A direct product theorem for quantum communication with applications to device-independent QKD

> Rahul Jain (CQT, NUS) Srijita Kundu (IQC, Waterloo)

FOCS 2021 ; QIP 2022 ; ArXiv: 2106.04299

How much harder is doing n independent instances of a task than doing one instance?

How much harder is doing n independent instances of a task than doing one instance?

• Algorithm $\mathcal A$ for doing one instance of task

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm ${\mathcal A}$ for doing one instance of task
- Run \mathcal{A} independently on each instance

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm ${\mathcal A}$ for doing one instance of task
- Run \mathcal{A} independently on each instance
- Is this the best we can do?

How much harder is doing n independent instances of a task than doing one instance?

- \bullet Algorithm ${\cal A}$ for doing one instance of task
- Run \mathcal{A} independently on each instance
- Is this the best we can do?

Direct product theorem: Yes.

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm ${\mathcal A}$ for doing one instance of task
- Run \mathcal{A} independently on each instance
- Is this the best we can do?

Direct product theorem: Yes.

If c resource required for one instance (with success probability p) and if o(cn) resrouce provided for n independent instances

How much harder is doing n independent instances of a task than doing one instance?

- Algorithm ${\mathcal A}$ for doing one instance of task
- Run \mathcal{A} independently on each instance
- Is this the best we can do?

Direct product theorem: Yes.

If c resource required for one instance (with success probability p) and if o(cn) resrouce provided for n independent instances

 \Rightarrow success probability $p^{\Omega(n)}$ for *n* instances

 $\begin{array}{l} \mathsf{Known \ predicate \ V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \to \{0,1\} \\ \mathsf{Known \ distribution} \ \mu \ \text{on} \ \mathcal{X} \times \mathcal{Y} \end{array}$

 $\begin{array}{l} \mathsf{Known \ predicate \ V}: \mathcal{X} \times \mathcal{Y} \times \mathcal{A} \times \mathcal{B} \to \{0,1\} \\ \mathsf{Known \ distribution} \ \mu \ \mathrm{on} \ \mathcal{X} \times \mathcal{Y} \end{array}$

- Parallel repetition question: If $\omega^*(G) = p$, is $\omega^*(G^n) = p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP*=RE, parallel DIQKD

. . .

- Parallel repetition question: If $\omega^*(G) = p$, is $\omega^*(G^n) = p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP*=RE, parallel DIQKD

Known results:

$$\omega(G^n) = (1 - \varepsilon^3)^{n/\log(|\mathcal{A}| \cdot |\mathcal{B}|)}$$

- Parallel repetition question: If $\omega^*(G) = p$, is $\omega^*(G^n) = p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP*=RE, parallel DIQKD

Known results:

$$\omega(G^n) = (1 - \varepsilon^3)^{n/\log(|\mathcal{A}| \cdot |\mathcal{B}|)}$$

- 2. For $\omega^*(G)$ special cases:
 - [J., Pereszlényi, Yao 14]: Free games

- Parallel repetition question: If $\omega^*(G) = p$, is $\omega^*(G^n) = p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP*=RE, parallel DIQKD

Known results:

$$\omega(G^n) = (1 - \varepsilon^3)^{n/\log(|\mathcal{A}| \cdot |\mathcal{B}|)}$$

- 2. For $\omega^*(G)$ special cases:
 - ► [J., Pereszlényi, Yao 14]: Free games
 - ► [Bavarian, Vidick, Yuen 17]: Anchored games

- Parallel repetition question: If $\omega^*(G) = p$, is $\omega^*(G^n) = p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP*=RE, parallel DIQKD

Known results:

$$\omega(G^n) = (1 - \varepsilon^3)^{n/\log(|\mathcal{A}| \cdot |\mathcal{B}|)}$$

