A direct product theorem for quantum communication with applications to device-independent QKD

Rahul Jain (CQT, NUS)
Srijita Kundu (IQC, Waterloo)

FOCS 2021 ; QIP 2022 ; ArXiv: 2106.04299

Direct product

Direct product

How much harder is doing n independent instances of a task than doing one instance?

Direct product

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm \mathcal{A} for doing one instance of task

Direct product

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm \mathcal{A} for doing one instance of task
- Run \mathcal{A} independently on each instance

Direct product

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm \mathcal{A} for doing one instance of task
- Run \mathcal{A} independently on each instance
- Is this the best we can do?

Direct product

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm \mathcal{A} for doing one instance of task
- Run \mathcal{A} independently on each instance
- Is this the best we can do?

Direct product theorem: Yes.

Direct product

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm \mathcal{A} for doing one instance of task
- Run \mathcal{A} independently on each instance
- Is this the best we can do?

Direct product theorem: Yes.
If c resource required for one instance (with success probability p) and if $o(c n)$ resrouce provided for n independent instances

Direct product

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm \mathcal{A} for doing one instance of task
- Run \mathcal{A} independently on each instance
- Is this the best we can do?

Direct product theorem: Yes.

If c resource required for one instance (with success probability p) and if $o(c n)$ resrouce provided for n independent instances
\Rightarrow success probability $p^{\Omega(n)}$ for n instances

Non-local games

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$ Known distribution μ on $\mathcal{X} \times \mathcal{Y}$

Non-local games

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$ Known distribution μ on $\mathcal{X} \times \mathcal{Y}$

Non-local games

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$
Known distribution μ on $\mathcal{X} \times \mathcal{Y}$

Non-local games

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$
Known distribution μ on $\mathcal{X} \times \mathcal{Y}$

Non-local games

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$ Known distribution μ on $\mathcal{X} \times \mathcal{Y}$

Parallel repetition of games

Parallel repetition of games

- Parallel repetition question: If $\omega^{*}(G)=p$, is $\omega^{*}\left(G^{n}\right)=p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP*=RE, parallel DIQKD

Parallel repetition of games

- Parallel repetition question: If $\omega^{*}(G)=p$, is $\omega^{*}\left(G^{n}\right)=p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP* $=$ RE, parallel DIQKD

Known results:

1. [Raz 95]; [Holenstein 07]: For 2-player G, if $\omega(G)=1-\varepsilon$, then

$$
\omega\left(G^{n}\right)=\left(1-\varepsilon^{3}\right)^{n / \log (|\mathcal{A}| \cdot|\mathcal{B}|)}
$$

Parallel repetition of games

- Parallel repetition question: If $\omega^{*}(G)=p$, is $\omega^{*}\left(G^{n}\right)=p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP* $=$ RE, parallel DIQKD

Known results:

1. [Raz 95]; [Holenstein 07]: For 2-player G, if $\omega(G)=1-\varepsilon$, then

$$
\omega\left(G^{n}\right)=\left(1-\varepsilon^{3}\right)^{n / \log (|\mathcal{A}| \cdot|\mathcal{B}|)}
$$

2. For $\omega^{*}(G)$ special cases:

- [J., Pereszlényi, Yao 14]: Free games

Parallel repetition of games

- Parallel repetition question: If $\omega^{*}(G)=p$, is $\omega^{*}\left(G^{n}\right)=p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP* $=$ RE, parallel DIQKD

Known results:

1. [Raz 95]; [Holenstein 07]: For 2-player G, if $\omega(G)=1-\varepsilon$, then

$$
\omega\left(G^{n}\right)=\left(1-\varepsilon^{3}\right)^{n / \log (|\mathcal{A}| \cdot|\mathcal{B}|)}
$$

2. For $\omega^{*}(G)$ special cases:

- [J., Pereszlényi, Yao 14]: Free games
- [Bavarian, Vidick, Yuen 17]: Anchored games

