On the Approximation by Conjugation method

Philipp Kunde

University of Hamburg

Banff Institute Interactions between Descriptive Set Theory and Smooth Dynamics March 31, 2022

<ロト <回ト < 注ト < 注ト = 注

Anti-classification results in Smooth Ergodic Theory

< □ > < □ > < □ > < □ > < □ > < □ >

Smooth Ergodic Theory

Another important question dating back to the foundational paper of von Neumann (1932):

ZUR OPERATORENMETHODE IN DER KLASSISCHEN MECHANIK¹.

VON J. V. NEUMANN, PRINCETON.

590

J. v. NEUMANN.

morphieinvarianten Eigenschaften. Vermutlich kann sogar zu jeder allgemeinen Strömung eine isomorphe stetige Strömung gefunden werden¹³, vielleicht sogar eine stetig-differentiierbare, oder gar eine mechanische. Dies mag es rechtfertigen, daß hier an Stelle der eigentlich interessanten mechanischen Strömungen alle allgemeinen untersucht werden.

¹³ Der Verfasser hofft, hierfür demnächst einen Beweis anzugeben.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

FIVE MOST RESISTANT PROBLEMS IN DYNAMICS

A. Katok

Smooth realization problem

Are there smooth versions to the objects and concepts of abstract ergodic theory?

By a smooth version we mean a C^{∞} -diffeomorphism of a compact manifold preserving a C^{∞} -measure equivalent to the volume element that is measure-isomorphic to a given measure-preserving transformation.

(日) (四) (三) (三)

FIVE MOST RESISTANT PROBLEMS IN DYNAMICS

A. Katok

Smooth realization problem

Are there smooth versions to the objects and concepts of abstract ergodic theory?

By a smooth version we mean a C^{∞} -diffeomorphism of a compact manifold preserving a C^{∞} -measure equivalent to the volume element that is measure-isomorphic to a given measure-preserving transformation.

- Existence of volume-preserving diffeomorphisms with ergodic properties?
- What ergodic properties, if any, are imposed upon a dynamical system by the fact that it should be smooth?

イロト イボト イヨト イヨト

Known restrictions:

- *M* smooth compact manifold, $T \in \text{Diff}^{\infty}(M, \mu)$. Then: $h_{\mu}(T) < \infty$. (Kushnirenko 1965)
- In case of $M = \mathbb{S}^1$: Any diffeomorphism with invariant smooth measure is conjugated to a rotation
- In dimension *d* = 2: Weakly mixing diffeomorphisms of positive measure entropy are Bernoulli (Pesin 1977)
- No restrictions for d > 2 (or in case of entropy 0 for $d \ge 2$) are known!

イロト 不得 トイヨト イヨト 三日

Known restrictions:

- *M* smooth compact manifold, $T \in \text{Diff}^{\infty}(M, \mu)$. Then: $h_{\mu}(T) < \infty$. (Kushnirenko 1965)
- In case of $M = \mathbb{S}^1$: Any diffeomorphism with invariant smooth measure is conjugated to a rotation
- In dimension *d* = 2: Weakly mixing diffeomorphisms of positive measure entropy are Bernoulli (Pesin 1977)
- No restrictions for d > 2 (or in case of entropy 0 for $d \ge 2$) are known!

On the other hand: Scarcity of general results.

(日)

Known restrictions:

- *M* smooth compact manifold, $T \in \text{Diff}^{\infty}(M, \mu)$. Then: $h_{\mu}(T) < \infty$. (Kushnirenko 1965)
- In case of $M = \mathbb{S}^1$: Any diffeomorphism with invariant smooth measure is conjugated to a rotation
- In dimension *d* = 2: Weakly mixing diffeomorphisms of positive measure entropy are Bernoulli (Pesin 1977)
- No restrictions for d > 2 (or in case of entropy 0 for $d \ge 2$) are known!

On the other hand: Scarcity of general results.

Realization of ergodic properties on a case-by-case basis

• area-preserving ergodic C^{∞} -diffeomorphisms of \mathbb{D}^2 (Anosov-Katok 1970)

(日)

Anti-classification result for C^{∞} -diffeos

- $M C^{\infty}$ compact finite dimensional manifold
- μ measure defined by a smooth volume element.

Anti-classification result for C^{∞} -diffeos

M - C^{∞} compact finite dimensional manifold μ - measure defined by a smooth volume element.

