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Direct product

How much harder is doing n independent instances of a task than doing one
instance?

Algorithm A for doing one instance of task

Run A independently on each instance

Is this the best we can do?

Direct product theorem: Yes.

If c resource required for one instance (with success probability p) and if
o(cn) resrouce provided for n independent instances

⇒ success probability pΩ(n) for n instances
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Non-local games

Known predicate V : X × Y ×A× B → {0, 1}
Known distribution µ on X × Y

shared resource

x ∈ X y ∈ Y

a b

Pr[Success] = Prµ PrS [V(x , y , a, b) = 1]

ω∗(G ) = supS Pr[Success on S] (resp. ω(G ))
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Parallel repetition of games

Parallel repetition question: If ω∗(G ) = p, is ω∗(Gn) = pΩ(n)?

Applications: hardness of approximation, MIP*=RE, parallel DIQKD
. . .

Known results:

1. [Raz 95]; [Holenstein 07]: For 2-player G , if ω(G ) = 1− ε, then

ω(G n) = (1− ε3)n/ log(|A|·|B|)

2. For ω∗(G ) special cases:

▶ [J., Pereszlényi, Yao 14]: Free games
▶ [Bavarian, Vidick, Yuen 17]: Anchored games
▶ XOR games [CSUU08], unique games [KRT10], projection games

[DSV15]
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▶ [J., Pereszlényi, Yao 14]: Free games
▶ [Bavarian, Vidick, Yuen 17]: Anchored games

▶ XOR games [CSUU08], unique games [KRT10], projection games
[DSV15]

Rahul Jain Direct product for quantum communication and DIQKD 4 / 16



Parallel repetition of games

Parallel repetition question: If ω∗(G ) = p, is ω∗(Gn) = pΩ(n)?

Applications: hardness of approximation, MIP*=RE, parallel DIQKD
. . .

Known results:

1. [Raz 95]; [Holenstein 07]: For 2-player G , if ω(G ) = 1− ε, then

ω(G n) = (1− ε3)n/ log(|A|·|B|)

2. For ω∗(G ) special cases:
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Communication complexity

Known predicate V : X × Y ×A× B → {0, 1}

shared resource

x ∈ X y ∈ Y

...

a b

Pr[Success on P] = minx ,y PrP [V(x , y , a, b) = 1]

QCC(P) = number of qubits communicated (resp. CC(P))

Qcc
ε (V) = minP:Pr[Success on P]≥1−εQCC(P) (resp. Rε(V))

Known distribution µ on X × Y

Prµ[Success] = Prµ PrS [V(x , y , a, b) = 1]

Qcc
ε (V, µ) = minP:Pr[Success on P]≥1−εQCC(P) (resp. Rcc

ε (V, µ))

Yao’s Lemma: Cpub
ε (V) = maxµ C

pub
ε (V, µ)
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Direct product for communication

Direct product question: If c communication has success probability
p on V, does o(cn) communication have success probability pΩ(n) on
Vn?

Applications: Lower bounds for specific functions, time-space tradeoffs,
separating NC1 and NC2, . . .

Known results:

1. [J., Pereszlényi, Yao 12]; [Braverman, Rao, Weinstein, Yehuyadoff 13]: Direct
product for bounded-round classical communication

2. [Braverman, Rao, Weinstein, Yehuyadoff 14]: Direct product in terms of in-
formation complexity

3. [J., Kundu 20]: Direct product for 1-way quantum communication

4. [Sherstov 12]: Direct product for generalized discrepancy

▶ Lower bound for 2-party communication complexity of boolean functions
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Our results

Main theorem: Distributional direct product theorem quantum communi-
cation complexity of any ℓ-party predicate V

Let µ be a product distribution on inputs and P be a protocol for Vn

with communication cn.

1. If c < 1, then

suc(Vn, µn,P) ≤
(
1− ν

2
+
√
2ℓc

)Ω(ν2n/ℓ2)

where ν = 1− ω∗(G (V, µ)).

⇒ Parallel repetition for games, under product distribution, holds
even with a small amount of communication

2. If 1 ≤ c = O(ε2 · log eff∗
2ε(V, µ)/ℓ

3), then

suc(Vn, µn,P) ≤ (1− ε)Ω(n)

where eff∗(V, µ) = (relaxed) quantum partition bound or
efficiency.
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Our results

Case 1. ⇒ It is possible to do device-independent quantum key distri-
bution (QKD) in the presence of leakage.

▶ Protocol by [J., Miller, Shi 17] based on the Magic Square (MS) game

With devices compatible with n copies of MS, it is possible to
extract Ω(n) bits of key even in the presence of cn communication.