Parallel repetition of games

- Parallel repetition question: If $\omega^{*}(G)=p$, is $\omega^{*}\left(G^{n}\right)=p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP* $=$ RE, parallel DIQKD

Known results:

1. [Raz 95]; [Holenstein 07]: For 2-player G, if $\omega(G)=1-\varepsilon$, then

$$
\omega\left(G^{n}\right)=\left(1-\varepsilon^{3}\right)^{n / \log (|\mathcal{A}| \cdot|\mathcal{B}|)}
$$

2. For $\omega^{*}(G)$ special cases:

- [J., Pereszlényi, Yao 14]: Free games
- [Bavarian, Vidick, Yuen 17]: Anchored games
- XOR games [CSUU08], unique games [KRT10], projection games [DSV15]

Parallel repetition of games

- Parallel repetition question: If $\omega^{*}(G)=p$, is $\omega^{*}\left(G^{n}\right)=p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP* $=$ RE, parallel DIQKD

Known results:

1. [Raz 95]; [Holenstein 07]: For 2-player G, if $\omega(G)=1-\varepsilon$, then

$$
\omega\left(G^{n}\right)=\left(1-\varepsilon^{3}\right)^{n / \log (|\mathcal{A}| \cdot|\mathcal{B}|)}
$$

2. For $\omega^{*}(G)$ special cases:

- [J., Pereszlényi, Yao 14]: Free games
- [Bavarian, Vidick, Yuen 17]: Anchored games
- XOR games [CSUU08], unique games [KRT10], projection games [DSV15]

Communication complexity

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$

Communication complexity

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$

Communication complexity

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$

Communication complexity

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$

Communication complexity

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$

$\operatorname{QCC}(\mathcal{P})=$ number of qubits communicated \quad (resp. $\operatorname{CC}(\mathcal{P})$)

$$
\begin{gathered}
\operatorname{Pr}[\text { Success on } \mathcal{P}]=\min _{x, y} \operatorname{Pr}_{\mathcal{P}}[\mathrm{V}(x, y, a, b)=1] \\
\left.\mathrm{Q}_{\varepsilon}^{\mathrm{cc}}(\mathrm{~V})=\min _{\mathcal{P}: \operatorname{Pr}[\text { Success on } \mathcal{P}] \geq 1-\varepsilon} \operatorname{QCC}(\mathcal{P}) \quad \text { (resp. } \mathrm{R}_{\varepsilon}(\mathrm{V})\right)
\end{gathered}
$$

Communication complexity

Known predicate $\mathrm{V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$
Known distribution μ on $\mathcal{X} \times \mathcal{Y}$

$\operatorname{Pr}_{\mu}[$ Success $]=\operatorname{Pr}_{\mu} \operatorname{Pr}_{\mathcal{S}}[\mathrm{V}(x, y, a, b)=1]$
$\mathrm{Q}_{\varepsilon}^{\mathrm{cc}}(\mathrm{V}, \mu)=\min _{\mathcal{P}: \operatorname{Pr}[\text { Success on } \mathcal{P}] \geq 1-\varepsilon} \operatorname{QCC}(\mathcal{P}) \quad\left(\right.$ resp. $\left.\mathrm{R}_{\varepsilon}^{\mathrm{cc}}(\mathrm{V}, \mu)\right)$
Yao's Lemma: $C_{\varepsilon}^{\text {pub }}(\mathrm{V})=\max _{\mu} \mathrm{C}_{\varepsilon}^{\text {pub }}(\mathrm{V}, \mu)$

Direct product for communication

- Direct product question: If c communication has success probability p on V , does $o(c n)$ communication have success probability $p^{\Omega(n)}$ on V^{n} ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC_{1} and NC_{2}, \ldots

Direct product for communication

- Direct product question: If c communication has success probability p on V , does $o(c n)$ communication have success probability $p^{\Omega(n)}$ on V^{n} ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC_{1} and NC_{2}, \ldots