The set of all μ -preserving C^{∞} -diffeomorphisms can be made into a Polish space.

ヘロト 人間 ト 人 ヨト 人 ヨト

Anti-classification result for C^{∞} -diffeos

M - C^{∞} compact finite dimensional manifold μ - measure defined by a smooth volume element.

The set of all μ -preserving C^{∞} -diffeomorphisms can be made into a Polish space.

In a recent series of papers Foreman and Weiss extended their anti-classification result to the C^{∞} -setting:

Theorem (Foreman-Weiss)

Let *M* be either the torus \mathbb{T}^2 , the disk \mathbb{D}^2 or the annulus $\mathbb{S}^1 \times [0, 1]$. Then the measure isomorphism relation among pairs (S, T) of area-preserving ergodic C^{∞} -diffeomorphisms of M is complete analytic and hence not Borel.

von Neumann's classification problem is impossible even when restricting to smooth diffeomorphisms

(日)

Odometer-based systems

The ergodic transformations constructed in Foreman-Rudolph-Weiss and Gerber-K are so-called *odometer-based systems*.

Definition: Odometer-based systems

Let $(k_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers $k_n \geq 2$. Let $(\mathbb{W}_n)_{n \in \mathbb{N}}$ be a uniquely readable construction sequence with $\mathbb{W}_0 = \Sigma$ and $\mathbb{W}_{n+1} \subseteq (\mathbb{W}_n)^{k_n}$ for every $n \in \mathbb{N}$. The associated symbolic shift will be called an *odometer-based system*.

Odometer-based systems are those built by cutting&stacking without any spacers.

イロト イポト イヨト イヨト

Odometer-based systems

The ergodic transformations constructed in Foreman-Rudolph-Weiss and Gerber-K are so-called *odometer-based systems*.

Definition: Odometer-based systems

Let $(k_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers $k_n \geq 2$. Let $(\mathbb{W}_n)_{n \in \mathbb{N}}$ be a uniquely readable construction sequence with $\mathbb{W}_0 = \Sigma$ and $\mathbb{W}_{n+1} \subseteq (\mathbb{W}_n)^{k_n}$ for every $n \in \mathbb{N}$. The associated symbolic shift will be called an *odometer-based system*.

Odometer-based systems are those built by cutting&stacking without any spacers. They have an Odometer transformation (also called *adding machine*) as a factor:

Mathematically:

- Let $\mathcal{O} = \prod_{n \in \mathbb{N}} \mathbb{Z} / k_n \mathbb{Z}$
- \bullet Then ${\cal O}$ has a natural product measure that is preserved by "adding one and carrying right"

Odometer-based systems

The ergodic transformations constructed in Foreman-Rudolph-Weiss and Gerber-K are so-called *odometer-based systems*.

Definition: Odometer-based systems

Let $(k_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers $k_n \geq 2$. Let $(\mathbb{W}_n)_{n \in \mathbb{N}}$ be a uniquely readable construction sequence with $\mathbb{W}_0 = \Sigma$ and $\mathbb{W}_{n+1} \subseteq (\mathbb{W}_n)^{k_n}$ for every $n \in \mathbb{N}$. The associated symbolic shift will be called an *odometer-based system*.

Odometer-based systems are those built by cutting&stacking without any spacers. They have an Odometer transformation (also called *adding machine*) as a factor:

Mathematically:

- Let $\mathcal{O} = \prod_{n \in \mathbb{N}} \mathbb{Z} / k_n \mathbb{Z}$
- \bullet Then ${\cal O}$ has a natural product measure that is preserved by "adding one and carrying right"

A measure-preserving transformation has an odometer factor if and only if it is

isomorphic to an odometer-based symbolic system.

03/31/2022 7 / 39

The odometer obstacle

Smooth realization of transformations with a non-trivial odometer factor is an open problem.

46 BASSAM FAYAD, ANATOLE KATOK

PROBLEM 7.10. Find a smooth realization of:

- (1) a Gaussian dynamical system with simple (Kronecker) spectrum;
- (2) a dense G_{δ} set of minimal interval exchange transformations;
- \times (3) an adding machine;
 - (4) the time-one map of the horocycle flow 2.3.1 on the modular surface $SO(2)\backslash SL(2,\mathbb{R})/SL(2,\mathbb{Z})$ (which is not compact, so the standard realization cannot be used).