- 2. For $\omega^*(G)$ special cases:
 - [J., Pereszlényi, Yao 14]: Free games
 - ► [Bavarian, Vidick, Yuen 17]: Anchored games
 - XOR games [CSUU08], unique games [KRT10], projection games [DSV15]

- Parallel repetition question: If $\omega^*(G) = p$, is $\omega^*(G^n) = p^{\Omega(n)}$?
- Applications: hardness of approximation, MIP*=RE, parallel DIQKD

Known results:

$$\omega(G^n) = (1 - \varepsilon^3)^{n/\log(|\mathcal{A}| \cdot |\mathcal{B}|)}$$

- 2. For $\omega^*(G)$ special cases:
 - [J., Pereszlényi, Yao 14]: Free games
 - ► [Bavarian, Vidick, Yuen 17]: Anchored games
 - XOR games [CSUU08], unique games [KRT10], projection games [DSV15]

Known predicate $\mathsf{V}:\mathcal{X}\times\mathcal{Y}\times\mathcal{A}\times\mathcal{B}\to\{0,1\}$

shared resource

- Direct product question: If c communication has success probability p on V, does o(cn) communication have success probability $p^{\Omega(n)}$ on V^n ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC₁ and NC₂, ...

- Direct product question: If c communication has success probability p on V, does o(cn) communication have success probability $p^{\Omega(n)}$ on V^n ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC₁ and NC₂, ...

Known results:

1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication

- Direct product question: If c communication has success probability p on V, does o(cn) communication have success probability $p^{\Omega(n)}$ on V^n ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC₁ and NC₂, ...

- 1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication
- 2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of information complexity

- Direct product question: If c communication has success probability p on V, does o(cn) communication have success probability $p^{\Omega(n)}$ on V^n ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC₁ and NC₂, ...

- 1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication
- 2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of information complexity
- 3. [J., Kundu 20]: Direct product for 1-way quantum communication

- Direct product question: If c communication has success probability p on V, does o(cn) communication have success probability $p^{\Omega(n)}$ on V^n ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC₁ and NC₂, ...

- 1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication
- 2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of information complexity
- 3. [J., Kundu 20]: Direct product for 1-way quantum communication
- 4. [Sherstov 12]: Direct product for generalized discrepancy

- Direct product question: If c communication has success probability p on V, does o(cn) communication have success probability $p^{\Omega(n)}$ on V^n ?
- Applications: Lower bounds for specific functions, time-space tradeoffs, separating NC₁ and NC₂, ...

- 1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct product for bounded-round classical communication
- 2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of information complexity
- 3. [J., Kundu 20]: Direct product for 1-way quantum communication
- 4. [Sherstov 12]: Direct product for generalized discrepancy
 - Lower bound for 2-party communication complexity of boolean functions

Our results

Our results

Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ -party predicate V

Our results

Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ -party predicate V

Let μ be a product distribution on inputs and $\mathcal P$ be a protocol for V^n with communication $\mathit{cn}.$
Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ -party predicate V

Let μ be a product distribution on inputs and $\mathcal P$ be a protocol for V^n with communication $\mathit{cn}.$

1. If c < 1, then $\operatorname{suc}(\mathsf{V}^n, \mu^n, \mathcal{P}) \leq \left(1 - \frac{\nu}{2} + \sqrt{2\ell c}\right)^{\Omega(\nu^2 n/\ell^2)}$ where $\nu = 1 - \omega^*(\mathcal{G}(\mathsf{V}, \mu))$.

Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ -party predicate V

Let μ be a product distribution on inputs and $\mathcal P$ be a protocol for V^n with communication $\mathit{cn}.$

1. If c < 1, then

$$\mathsf{suc}(\mathsf{V}^n,\mu^n,\mathcal{P})\leq \left(1-rac{
u}{2}+\sqrt{2\ell c}
ight)^{\Omega(
u^2n/\ell^2)}$$

where $\nu = 1 - \omega^*(G(V, \mu))$.