Case 2. ⇒ Direct product theorem in terms of maxproduct µ log eff
∗(V, µ)

▶ Not directly comparable to Sherstov’s result for 2-party boolean functions
▶ Works for more than 2 parties, non-boolean functions and predicates
▶ Direct product theorem for generalized the inner-product function:

IPn
q =

n∑
i=1

xiyi mod q.
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∗(V, µ)

▶ Not directly comparable to Sherstov’s result for 2-party boolean functions
▶ Works for more than 2 parties, non-boolean functions and predicates
▶ Direct product theorem for generalized the inner-product function:

IPn
q =

n∑
i=1

xiyi mod q.
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Quantum partition bound

Zero-communication protocol:

Either party can abort or give outputs

Conditioned on nobody aborting, outputs correct w.p. 1− ε

Efficiency = (probability of not aborting)−1

[Laplante, Lerays, Roland 12]: eff∗
ε(V, µ) = min efficiency for V w.r.t. µ

Qε(V, µ) = Ω(log eff∗
ε(V, µ))
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QKD application

K K

x y

a b

Bell inequality violation ⇒ shared entanglement ⇒ secret key

In device-independent framework, no need to trust shared state or mea-
surements

Using non-local games for security analysis requires no communication
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DIQKD security parallel repetition/direct product

[J., Miller, Shi 17]; [Vidick 17]: Security proof for parallel DIQKD based
on parallel repetition

Fully interactive leakage of cn qubits

▶ Scenario modelled by communication complexity rather than non-local
game

▶ Case 1. of main theorem applies
▶ Key rate with leakage = key rate without leakage −O(

√
cn)
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Proof idea: information-theoretic framework

Given protocol P for Vn with QCC(P) = cn, and S ⊆ [n], one of these
holds:

Pr[Success in S ] is already small

∃ “good” i /∈ S with Pr[Success i |Success in S ] ≤ 1− ε

1. Pr[Success in i |Success in S ] > 1− ε ⇒ strategy for G (V, µ) with suc-
cess probability > ω∗(G (V , µ)) Contradiction!

2. Pr[Success in i |Success in S ] > 1 − ε ⇒ zero-communication protocol
for V with efficiency< eff∗

ε(V, µ) and error probability ε Contradiction!
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Proof idea: parallel repetition for product games

Define “useful” state |φ⟩:

Contains registers XSYSASBS in superposition

|φ⟩xi , |φ⟩yi , |φ⟩xiyi : states obtained on measuring Xi ,Yi ,XiYi registers

Distribution PÂi B̂i |XiYi
on measuring AiBi on |φ⟩xiyi :

PXiYi
PÂi B̂i |XiYi

≈ PXiYiAiBi |Success C (in P)

For good i ∈ S ,

φBob|xi ≈δ φBob φAlice|yi ≈δ φAlice

|φ⟩

xi yi

Uxi |φ⟩ Vyi
|φ⟩xiyi

Proof also works with small communication! (c < 1)
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Proof idea: DPT in terms of efficiency

If c ≥ 1,
φBob|xi ̸≈δ φBob φAlice|yi ̸≈δ φAlice

But if Alice communicates c1n and Bob c2n,

I(Xi : Bob)φ ≤ c1 I(Yi : Alice)φ ≤ c2

Zero-communication protocol via Quantum Substate Theorem

[J., Radhakrishnan, Sen 03]; [J. Nayak 12]: I(X : B)φ ≤ c ⇒

∃φ′
XB ≈δ φXB s.t. φ′

XB ≤ 2O(c)(φX ⊗ φB)

∀X = x , ∃Πx acting on A s.t. ∥Πx |φ⟩AB ∥22 = 2−O(c) and
2O(c)Πx |φ⟩AB = |φ′⟩AB|x
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Proof idea: DPT in terms of efficiency

|φ⟩

xi yi

Πxi |φ⟩ Πyi
|φ⟩xiyi

w.p. 2−(c1+c2)?

Πyi does not succeed on state after Πxi with probability 2−c2!

Substate Perturbation Lemma:

φ′
YA ≤ 2c(φY ⊗ φA) and ρA ≈δ φA

⇒ ∃ρ′YA ≈δ φ
′
YA s.t. ρ′YA ≤ 2O(c)(φY ⊗ ρA)
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Conclusion and open questions

Parallel repetition for games holds even with small communication
▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?

▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?

▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?

▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?

▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16



Conclusion and open questions
Parallel repetition for games holds even with small communication

▶ Device-independent QKD in the presence of leakage

Direct product theorem in terms of (relaxed) quantum partition
bound under product distributions

▶ Works for ℓ parties, general predicates
▶ New technical tool: Substate Perturbation Lemma

New applications of our results?

Direct product theorem:
▶ in terms of (relaxed) quantum partition bound under non-product

distributions?
▶ in terms of quantum information complexity?
▶ for bounded round quantum protocols, 2-round protocols?
▶ in terms of partition bound for classical protocols?
▶ for unbounded round classical protocols (with polylog loss)?

Thanks for listening!

Rahul Jain Direct product for quantum communication and DIQKD 16 / 16