Known results:

1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication

Direct product for communication

- Direct product question: If c communication has success probability p on V , does $o(c n)$ communication have success probability $p^{\Omega(n)}$ on V^{n} ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC_{1} and NC_{2}, \ldots

Known results:

1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication
2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of information complexity

Direct product for communication

- Direct product question: If c communication has success probability p on V , does $o(c n)$ communication have success probability $p^{\Omega(n)}$ on V^{n} ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC_{1} and NC_{2}, \ldots

Known results:

1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication
2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of information complexity
3. [J., Kundu 20]: Direct product for 1-way quantum communication

Direct product for communication

- Direct product question: If communication has success probability p on V , does $o(c n)$ communication have success probability $p^{\Omega(n)}$ on V^{n} ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC_{1} and NC_{2}, \ldots

Known results:

1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication
2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of information complexity
3. [J., Kundu 20]: Direct product for 1-way quantum communication
4. [Sherstov 12]: Direct product for generalized discrepancy

Direct product for communication

- Direct product question: If communication has success probability p on V , does $o(c n)$ communication have success probability $p^{\Omega(n)}$ on V^{n} ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC_{1} and NC_{2}, \ldots

Known results:

1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication
2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of information complexity
3. [J., Kundu 20]: Direct product for 1-way quantum communication
4. [Sherstov 12]: Direct product for generalized discrepancy

- Lower bound for 2-party communication complexity of boolean functions

Our results

Our results
 Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ-party predicate V

Our results

Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ-party predicate V

Let μ be a product distribution on inputs and \mathcal{P} be a protocol for V^{n} with communication $c n$.

Our results

Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ-party predicate V

Let μ be a product distribution on inputs and \mathcal{P} be a protocol for V^{n} with communication cn .

1. If $c<1$, then

$$
\operatorname{suc}\left(\mathrm{V}^{n}, \mu^{n}, \mathcal{P}\right) \leq\left(1-\frac{\nu}{2}+\sqrt{2 \ell c}\right)^{\Omega\left(\nu^{2} n / \ell^{2}\right)}
$$

where $\nu=1-\omega^{*}(G(V, \mu))$.

Our results

Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ-party predicate V

Let μ be a product distribution on inputs and \mathcal{P} be a protocol for V^{n} with communication $c n$.

1. If $c<1$, then

$$
\operatorname{suc}\left(\mathrm{V}^{n}, \mu^{n}, \mathcal{P}\right) \leq\left(1-\frac{\nu}{2}+\sqrt{2 \ell c}\right)^{\Omega\left(\nu^{2} n / \ell^{2}\right)}
$$

where $\nu=1-\omega^{*}(G(V, \mu))$.
\Rightarrow Parallel repetition for games, under product distribution, holds even with a small amount of communication

Our results

Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ-party predicate V

Let μ be a product distribution on inputs and \mathcal{P} be a protocol for V^{n} with communication $c n$.

1. If $c<1$, then

$$
\operatorname{suc}\left(\mathrm{V}^{n}, \mu^{n}, \mathcal{P}\right) \leq\left(1-\frac{\nu}{2}+\sqrt{2 \ell c}\right)^{\Omega\left(\nu^{2} n / \ell^{2}\right)}
$$

where $\nu=1-\omega^{*}(G(V, \mu))$.
\Rightarrow Parallel repetition for games, under product distribution, holds even with a small amount of communication
2. If $1 \leq c=O\left(\varepsilon^{2} \cdot \log \operatorname{eff}_{2 \varepsilon}^{*}(\mathrm{~V}, \mu) / \ell^{3}\right)$, then

$$
\operatorname{suc}\left(\mathrm{V}^{n}, \mu^{n}, \mathcal{P}\right) \leq(1-\varepsilon)^{\Omega(n)}
$$

where eff ${ }^{*}(\mathrm{~V}, \mu)=($ relaxed $)$ quantum partition bound or efficiency.