 \Rightarrow Parallel repetition for games, under product distribution, holds even with a small amount of communication

Main theorem: Distributional direct product theorem quantum communication complexity of any ℓ -party predicate V

Let μ be a product distribution on inputs and $\mathcal P$ be a protocol for V^n with communication $\mathit{cn}.$

1. If c < 1, then

$$\mathsf{suc}(\mathsf{V}^n,\mu^n,\mathcal{P})\leq \left(1-rac{
u}{2}+\sqrt{2\ell c}
ight)^{\Omega(
u^2n/\ell^2)}$$

where $\nu = 1 - \omega^*(G(V, \mu))$.

 \Rightarrow Parallel repetition for games, under product distribution, holds even with a small amount of communication

2. If
$$1 \leq c = O(\varepsilon^2 \cdot \log eff_{2\varepsilon}^*(V, \mu)/\ell^3)$$
, then
 $suc(V^n, \mu^n, \mathcal{P}) \leq (1 - \varepsilon)^{\Omega(n)}$
where $eff^*(V, \mu) = (relaxed)$ quantum partition bound or
 $efficiency$

• Case 1. \Rightarrow It is possible to do device-independent quantum key distribution (QKD) in the presence of leakage.

- Case 1. \Rightarrow It is possible to do device-independent quantum key distribution (QKD) in the presence of leakage.
 - ▶ Protocol by [J., Miller, Shi 17] based on the Magic Square (MS) game

With devices compatible with *n* copies of MS, it is possible to extract $\Omega(n)$ bits of key even in the presence of *cn* communication.

- Case 1. ⇒ It is possible to do device-independent quantum key distribution (QKD) in the presence of leakage.
 - Protocol by [J., Miller, Shi 17] based on the Magic Square (MS) game

With devices compatible with *n* copies of MS, it is possible to extract $\Omega(n)$ bits of key even in the presence of *cn* communication.

• Case 2. \Rightarrow Direct product theorem in terms of max_{product μ} log eff^{*}(V, μ)

- Not directly comparable to Sherstov's result for 2-party boolean functions
- Works for more than 2 parties, non-boolean functions and predicates
- Direct product theorem for generalized the inner-product function:

$$\mathsf{IP}_q^n = \sum_{i=1}^n x_i y_i \mod q.$$

Zero-communication protocol:

- Either party can abort or give outputs
- Conditioned on nobody aborting, outputs correct w.p. 1-arepsilon
- Efficiency = (probability of not aborting)⁻¹

Zero-communication protocol:

- Either party can abort or give outputs
- Conditioned on nobody aborting, outputs correct w.p. 1-arepsilon
- Efficiency = (probability of not aborting)⁻¹

[Laplante, Lerays, Roland 12]: eff^{*}_{ε}(V, μ) = min efficiency for V w.r.t. μ

Zero-communication protocol:

- Either party can abort or give outputs
- Conditioned on nobody aborting, outputs correct w.p. 1-arepsilon
- Efficiency = (probability of not aborting)⁻¹

[Laplante, Lerays, Roland 12]: eff^{*}_{ε}(V, μ) = min efficiency for V w.r.t. μ

$$\mathsf{Q}_{\varepsilon}(\mathsf{V},\mu) = \Omega(\mathsf{log}\,\mathsf{eff}^*_{\varepsilon}(\mathsf{V},\mu))$$

QKD application

Rahul Jain

QKD application

QKD application y Х а

 \bullet Bell inequality violation \Rightarrow shared entanglement \Rightarrow secret key

QKD application V х

- Bell inequality violation \Rightarrow shared entanglement \Rightarrow secret key
- In device-independent framework, no need to trust shared state or measurements

QKD application V х

- Bell inequality violation \Rightarrow shared entanglement \Rightarrow secret key
- In device-independent framework, no need to trust shared state or measurements
- Using non-local games for security analysis requires no communication

• [J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based on parallel repetition

• [J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based on parallel repetition