B. Fayad, A. Katok *Constructions in elliptic dynamics* ETDS 24 (2004), 1477-1520.

ヘロト 人間 とくほ とくほ とう

Approximation by Conjugation-method: Setting

Let M be a smooth compact connected manifold of dimension $d \ge 2$ admitting a non-trivial circle action $S = \{S_t\}_{t \in \mathbb{S}^1}$ preserving a smooth volume μ , e.g. torus \mathbb{T}^2 , annulus $\mathbb{S}^1 \times [0, 1]$ or disc \mathbb{D}^2 with standard circle action comprising of the diffeomorphisms $S_t(\theta, r) = (\theta + t, r)$.

ヘロト 人間 とくほ とくほ とう

Approximation by Conjugation-method: Setting

Let M be a smooth compact connected manifold of dimension $d \ge 2$ admitting a non-trivial circle action $S = \{S_t\}_{t \in \mathbb{S}^1}$ preserving a smooth volume μ , e.g. torus \mathbb{T}^2 , annulus $\mathbb{S}^1 \times [0, 1]$ or disc \mathbb{D}^2 with standard circle action comprising of the diffeomorphisms $S_t(\theta, r) = (\theta + t, r)$.

• We construct a sequence of measure-preserving diffeomorphisms

$$T_n = H_n \circ S_{\alpha_n} \circ H_n^{-1},$$

where

 $\alpha_n = \frac{p_n}{q_n} \in \mathbb{Q}$ with p_n, q_n relatively prime, $H_n = h_1 \circ h_2 \circ \ldots \circ h_n$ with h_i measure-preserving diffeomorphism of M.

◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣

Approximation by Conjugation-method: Setting

Let M be a smooth compact connected manifold of dimension $d \ge 2$ admitting a non-trivial circle action $S = \{S_t\}_{t \in \mathbb{S}^1}$ preserving a smooth volume μ , e.g. torus \mathbb{T}^2 , annulus $\mathbb{S}^1 \times [0, 1]$ or disc \mathbb{D}^2 with standard circle action comprising of the diffeomorphisms $S_t(\theta, r) = (\theta + t, r)$.

• We construct a sequence of measure-preserving diffeomorphisms

$$T_n=H_n\circ S_{\alpha_n}\circ H_n^{-1},$$

where

- $\alpha_n = \frac{p_n}{q_n} \in \mathbb{Q}$ with p_n, q_n relatively prime, $H_n = h_1 \circ h_2 \circ \ldots \circ h_n$ with h_i measure-preserving diffeomorphism of M.
- We need a criterion for the aimed property expressed on the level of the maps T_n and appropriate partitions of the manifold.

(日)

Combinatorial picture for h_{n+1}

Permutation of rectangles ~> Realization as area-preserving diffeomorphism

(日) (四) (三) (三)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Scheme

Construction of $T_n = H_n \circ S_{\alpha_n} \circ H_n^{-1}$:

• Initial step: Choose $\alpha_0 = \frac{p_0}{q_0}$ arbitrary, $T_0 = S_{\alpha_0}$.

Scheme

Construction of $T_n = H_n \circ S_{\alpha_n} \circ H_n^{-1}$:

- Initial step: Choose $\alpha_0 = \frac{p_0}{q_0}$ arbitrary, $T_0 = S_{\alpha_0}$.
- Step n + 1: Put $\alpha_{n+1} = \frac{p_{n+1}}{q_{n+1}} = \alpha_n + \frac{1}{l_n \cdot k_n \cdot q_n^2}$ with parameters $l_n, k_n \in \mathbb{Z}$. The conjugation map h_{n+1} and the parameter k_n are chosen such that $h_{n+1} \circ S_{\alpha_n} = S_{\alpha_n} \circ h_{n+1}$ and T_{n+1} imitates the desired property with a certain precision.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Scheme

Construction of $T_n = H_n \circ S_{\alpha_n} \circ H_n^{-1}$:

- Initial step: Choose $\alpha_0 = \frac{p_0}{q_0}$ arbitrary, $T_0 = S_{\alpha_0}$.
- Step n + 1: Put $\alpha_{n+1} = \frac{p_{n+1}}{q_{n+1}} = \alpha_n + \frac{1}{l_n \cdot k_n \cdot q_n^2}$ with parameters $l_n, k_n \in \mathbb{Z}$. The conjugation map h_{n+1} and the parameter k_n are chosen such that $h_{n+1} \circ S_{\alpha_n} = S_{\alpha_n} \circ h_{n+1}$ and T_{n+1} imitates the desired property with a certain precision.