Our results

- Case $1 . \Rightarrow$ It is possible to do device-independent quantum key distribution (QKD) in the presence of leakage.

Our results

- Case 1. \Rightarrow It is possible to do device-independent quantum key distribution (QKD) in the presence of leakage.
- Protocol by [J., Miller, Shi 17] based on the Magic Square (MS) game

With devices compatible with n copies of MS, it is possible to extract $\Omega(n)$ bits of key even in the presence of $c n$ communication.

Our results

- Case 1. \Rightarrow It is possible to do device-independent quantum key distribution (QKD) in the presence of leakage.
- Protocol by [J., Miller, Shi 17] based on the Magic Square (MS) game

With devices compatible with n copies of MS, it is possible to extract $\Omega(n)$ bits of key even in the presence of $c n$ communication.

- Case 2. \Rightarrow Direct product theorem in terms of max $_{\text {product } \mu} \log$ eff* (V, μ)
- Not directly comparable to Sherstov's result for 2-party boolean functions
- Works for more than 2 parties, non-boolean functions and predicates
- Direct product theorem for generalized the inner-product function:

$$
\operatorname{IP}_{q}^{n}=\sum_{i=1}^{n} x_{i} y_{i} \quad \bmod q
$$

Quantum partition bound

Quantum partition bound

Zero-communication protocol:

- Either party can abort or give outputs
- Conditioned on nobody aborting, outputs correct w.p. $1-\varepsilon$
- Efficiency $=(\text { probability of not aborting })^{-1}$

Quantum partition bound

Zero-communication protocol:

- Either party can abort or give outputs
- Conditioned on nobody aborting, outputs correct w.p. $1-\varepsilon$
- Efficiency $=(\text { probability of not aborting })^{-1}$
[Laplante, Lerays, Roland 12]: $\operatorname{eff}_{\varepsilon}^{*}(\mathrm{~V}, \mu)=\min$ efficiency for V w.r.t. μ

Quantum partition bound

Zero-communication protocol:

- Either party can abort or give outputs
- Conditioned on nobody aborting, outputs correct w.p. $1-\varepsilon$
- Efficiency $=(\text { probability of not aborting })^{-1}$
[Laplante, Lerays, Roland 12]: $\operatorname{eff}_{\varepsilon}^{*}(\mathrm{~V}, \mu)=\min$ efficiency for V w.r.t. μ

$$
\mathrm{Q}_{\varepsilon}(\mathrm{V}, \mu)=\Omega\left(\log \operatorname{eff}_{\varepsilon}^{*}(\mathrm{~V}, \mu)\right)
$$

QKD application

QKD application

QKD application

- Bell inequality violation \Rightarrow shared entanglement \Rightarrow secret key

QKD application

- Bell inequality violation \Rightarrow shared entanglement \Rightarrow secret key
- In device-independent framework, no need to trust shared state or measurements

QKD application

- Bell inequality violation \Rightarrow shared entanglement \Rightarrow secret key
- In device-independent framework, no need to trust shared state or measurements
- Using non-local games for security analysis requires no communication

DIQKD security parallel repetition/direct product

DIQKD security parallel repetition/direct product

- [J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based on parallel repetition

DIQKD security parallel repetition/direct product

- [J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based on parallel repetition

DIQKD security parallel repetition/direct product

- [J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based on parallel repetition
- Fully interactive leakage of $c n$ qubits

DIQKD security parallel repetition/direct product

- [J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based on parallel repetition
- Fully interactive leakage of $c n$ qubits
- Scenario modelled by communication complexity rather than non-local game
- Case 1. of main theorem applies
- Key rate with leakage $=$ key rate without leakage $-O(\sqrt{c} n)$

Proof idea: information-theoretic framework

Given protocol \mathcal{P} for V^{n} with $\operatorname{QCC}(\mathcal{P})=c n$, and $S \subseteq[n]$, one of these holds:

Proof idea: information-theoretic framework

Given protocol \mathcal{P} for V^{n} with $\operatorname{QCC}(\mathcal{P})=c n$, and $S \subseteq[n]$, one of these holds:

- $\operatorname{Pr}[$ Success in $S]$ is already small

Proof idea: information-theoretic framework

Given protocol \mathcal{P} for V^{n} with $\operatorname{QCC}(\mathcal{P})=c n$, and $S \subseteq[n]$, one of these holds:

- $\operatorname{Pr}[$ Success in $S]$ is already small
- \exists "good" $i \notin S$ with $\operatorname{Pr}[$ Success $i \mid$ Success in $S] \leq 1-\varepsilon$

Proof idea: information-theoretic framework

Given protocol \mathcal{P} for V^{n} with $\operatorname{QCC}(\mathcal{P})=c n$, and $S \subseteq[n]$, one of these holds:

- $\operatorname{Pr}[$ Success in $S]$ is already small
- \exists "good" $i \notin S$ with $\operatorname{Pr}[$ Success $i \mid$ Success in $S] \leq 1-\varepsilon$

1. $\operatorname{Pr}[$ Success in $i \mid$ Success in $S]>1-\varepsilon \Rightarrow$ strategy for $G(\mathrm{~V}, \mu)$ with success probability $>\omega^{*}(G(V, \mu)) \quad$ Contradiction!

Proof idea: information-theoretic framework

Given protocol \mathcal{P} for V^{n} with $\operatorname{QCC}(\mathcal{P})=c n$, and $S \subseteq[n]$, one of these holds:

- $\operatorname{Pr}[$ Success in $S]$ is already small
- \exists "good" $i \notin S$ with $\operatorname{Pr}[$ Success $i \mid$ Success in $S] \leq 1-\varepsilon$

1. $\operatorname{Pr}[$ Success in $i \mid$ Success in $S]>1-\varepsilon \Rightarrow$ strategy for $G(\mathrm{~V}, \mu)$ with success probability $>\omega^{*}(G(V, \mu)) \quad$ Contradiction!
2. $\operatorname{Pr}[$ Success in $i \mid$ Success in $S]>1-\varepsilon \Rightarrow$ zero-communication protocol for \vee with efficiency $<\operatorname{eff}_{\varepsilon}^{*}(\mathrm{~V}, \mu)$ and error probability $\varepsilon \quad$ Contradiction!

Proof idea: parallel repetition for product games

Proof idea: parallel repetition for product games

 Define "useful" state $|\varphi\rangle$:- Contains registers $X_{\bar{S}} Y_{\bar{S}} A_{\bar{S}} B_{\bar{S}}$ in superposition
- $|\varphi\rangle_{x_{i}},|\varphi\rangle_{y_{i}},|\varphi\rangle_{x_{i} y_{i}}$: states obtained on measuring $X_{i}, Y_{i}, X_{i} Y_{i}$ registers
- Distribution $\mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}}$ on measuring $A_{i} B_{i}$ on $|\varphi\rangle_{x_{i} y_{i}}$:

$$
\mathrm{P}_{X_{i} Y_{i}} \mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}} \approx \mathrm{P}_{X_{i} Y_{i} A_{i} B_{i} \mid \text { Success } C} \quad \text { (in } \mathcal{P} \text {) }
$$

Proof idea: parallel repetition for product games

 Define "useful" state $|\varphi\rangle$:- Contains registers $X_{\bar{S}} Y_{\bar{S}} A_{\bar{S}} B_{\bar{S}}$ in superposition
- $|\varphi\rangle_{x_{i}},|\varphi\rangle_{y_{i}},|\varphi\rangle_{x_{i} y_{i}}$: states obtained on measuring $X_{i}, Y_{i}, X_{i} Y_{i}$ registers
- Distribution $\mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}}$ on measuring $A_{i} B_{i}$ on $|\varphi\rangle_{x_{i} y_{i}}$:

$$
\mathrm{P}_{X_{i} Y_{i}} \mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}} \approx \mathrm{P}_{X_{i} Y_{i} A_{i} B_{i} \mid \text { Success } C} \quad \text { (in } \mathcal{P} \text {) }
$$