- [J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based on parallel repetition
- Fully interactive leakage of cn qubits

- [J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based on parallel repetition
- Fully interactive leakage of cn qubits
 - Scenario modelled by communication complexity rather than non-local game
 - Case 1. of main theorem applies
 - Key rate with leakage = key rate without leakage $-O(\sqrt{cn})$

Given protocol \mathcal{P} for V^n with $QCC(\mathcal{P}) = cn$, and $S \subseteq [n]$, one of these holds:

• Pr[Success in S] is already small

- Pr[Success in S] is already small
- \exists "good" $i \notin S$ with Pr[Success i|Success in $S] \leq 1 \varepsilon$

- Pr[Success in S] is already small
- \exists "good" $i \notin S$ with Pr[Success i|Success in $S] \leq 1 \varepsilon$
 - 1. Pr[Success in *i*|Success in *S*] > $1 \varepsilon \Rightarrow$ strategy for $G(V, \mu)$ with success probability > $\omega^*(G(V, \mu))$ Contradiction!

- Pr[Success in S] is already small
- \exists "good" $i \notin S$ with Pr[Success i |Success in $S] \leq 1 \varepsilon$
 - 1. Pr[Success in *i*|Success in *S*] > $1 \varepsilon \Rightarrow$ strategy for $G(V, \mu)$ with success probability > $\omega^*(G(V, \mu))$ Contradiction!
 - 2. Pr[Success in *i*|Success in *S*] > $1 \varepsilon \Rightarrow$ zero-communication protocol for V with efficiency < eff^{*}_{ε}(V, μ) and error probability ε Contradiction!

Proof idea: parallel repetition for product games

- Contains registers $X_{\overline{S}}Y_{\overline{S}}A_{\overline{S}}B_{\overline{S}}$ in superposition
- $|\varphi\rangle_{x_i}, |\varphi\rangle_{y_i}, |\varphi\rangle_{x_iy_i}$: states obtained on measuring X_i, Y_i, X_iY_i registers
- Distribution $P_{\hat{A}_i\hat{B}_i|X_iY_i}$ on measuring A_iB_i on $|\varphi\rangle_{x_iy_i}$:

$$\mathsf{P}_{X_iY_i}\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}\approx\mathsf{P}_{X_iY_iA_iB_i|\mathsf{Success}\ C}\quad(\mathsf{in}\ \mathcal{P})$$

- Contains registers $X_{\overline{S}}Y_{\overline{S}}A_{\overline{S}}B_{\overline{S}}$ in superposition
- $|\varphi\rangle_{x_i}, |\varphi\rangle_{y_i}, |\varphi\rangle_{x_iy_i}$: states obtained on measuring X_i, Y_i, X_iY_i registers
- Distribution $\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}$ on measuring A_iB_i on $|\varphi\rangle_{x_iy_i}$:

$$\mathsf{P}_{X_iY_i}\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}\approx\mathsf{P}_{X_iY_iA_iB_i|\mathsf{Success}\ C}\quad(\mathsf{in}\ \mathcal{P})$$

$$\varphi_{\mathsf{Bob}|x_i} \approx_{\delta} \varphi_{\mathsf{Bob}} \qquad \varphi_{\mathsf{Alice}|y_i} \approx_{\delta} \varphi_{\mathsf{Alice}}$$

- Contains registers $X_{\overline{S}}Y_{\overline{S}}A_{\overline{S}}B_{\overline{S}}$ in superposition
- $|\varphi\rangle_{x_i}, |\varphi\rangle_{y_i}, |\varphi\rangle_{x_iy_i}$: states obtained on measuring X_i, Y_i, X_iY_i registers
- Distribution $\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}$ on measuring A_iB_i on $|\varphi\rangle_{x_iy_i}$:

$$\mathsf{P}_{X_iY_i}\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}\approx\mathsf{P}_{X_iY_iA_iB_i|\mathsf{Success}\ C}\quad(\mathsf{in}\ \mathcal{P})$$

$$\varphi_{\mathsf{Bob}|x_i} \approx_{\delta} \varphi_{\mathsf{Bob}} \qquad \qquad \varphi_{\mathsf{Alice}|y_i} \approx_{\delta} \varphi_{\mathsf{Alice}}$$

