

d ≈ O
(
(logN)1/(log(k−1))

)
every round, which matches Rankin



Ongoing work and future directions

▶ Can Linial/Shraibman corner result generalize with shifts?

▶ Can Green’s improvement of Linial/Shraibman be generalized?

▶ Use these techniques with other NOF functions.

Thanks!



Extra slides



Graph functions

Given x1, . . . , xk−1 there is at most one value g(x1, . . . , xk−1) for
xk such that F (x1, . . . , xk) = 1.

Easy with randomness: g(x1, . . . , xk−1) = xk?

Theorem (Beame, David, Pitassi, and Woelfel): There are
graph functions that are hard to compute deterministically.



k-AP-free colorings

Color [N] such that no color has a nontrivial k-AP.

NIH Equality
with k-AP promise

k-AP-free
coloring of [N]

Color w ∈ [N] with transcript of Equality protocol on (w ,w ,w).



k-AP-free colorings

Color [N] such that no color has a nontrivial k-AP.

NIH Equality
with k-AP promise

k-AP-free
coloring of [N]

Alice announces the color of her input.
Bob and Charlie announce if they agree.



Linial/Pitassi/Shraibman protocol

Alice announces her best guess for the carry vector of x + y + z
Ni + (Ci − 1)n < yi + zi + Ci−1 ≤ Ni + (Ci )n

Example: N = 300, n = 10, vec(N) = (3, 0, 0)

vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20
8 + 0 + 2 ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2)



Linial/Pitassi/Shraibman protocol

Alice announces C (y , z)
Bob and Charlie announce whether C (y , z) = C (x , z) = C (x , y)

(As observed previously) if x + y + z = N, the guessed carry
vectors are all the same.
Abort otherwise.

vec(x) = (1, 0, ) vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20 +7 + 0 ≤ 0 + 20 +4 + 0 ≤ 0 + 0
8 + 0 + 2 ≤ 0 + 10 0 + 0 + 2 ≤ 0 + 10 8 + 0+ ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0 1 + 0 + 1 ≤ 3 + 0 1 + 1 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2) C (x , z) = (0, 1, 2) C (x , y) = (0, 1, )



Linial/Pitassi/Shraibman protocol

Alice announces C (y , z)
Bob and Charlie announce whether C (y , z) = C (x , z) = C (x , y)

(As observed previously) if x + y + z = N, the guessed carry
vectors are all the same.
Abort otherwise.

vec(x) = (1, 0, 9) vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20 9 + 7 + 0 ≤ 0 + 20 9 + 4 + 0 ≤ 0 + 20
8 + 0 + 2 ≤ 0 + 10 0 + 0 + 2 ≤ 0 + 10 8 + 0 + 2 ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0 1 + 0 + 1 ≤ 3 + 0 1 + 1 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2) C (x , z) = (0, 1, 2) C (x , y) = (0, 1, 2)



Linial/Pitassi/Shraibman protocol

Alice announces C (y , z)
Bob and Charlie announce whether C (y , z) = C (x , z) = C (x , y)

(As observed previously) if x + y + z = N, the guessed carry
vectors are all the same.
Abort otherwise.

vec(x) = (1, 0, 6) vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20 6 + 7 + 0 ≤ 0 + 20 6 + 4 + 0 ≤ 0 + 10
8 + 0 + 2 ≤ 0 + 10 0 + 0 + 2 ≤ 0 + 10 8 + 0 + 1 ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0 1 + 0 + 1 ≤ 3 + 0 1 + 1 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2) C (x , z) = (0, 1, 2) C (x , y) = (0, 1, 1)



Linial/Pitassi/Shraibman protocol

Alice announces C (y , z)
Bob and Charlie announce whether C (y , z) = C (x , z) = C (x , y)

(As observed previously) if x + y + z = N, the guessed carry
vectors are all the same.
Abort otherwise.

vec(x) = (1, 0, 8) vec(y) = (1, 8, 4) vec(z) = (0, 0, 7)

4 + 7 + 0 ≤ 0 + 20 8 + 7 + 0 ≤ 0 + 20 8 + 4 + 0 ≤ 0 + 20
8 + 0 + 2 ≤ 0 + 10 0 + 0 + 2 ≤ 0 + 10 8 + 0 + 2 ≤ 0 + 10
1 + 0 + 1 ≤ 3 + 0 1 + 0 + 1 ≤ 3 + 0 1 + 1 + 1 ≤ 3 + 0
C (y , z) = (0, 1, 2) C (x , z) = (0, 1, 2) C (x , y) = (0, 1, 2)



Corners

A corner in [N]× [N] is a set of the form

{(x , y), (x + ξ, y), (x , y + ξ)}

for ξ ̸= 0.



Corner-free colorings from ExactlyN protocols

Color (y , z) by the message that Alice sends.

Let x⋆ = N − y − z − ξ
Bob can’t distinguish between (x⋆, y , z) and (x⋆, y + ξ, z)
Charlie can’t distinguish between (x⋆, y , z) and (x⋆, y , z + ξ)
So if {(y , z), (y + ξ, z), (y , z + ξ)} are colored the same, the
protocol claims x⋆ + y + z = N, which is only true when ξ = 0.



ExactlyN protocols from corner-free colorings

Compare the colors of (N − y − z , y), (x ,N − x − z), and (x , y).
This is {(x + ξ, y), (x , y + ξ), (x , y)} with ξ = ∆.