Then the parameter I_n is chosen large enough to guarantee closeness of T_{n+1} to T_n in the C^{∞} -topology:

$$T_{n+1} = H_{n+1} \circ S_{\alpha_{n+1}} \circ H_{n+1}^{-1}$$

= $H_n \circ h_{n+1} \circ S_{\alpha_n} \circ S_{\frac{1}{l_n \cdot k_n \cdot q_n^2}} \circ h_{n+1}^{-1} \circ H_n^{-1}$
= $H_n \circ S_{\alpha_n} \circ h_{n+1} \circ S_{\frac{1}{l_n \cdot k_n \cdot q_n^2}} \circ h_{n+1}^{-1} \circ H_n^{-1} \approx H_n \circ S_{\alpha_n} \circ H_n^{-1} = T_n$

Scheme

Construction of $T_n = H_n \circ S_{\alpha_n} \circ H_n^{-1}$:

- Initial step: Choose $\alpha_0 = \frac{p_0}{q_0}$ arbitrary, $T_0 = S_{\alpha_0}$.
- Step n + 1: Put $\alpha_{n+1} = \frac{p_{n+1}}{q_{n+1}} = \alpha_n + \frac{1}{l_n \cdot k_n \cdot q_n^2}$ with parameters $l_n, k_n \in \mathbb{Z}$. The conjugation map h_{n+1} and the parameter k_n are chosen such that $h_{n+1} \circ S_{\alpha_n} = S_{\alpha_n} \circ h_{n+1}$ and T_{n+1} imitates the desired property with a certain precision.

Then the parameter I_n is chosen large enough to guarantee closeness of T_{n+1} to T_n in the C^{∞} -topology:

$$T_{n+1} = H_{n+1} \circ S_{\alpha_{n+1}} \circ H_{n+1}^{-1}$$

= $H_n \circ h_{n+1} \circ S_{\alpha_n} \circ S_{\frac{1}{l_n \cdot k_n \cdot q_n^2}} \circ h_{n+1}^{-1} \circ H_n^{-1}$
= $H_n \circ S_{\alpha_n} \circ h_{n+1} \circ S_{\frac{1}{l_n \cdot k_n \cdot q_n^2}} \circ h_{n+1}^{-1} \circ H_n^{-1} \approx H_n \circ S_{\alpha_n} \circ H_n^{-1} = T_n$

 \implies Convergence of the sequence $(T_n)_{n\in\mathbb{N}}$ to a limit diffeomorphism with the aimed properties

Some C^{∞} realization results

- Nonstandard smooth realizations: There exists an ergodic $f \in \text{Diff}^{\infty}(M, \mu)$ measure-theoretically isomorphic to a circle rotation (Anosov-Katok 1970)
- Minimal but not uniquely ergodic diffeomorphisms (Windsor 2001)
- Weakly mixing diffeomorphisms of the disc with prescribed Liouville rotation number on the boundary (Fayad-Saprykina 2005)
- Volume-preserving diffeomorphisms with ergodic derivative extension (K2020)

<ロト < 同ト < ヨト < ヨト

Circular systems

Symbolic representation of untwisted AbC-diffeomorphisms: circular systems.

(日) (四) (三) (三)

Circular systems

Symbolic representation of untwisted AbC-diffeomorphisms: circular systems. A *circular coefficient sequence* is a sequence of pairs of integers $(k_n, l_n)_{n \in \mathbb{N}}$ such that $k_n \geq 2$ and $\sum_{n \in \mathbb{N}} \frac{1}{l_n} < \infty$.

(日) (四) (三) (三)

Circular systems

Symbolic representation of untwisted AbC-diffeomorphisms: circular systems. A *circular coefficient sequence* is a sequence of pairs of integers $(k_n, l_n)_{n \in \mathbb{N}}$ such that $k_n \geq 2$ and $\sum_{n \in \mathbb{N}} \frac{1}{l_n} < \infty$. Let Σ be a non-empty finite alphabet and b, e be two additional symbols (called *spacers*). Then we build collections of words \mathcal{W}_n in the alphabet $\Sigma \cup \{b, e\}$ by induction as follows:

- Set $\mathcal{W}_0 = \Sigma$.
- Having built W_n we choose a set P_{n+1} ⊆ (W_n)^{k_n} of so-called *prewords* and form W_{n+1} by taking all words of the form

$$C_n(w_0, w_1, \ldots, w_{k_n-1}) = \prod_{i=0}^{q_n-1} \prod_{j=0}^{k_n-1} \left(b^{q_n-j_i} w_j^{l_n-1} e^{j_i} \right)$$

with $w_0 \dots w_{k_n-1} \in P_{n+1}$. If n = 0 we take $j_0 = 0$, and for n > 0 we let $j_i \in \{0, \dots, q_n - 1\}$ be such that

$$j_i \equiv (p_n)^{-1} i \mod q_n.$$

We note that each word in W_{n+1} has length $q_{n+1} = k_n l_n q_n^2$.