- Contains registers $X_{\overline{S}}Y_{\overline{S}}A_{\overline{S}}B_{\overline{S}}$ in superposition
- $|\varphi\rangle_{x_i}, |\varphi\rangle_{y_i}, |\varphi\rangle_{x_iy_i}$: states obtained on measuring X_i, Y_i, X_iY_i registers
- Distribution $\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}$ on measuring A_iB_i on $|\varphi\rangle_{x_iy_i}$:

$$\mathsf{P}_{X_iY_i}\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}\approx\mathsf{P}_{X_iY_iA_iB_i|\mathsf{Success}\ C}\quad(\mathsf{in}\ \mathcal{P})$$

- Contains registers $X_{\overline{S}}Y_{\overline{S}}A_{\overline{S}}B_{\overline{S}}$ in superposition
- $|\varphi\rangle_{x_i}, |\varphi\rangle_{y_i}, |\varphi\rangle_{x_iy_i}$: states obtained on measuring X_i, Y_i, X_iY_i registers
- Distribution $\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}$ on measuring A_iB_i on $|\varphi\rangle_{x_iy_i}$:

$$\mathsf{P}_{X_iY_i}\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}\approx\mathsf{P}_{X_iY_iA_iB_i|\mathsf{Success}\ C}\quad(\mathsf{in}\ \mathcal{P})$$

- Contains registers $X_{\overline{S}}Y_{\overline{S}}A_{\overline{S}}B_{\overline{S}}$ in superposition
- $|\varphi\rangle_{x_i}, |\varphi\rangle_{y_i}, |\varphi\rangle_{x_iy_i}$: states obtained on measuring X_i, Y_i, X_iY_i registers
- Distribution $\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}$ on measuring A_iB_i on $|\varphi\rangle_{x_iy_i}$:

$$\mathsf{P}_{X_iY_i}\mathsf{P}_{\hat{A}_i\hat{B}_i|X_iY_i}\approx\mathsf{P}_{X_iY_iA_iB_i|\mathsf{Success }C}\quad(\mathsf{in }\mathcal{P})$$

• For good $i \in \overline{S}$,

Proof also works with small communication! (c < 1)

If $c \geq 1$,

 $\varphi_{\mathsf{Bob}|x_i} \not\approx \delta \varphi_{\mathsf{Bob}} \qquad \varphi_{\mathsf{Alice}|y_i} \not\approx \delta \varphi_{\mathsf{Alice}}$

If $c\geq 1$,

$$\varphi_{\mathsf{Bob}|x_i} \not\approx \delta \varphi_{\mathsf{Bob}} \qquad \varphi_{\mathsf{Alice}|y_i} \not\approx \delta \varphi_{\mathsf{Alice}}$$

But if Alice communicates $c_1 n$ and Bob $c_2 n$,

 $I(X_i : Bob)_{\varphi} \leq c_1 \qquad I(Y_i : Alice)_{\varphi} \leq c_2$

If $c\geq 1$,

$$\varphi_{\mathsf{Bob}|x_i} \not\approx \delta \varphi_{\mathsf{Bob}} \qquad \varphi_{\mathsf{Alice}|y_i} \not\approx \delta \varphi_{\mathsf{Alice}}$$

But if Alice communicates $c_1 n$ and Bob $c_2 n$,

 $I(X_i : Bob)_{\varphi} \le c_1$ $I(Y_i : Alice)_{\varphi} \le c_2$

Zero-communication protocol via Quantum Substate Theorem
If $c\geq 1$,

$$\varphi_{\mathsf{Bob}|x_i} \not\approx \delta \varphi_{\mathsf{Bob}} \qquad \varphi_{\mathsf{Alice}|y_i} \not\approx \delta \varphi_{\mathsf{Alice}}$$