- For good $i \in \bar{S}$,

$$
\varphi_{\mathrm{Bob} \mid x_{i}} \approx_{\delta} \varphi_{\mathrm{Bob}} \quad \varphi_{\mathrm{Alice} \mid y_{i}} \approx_{\delta} \varphi_{\mathrm{Alice}}
$$

Proof idea: parallel repetition for product games

Define "useful" state $|\varphi\rangle$:

- Contains registers $X_{\bar{S}} Y_{\bar{S}} A_{\bar{S}} B_{\bar{S}}$ in superposition
- $|\varphi\rangle_{x_{i}},|\varphi\rangle_{y_{i}},|\varphi\rangle_{x_{i} y_{i}}$: states obtained on measuring $X_{i}, Y_{i}, X_{i} Y_{i}$ registers
- Distribution $\mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}}$ on measuring $A_{i} B_{i}$ on $|\varphi\rangle_{x_{i} y_{i}}$:

$$
\mathrm{P}_{X_{i} Y_{i}} \mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}} \approx \mathrm{P}_{\left.X_{i} Y_{i} A_{i} B_{i} \mid \text { Success } C \quad \text { (in } \mathcal{P}\right)}
$$

- For good $i \in \bar{S}$,

$$
\varphi_{\mathrm{Bob} \mid x_{i}} \approx_{\delta} \varphi_{\mathrm{Bob}} \quad \varphi_{\mathrm{Alice} \mid y_{i}} \approx_{\delta} \varphi_{\text {Alice }}
$$

Proof idea: parallel repetition for product games

Define "useful" state $|\varphi\rangle$:

- Contains registers $X_{\bar{S}} Y_{\bar{S}} A_{\bar{S}} B_{\bar{S}}$ in superposition
- $|\varphi\rangle_{x_{i}},|\varphi\rangle_{y_{i}},|\varphi\rangle_{x_{i} y_{i}}$: states obtained on measuring $X_{i}, Y_{i}, X_{i} Y_{i}$ registers
- Distribution $\mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}}$ on measuring $A_{i} B_{i}$ on $|\varphi\rangle_{x_{i} y_{i}}$:

$$
\mathrm{P}_{X_{i} Y_{i}} \mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}} \approx \mathrm{P}_{\left.X_{i} Y_{i} A_{i} B_{i} \mid \text { Success } C \quad \text { (in } \mathcal{P}\right)}
$$

- For good $i \in \bar{S}$,

$$
\varphi_{\mathrm{Bob} \mid x_{i}} \approx_{\delta} \varphi_{\mathrm{Bob}} \quad \varphi_{\mathrm{Alice} \mid y_{i}} \approx_{\delta} \varphi_{\mathrm{Alice}}
$$

Proof idea: parallel repetition for product games

Define "useful" state $|\varphi\rangle$:

- Contains registers $X_{\bar{S}} Y_{\bar{S}} A_{\bar{S}} B_{\bar{S}}$ in superposition
- $|\varphi\rangle_{x_{i}},|\varphi\rangle_{y_{i}},|\varphi\rangle_{x_{i} y_{i}}$: states obtained on measuring $X_{i}, Y_{i}, X_{i} Y_{i}$ registers
- Distribution $\mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}}$ on measuring $A_{i} B_{i}$ on $|\varphi\rangle_{x_{i} y_{i}}$:

$$
\left.\mathrm{P}_{X_{i} Y_{i}} \mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}} \approx \mathrm{P}_{X_{i} Y_{i} A_{i} B_{i} \mid \text { Success } C} \quad \text { (in } \mathcal{P}\right)
$$