Combinatorial picture for h_{n+1}

Recall $T_{n+1} = H_n \circ h_{n+1} \circ S_{\alpha_{n+1}} \circ h_{n+1}^{-1} \circ H_n^{-1}$ with $\alpha_{n+1} = \alpha_n + \frac{1}{k_n l_n q_n^2}$.

・ロン ・雪 と きゅう ・ 田 と

A construction sequence $(\mathcal{W}_n)_{n \in \mathbb{N}}$ will be called *circular* if it is built in this manner using the C-operators, a circular coefficient sequence and each P_{n+1} is uniquely readable in the alphabet with the words from \mathcal{W}_n as letters.

Circular system

A symbolic shift \mathbb{K}^c built from a circular construction sequence is called a *circular* system.

realizable as smooth diffeomorphisms using the untwisted AbC method

(日) (四) (三) (三)

Overview

Functor between \mathcal{OB} and \mathcal{CB}

Let Σ be an alphabet and $(\mathbb{W}_n)_{n\in\mathbb{N}}$ be a construction sequence for an odometer-based system with coefficients $(k_n)_{n\in\mathbb{N}}$. Then we define a circular construction sequence $(\mathcal{W}_n)_{n\in\mathbb{N}}$ and bijections $c_n : \mathbb{W}_n \to \mathcal{W}_n$ by induction:

- Let $\mathcal{W}_0 = \Sigma$ and c_0 be the identity map.
- \bullet Suppose that $\mathtt{W}_n, \ \mathcal{W}_n$ and c_n have already been defined. Then we define

$$\mathcal{W}_{n+1} = \{ \mathcal{C}_n \left(c_n \left(\mathbf{w}_0 \right), c_n \left(\mathbf{w}_1 \right), \dots, c_n \left(\mathbf{w}_{k_n-1} \right) \right) : \mathbf{w}_0 \mathbf{w}_1 \dots \mathbf{w}_{k_n-1} \in \mathbf{W}_{n+1} \}$$

and the map c_{n+1} by setting

$$c_{n+1}\left(\mathtt{w}_{0}\mathtt{w}_{1}\ldots \mathtt{w}_{k_{n}-1}\right)=\mathcal{C}_{n}\left(c_{n}\left(\mathtt{w}_{0}\right),c_{n}\left(\mathtt{w}_{1}\right),\ldots,c_{n}\left(\mathtt{w}_{k_{n}-1}\right)\right).$$

In particular, the prewords are

$$P_{n+1} = \left\{ c_n \left(\mathbf{w}_0 \right) c_n \left(\mathbf{w}_1 \right) \dots c_n \left(\mathbf{w}_{k_n-1} \right) : \mathbf{w}_0 \mathbf{w}_1 \dots \mathbf{w}_{k_n-1} \in \mathbf{W}_{n+1} \right\}.$$

ヘロト 人間 ト 人 ヨト 人 ヨト

Functor between \mathcal{OB} and \mathcal{CB}

Let Σ be an alphabet and $(\mathbb{W}_n)_{n\in\mathbb{N}}$ be a construction sequence for an odometer-based system with coefficients $(k_n)_{n\in\mathbb{N}}$. Then we define a circular construction sequence $(\mathcal{W}_n)_{n\in\mathbb{N}}$ and bijections $c_n : \mathbb{W}_n \to \mathcal{W}_n$ by induction:

- Let $\mathcal{W}_0 = \Sigma$ and c_0 be the identity map.
- \bullet Suppose that $\mathtt{W}_n, \ \mathcal{W}_n$ and c_n have already been defined. Then we define

$$\mathcal{W}_{n+1} = \{\mathcal{C}_n\left(c_n\left(\mathsf{w}_0\right), c_n\left(\mathsf{w}_1\right), \ldots, c_n\left(\mathsf{w}_{k_n-1}\right)\right) : \mathsf{w}_0\mathsf{w}_1\ldots\mathsf{w}_{k_n-1} \in \mathsf{W}_{n+1}\}$$

and the map c_{n+1} by setting

$$c_{n+1}\left(\mathtt{w}_{0}\mathtt{w}_{1}\ldots \mathtt{w}_{k_{n}-1}
ight)=\mathcal{C}_{n}\left(c_{n}\left(\mathtt{w}_{0}
ight),c_{n}\left(\mathtt{w}_{1}
ight),\ldots,c_{n}\left(\mathtt{w}_{k_{n}-1}
ight)
ight).$$

In particular, the prewords are

$$P_{n+1} = \left\{ c_n \left(\mathtt{w}_0 \right) c_n \left(\mathtt{w}_1 \right) \dots c_n \left(\mathtt{w}_{k_n-1} \right) : \mathtt{w}_0 \mathtt{w}_1 \dots \mathtt{w}_{k_n-1} \in \mathtt{W}_{n+1} \right\}.$$

Functor ${\mathcal F}$

Suppose that \mathbb{K} is built from a construction sequence $(\mathbb{W}_n)_{n\in\mathbb{N}}$ and \mathbb{K}^c has the circular construction sequence $(\mathcal{W}_n)_{n\in\mathbb{N}}$ as constructed above. Then we define a map \mathcal{F} by

$$\mathcal{F}(\mathbb{K}) = \mathbb{K}^{c}.$$

Philipp Kunde (UHH)

Properties of the functor

Theorem (Foreman-Weiss 2019)

The functor \mathcal{F} preserves

- weakly mixing extensions,
- compact extensions,
- factor maps,
- certain types of isomorphisms,
- the rank-one property,
- ...

M. Foreman and B. Weiss From Odometers to Circular Systems: A Global Structure Theorem. Journal of Modern Dynamics, 15: 345–423, 2019.

< □ > < □ > < □ > < □ > < □ > < □ >

Properties of the functor

Theorem (Foreman-Weiss 2019)

The functor \mathcal{F} preserves

- weakly mixing extensions,
- compact extensions,
- factor maps,
- certain types of isomorphisms,
- the rank-one property,
- ...

M. Foreman and B. Weiss From Odometers to Circular Systems: A Global Structure Theorem. Journal of Modern Dynamics, 15: 345–423, 2019.

Warning (Gerber-K 2022)

The functor \mathcal{F} does NOT preserve Kakutani equivalence.

Philipp Kunde (UHH)

・ロ > ・ 白 > ・ 川 >

Overview of the proof

Real-analytic topology

Real-analytic diffeomorphisms of \mathbb{T}^2 homotopic to the identity have a lift of type

$$F(x_1, x_2) = (x_1 + f_1(x_1, x_2), x_2 + f_2(x_1, x_2)),$$

where the functions $f_i : \mathbb{R}^2 \to \mathbb{R}$ are real-analytic and \mathbb{Z}^2 -periodic for i = 1, 2.

イロト イポト イヨト イヨ

Real-analytic diffeomorphisms of \mathbb{T}^2 homotopic to the identity have a lift of type

$$F(x_1, x_2) = (x_1 + f_1(x_1, x_2), x_2 + f_2(x_1, x_2)),$$

where the functions $f_i : \mathbb{R}^2 \to \mathbb{R}$ are real-analytic and \mathbb{Z}^2 -periodic for i = 1, 2.

Definition

For any $\rho > 0$ we consider the set of real-analytic \mathbb{Z}^2 -periodic functions on \mathbb{R}^2 , that can be extended to a holomorphic function on

$$\mathcal{A}^
ho=\left\{(z_1,z_2)\in\mathbb{C}^2\ :\ | ext{im}\,(z_i)|<
ho ext{ for }i=1,2
ight\}.$$

< ロ > < 部 > < 注 > < 注 >

Real-analytic diffeomorphisms of \mathbb{T}^2 homotopic to the identity have a lift of type

$$F(x_1, x_2) = (x_1 + f_1(x_1, x_2), x_2 + f_2(x_1, x_2)),$$

where the functions $f_i : \mathbb{R}^2 \to \mathbb{R}$ are real-analytic and \mathbb{Z}^2 -periodic for i = 1, 2.