But if Alice communicates $c_1 n$ and Bob $c_2 n$,

 $I(X_i : Bob)_{\varphi} \le c_1$ $I(Y_i : Alice)_{\varphi} \le c_2$

Zero-communication protocol via Quantum Substate Theorem

[J., Radhakrishnan, Sen 03]; [J. Nayak 12]: $I(X : B)_{\varphi} \leq c \Rightarrow$

•
$$\exists \varphi'_{XB} \approx_{\delta} \varphi_{XB} \text{ s.t. } \varphi'_{XB} \leq 2^{O(c)}(\varphi_X \otimes \varphi_B)$$

•
$$\forall X = x$$
, $\exists \Pi_x$ acting on A s.t. $\|\Pi_x |\varphi\rangle_{AB} \|_2^2 = 2^{-O(c)}$ and $2^{O(c)}\Pi_x |\varphi\rangle_{AB} = |\varphi'\rangle_{AB|x}$

 Π_{y_i} does not succeed on state after Π_{x_i} with probability 2^{-c_2} !

 Π_{y_i} does not succeed on state after Π_{x_i} with probability 2^{-c_2} !

Substate Perturbation Lemma:

$$arphi_{YA} \leq 2^{c}(arphi_{Y} \otimes arphi_{A}) \text{ and }
ho_{A} \approx_{\delta} arphi_{A}$$

 $\Rightarrow \exists
ho_{YA}' \approx_{\delta} arphi_{YA}' \text{ s.t. }
ho_{YA}' \leq 2^{O(c)}(arphi_{Y} \otimes
ho_{A})$

• Parallel repetition for games holds even with small communication

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
 - Works for ℓ parties, general predicates
 - New technical tool: Substate Perturbation Lemma

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
 - \blacktriangleright Works for ℓ parties, general predicates
 - New technical tool: Substate Perturbation Lemma
- New applications of our results?

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
 - \blacktriangleright Works for ℓ parties, general predicates
 - New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
 - in terms of (relaxed) quantum partition bound under non-product distributions?

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
 - \blacktriangleright Works for ℓ parties, general predicates
 - New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
 - in terms of (relaxed) quantum partition bound under non-product distributions?
 - in terms of quantum information complexity?

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
 - \blacktriangleright Works for ℓ parties, general predicates
 - New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
 - in terms of (relaxed) quantum partition bound under non-product distributions?
 - in terms of quantum information complexity?
 - for bounded round quantum protocols, 2-round protocols?

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
 - \blacktriangleright Works for ℓ parties, general predicates
 - New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
 - in terms of (relaxed) quantum partition bound under non-product distributions?
 - in terms of quantum information complexity?
 - for bounded round quantum protocols, 2-round protocols?
 - in terms of partition bound for classical protocols?

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
 - \blacktriangleright Works for ℓ parties, general predicates
 - New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
 - in terms of (relaxed) quantum partition bound under non-product distributions?
 - in terms of quantum information complexity?
 - for bounded round quantum protocols, 2-round protocols?
 - in terms of partition bound for classical protocols?
 - for unbounded round classical protocols (with polylog loss)?

- Parallel repetition for games holds even with small communication
 - Device-independent QKD in the presence of leakage
- Direct product theorem in terms of (relaxed) quantum partition bound under product distributions
 - \blacktriangleright Works for ℓ parties, general predicates
 - New technical tool: Substate Perturbation Lemma
- New applications of our results?
- Direct product theorem:
 - in terms of (relaxed) quantum partition bound under non-product distributions?
 - in terms of quantum information complexity?
 - for bounded round quantum protocols, 2-round protocols?
 - in terms of partition bound for classical protocols?
 - for unbounded round classical protocols (with polylog loss)?

Thanks for listening!