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Setting

Our interest is in Polish groups, i.e. the separable, completely
metrizable topological groups.

Definition

H+ is the group of increasing homeomorphisms of [0, 1], equipped
with the uniform convergence topology.

This talk will focus on a subgroup of H+.
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Absolute continuity

All measure-theoretic notions are taken with respect to the usual
Lebesgue measure λ.

Recall the following from a first course in measure theory:

Definition

A function f : [0, 1]→ R is absolutely continuous if for every
ε > 0, there is a δ > 0 such that for every finite, pairwise disjoint
collection ((ai , bi ))i<n of open intervals in [0, 1], we have∑

i<n

bi − ai < δ =⇒
∑
i<n

|f (bi )− f (ai )| < ε.

Every Lipschitz continuous function is absolutely continuous, and
every absolutely continuous function has bounded variation.
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Absolute continuity

Figure: The Cantor staircase is the canonical example of a non-absolutely
continuous function.



Fundamental Theorem of Calculus
for absolutely continuous functions

For a function f : [0, 1]→ R, the following are equivalent:

(i) f is absolutely continuous;

(ii) f is differentiable almost everywhere, f ′ ∈ L1, and we have
f (x) = f (0) +

∫ x
0 f ′ (t) dt for all x ∈ [0, 1];

(iii) There exists a map g ∈ L1 such that
f (x) = f (0) +

∫ x
0 g (t) dt for all x ∈ [0, 1].
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Absolutely continuous homeomorphisms

Definition

The group HAC
+ is the subgroup of H+ given by:

HAC
+ :=

{
f ∈ H+ : f and f −1 are absolutely continuous

}
.

Equip HAC
+ with the metric dAC (f , g) := ‖f ′ − g ′‖1.

Thus, the map f 7→ f ′ is an isometric embedding of HAC
+ into the

unit sphere of L1.

Theorem (Solecki, 1999)

The metric dAC induces a Polish topology on HAC
+ , which is finer

than the uniform convergence topology.
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Other subgroups of H+

H+ D1
+

C 1-diffeomorphism group

D2
+
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· · ·HAC
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+

Cohen, 2020

topologies get finer

images are dense
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Generation

Definition

• A Polish group G is topologically n-generated if it admits a
dense n-generated subgroup. That is, the set

Ωn :=
{

(gi )i<n ∈ Gn : 〈gi : i < n〉 = G
}

is non-empty.

• G is generically n-generated if Ωn is a dense Gδ (hence comea-
gre) set in Gn.

• The topological rank (resp. generic rank) is the least n ≤ ℵ0
for which G is topologically (resp. generically) n-generated.
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Topological rank:

Generic topological rank:

2

e.g. Thompson’s group F

2

Akhmedov–Cohen, 2019

≤ 10 ≤ 13 (≤ 3k + 7)

Akhmedov, in prep.Since topological rank non-decreases

≤ 10 ≤ 13 ≤ 16

?

2
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I., 2022

topological/generic rank is non-decreasing
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Genericity

Definition

A generic element of a Polish group is an element with a dense Gδ
(hence comeagre) conjugacy class.

Theorem (folklore)

H+ admits generic elements. Moreover, f ∈ H+ is generic if and
only if:

(i) The intervals in [0, 1]\Fix (f ) form a dense linear order without
endpoints;

(ii) The intervals of “positive parity” and “negative parity” are
dense in this order.
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(iii)

Fix (f ) is Lebesgue null.
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