- For good $i \in \bar{S}$,

$$
\varphi_{\mathrm{Bob} \mid x_{i}} \approx_{\delta} \varphi_{\mathrm{Bob}} \quad \varphi_{\mathrm{Alice} \mid y_{i}} \approx_{\delta} \varphi_{\mathrm{Alice}}
$$

Proof idea: parallel repetition for product games

Define "useful" state $|\varphi\rangle$:

- Contains registers $X_{\bar{S}} Y_{\bar{S}} A_{\bar{S}} B_{\bar{S}}$ in superposition
- $|\varphi\rangle_{x_{i}},|\varphi\rangle_{y_{i}},|\varphi\rangle_{x_{i} y_{i}}$: states obtained on measuring $X_{i}, Y_{i}, X_{i} Y_{i}$ registers
- Distribution $\mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}}$ on measuring $A_{i} B_{i}$ on $|\varphi\rangle_{x_{i} y_{i}}$:

$$
\mathrm{P}_{X_{i} Y_{i}} \mathrm{P}_{\hat{A}_{i} \hat{B}_{i} \mid X_{i} Y_{i}} \approx \mathrm{P}_{\left.X_{i} Y_{i} A_{i} B_{i} \mid \text { Success } C \quad \text { (in } \mathcal{P}\right)}
$$

- For good $i \in \bar{S}$,

$$
\varphi_{\mathrm{Bob} \mid x_{i}} \approx_{\delta} \varphi_{\mathrm{Bob}} \quad \varphi_{\mathrm{Alice} \mid y_{i}} \approx_{\delta} \varphi_{\mathrm{Alice}}
$$

y_{i}

Proof also works with small communication! $(c<1)$

Proof idea: DPT in terms of efficiency

Proof idea: DPT in terms of efficiency

If $c \geq 1$,

$$
\varphi_{\text {Bob } \mid x_{i}} \not \varnothing_{\delta} \varphi_{\text {Bob }} \quad \varphi_{\text {Alicel } y_{i}} \not \not_{\delta} \varphi_{\text {Alice }}
$$

Proof idea: DPT in terms of efficiency

If $c \geq 1$,

$$
\varphi_{\mathrm{Bob} \mid x_{i}} \not \approx \delta \varphi_{\mathrm{Bob}} \quad \varphi_{\text {Alice } \mid y_{i}} \not \approx \delta \varphi_{\text {Alice }}
$$

But if Alice communicates $c_{1} n$ and Bob $c_{2} n$,

$$
\mathrm{I}\left(X_{i}: \operatorname{Bob}\right)_{\varphi} \leq c_{1} \quad \mathrm{I}\left(Y_{i}: \text { Alice }\right)_{\varphi} \leq c_{2}
$$

Proof idea: DPT in terms of efficiency

If $c \geq 1$,

$$
\varphi_{\mathrm{Bob} \mid x_{i}} \not \approx \delta \varphi_{\mathrm{Bob}} \quad \varphi_{\text {Alice } \mid y_{i}} \not \approx_{\delta} \varphi_{\text {Alice }}
$$

But if Alice communicates $c_{1} n$ and Bob $c_{2} n$,

$$
\mathrm{I}\left(X_{i}: \mathrm{Bob}\right)_{\varphi} \leq c_{1} \quad \mathrm{I}\left(Y_{i}: \text { Alice }\right)_{\varphi} \leq c_{2}
$$

Zero-communication protocol via Quantum Substate Theorem

Proof idea: DPT in terms of efficiency

If $c \geq 1$,

$$
\varphi_{\mathrm{Bob} \mid x_{i}} \not \approx_{\delta} \varphi_{\mathrm{Bob}} \quad \varphi_{\text {Alice } \mid y_{i}} \not \approx_{\delta} \varphi_{\text {Alice }}
$$

But if Alice communicates $c_{1} n$ and Bob $c_{2} n$,

$$
\mathrm{I}\left(X_{i}: \mathrm{Bob}\right)_{\varphi} \leq c_{1} \quad \mathrm{I}\left(Y_{i}: \text { Alice }\right)_{\varphi} \leq c_{2}
$$

Zero-communication protocol via Quantum Substate Theorem
[J., Radhakrishnan, Sen 03]; [J. Nayak 12]: $\mathrm{I}(X: B)_{\varphi} \leq c \Rightarrow$

- $\exists \varphi_{X B}^{\prime} \approx_{\delta} \varphi_{X B}$ s.t. $\varphi_{X B}^{\prime} \leq 2^{O(c)}\left(\varphi_{X} \otimes \varphi_{B}\right)$
- $\forall X=x, \exists \Pi_{x}$ acting on A s.t. $\| \Pi_{x}|\varphi\rangle_{A B} \|_{2}^{2}=2^{-O(c)}$ and $2^{O(c)} \Pi_{x}|\varphi\rangle_{A B}=\left|\varphi^{\prime}\right\rangle_{A B \mid X}$

Proof idea: DPT in terms of efficiency

Proof idea: DPT in terms of efficiency

Proof idea: DPT in terms of efficiency

Proof idea: DPT in terms of efficiency

$\Pi_{y_{i}}$ does not succeed on state after $\Pi_{x_{i}}$ with probability $2^{-c_{2}}$!

Proof idea: DPT in terms of efficiency

y_{i}

$\Pi_{y_{i}}$ does not succeed on state after $\Pi_{x_{i}}$ with probability $2^{-c_{2}!}$
Substate Perturbation Lemma:

$$
\begin{gathered}
\varphi_{Y A}^{\prime} \leq 2^{c}\left(\varphi_{Y} \otimes \varphi_{A}\right) \text { and } \rho_{A} \approx_{\delta} \varphi_{A} \\
\Rightarrow \exists \rho_{Y A}^{\prime} \approx_{\delta} \varphi_{Y A}^{\prime} \text { s.t. } \rho_{Y A}^{\prime} \leq 2^{O(c)}\left(\varphi_{Y} \otimes \rho_{A}\right)
\end{gathered}
$$

Conclusion and open questions

Conclusion and open questions

- Parallel repetition for games holds even with small communication

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
- Works for ℓ parties, general predicates
- New technical tool: Substate Perturbation Lemma

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
- Works for ℓ parties, general predicates
- New technical tool: Substate Perturbation Lemma
- New applications of our results?

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
- Works for ℓ parties, general predicates
- New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
- in terms of (relaxed) quantum partition bound under non-product distributions?

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
- Works for ℓ parties, general predicates
- New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
- in terms of (relaxed) quantum partition bound under non-product distributions?
- in terms of quantum information complexity?

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
- Works for ℓ parties, general predicates
- New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
- in terms of (relaxed) quantum partition bound under non-product distributions?
- in terms of quantum information complexity?
- for bounded round quantum protocols, 2-round protocols?

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
- Works for ℓ parties, general predicates
- New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
- in terms of (relaxed) quantum partition bound under non-product distributions?
- in terms of quantum information complexity?
- for bounded round quantum protocols, 2-round protocols?
- in terms of partition bound for classical protocols?

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
- Works for ℓ parties, general predicates
- New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
- in terms of (relaxed) quantum partition bound under non-product distributions?
- in terms of quantum information complexity?
- for bounded round quantum protocols, 2-round protocols?
- in terms of partition bound for classical protocols?
- for unbounded round classical protocols (with polylog loss)?

Conclusion and open questions

- Parallel repetition for games holds even with small communication
- Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
- Works for ℓ parties, general predicates
- New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
- in terms of (relaxed) quantum partition bound under non-product distributions?
- in terms of quantum information complexity?
- for bounded round quantum protocols, 2-round protocols?
- in terms of partition bound for classical protocols?
- for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