Definition

For any $\rho > 0$ we consider the set of real-analytic \mathbb{Z}^2 -periodic functions on \mathbb{R}^2 , that can be extended to a holomorphic function on

$$\mathcal{A}^{
ho} = ig\{(z_1,z_2) \in \mathbb{C}^2 \; : \; | ext{im}\,(z_i)| <
ho \; ext{for} \; i=1,2ig\}$$
 .

•
$$||f||_{\rho} = \sup_{(z_1, z_2) \in A^{\rho}} |f(z_1, z_2)|.$$

< ロ > < 部 > < 注 > < 注 >

Real-analytic diffeomorphisms of \mathbb{T}^2 homotopic to the identity have a lift of type

$$F(x_1, x_2) = (x_1 + f_1(x_1, x_2), x_2 + f_2(x_1, x_2)),$$

where the functions $f_i : \mathbb{R}^2 \to \mathbb{R}$ are real-analytic and \mathbb{Z}^2 -periodic for i = 1, 2.

Definition

For any $\rho > 0$ we consider the set of real-analytic \mathbb{Z}^2 -periodic functions on \mathbb{R}^2 , that can be extended to a holomorphic function on

$$\mathcal{A}^
ho = \left\{ \left(z_1, z_2
ight) \in \mathbb{C}^2 \; : \; \left| \mathrm{im} \left(z_i
ight)
ight| <
ho \; \mathrm{for} \; i = 1, 2
ight\}.$$

•
$$\|f\|_{\rho} = \sup_{(z_1, z_2) \in A^{\rho}} |f(z_1, z_2)|.$$

• $C^{\omega}_{\rho}(\mathbb{T}^2)$: set of these functions satisfying the condition $\|f\|_{\rho} < \infty$

 ∞ .

< ロ > < 部 > < 注 > < 注 >

Real-analytic diffeomorphisms of \mathbb{T}^2 homotopic to the identity have a lift of type

$$F(x_1, x_2) = (x_1 + f_1(x_1, x_2), x_2 + f_2(x_1, x_2)),$$

where the functions $f_i : \mathbb{R}^2 \to \mathbb{R}$ are real-analytic and \mathbb{Z}^2 -periodic for i = 1, 2.

Definition

For any $\rho > 0$ we consider the set of real-analytic \mathbb{Z}^2 -periodic functions on \mathbb{R}^2 , that can be extended to a holomorphic function on

$$\mathcal{A}^
ho=\left\{(z_1,z_2)\in\mathbb{C}^2\ :\ | ext{im}\,(z_i)|<
ho ext{ for }i=1,2
ight\}.$$

•
$$||f||_{\rho} = \sup_{(z_1, z_2) \in A^{\rho}} |f(z_1, z_2)|.$$

- $C_{\rho}^{\omega}(\mathbb{T}^2)$: set of these functions satisfying the condition $\|f\|_{\rho} < \infty$.
- Diff^ω_ρ (T², μ): set of volume-preserving diffeomorphisms homotopic to the identity, whose lift satisfies f_i ∈ C^ω_ρ (T²) for i = 1, 2.

イロト 人間ト イヨト イヨト

Anti-classification result for real-analytic diffeos

Theorem (Banerjee-K)

For every $\rho > 0$ the measure-isomorphism relation among pairs (S, T) of ergodic $\text{Diff}_{\rho}^{\omega}(\mathbb{T}^2, \mu)$ -diffeomorphisms is a complete analytic set and hence not Borel.

von Neumann's classification problem is impossible even when restricting to real-analytic diffeomorphisms of the torus

<ロト < 同ト < ヨト < ヨト

(Anti-)classification results for circle maps

<ロ> (日) (日) (日) (日) (日)

Maps of the circle

Some notation:

- Unit circle $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$
- Let $\pi:\mathbb{R}\to\mathbb{S}^1$ be the map $x\mapsto [x],$ where [x] is the positive fractional part of x

(日) (四) (三) (三)

Maps of the circle

Some notation:

- \bullet Unit circle $\mathbb{S}^1=\mathbb{R}/\mathbb{Z}$
- Let $\pi : \mathbb{R} \to \mathbb{S}^1$ be the map $x \mapsto [x]$, where [x] is the positive fractional part of x
- $\bullet~\mathcal{H}:$ collection of orientation-preserving homeomorphisms of \mathbb{S}^1
- For $k \in \mathbb{N} \cup \{\infty, \omega\}$ let \mathcal{H}^k be the collection of orientation-preserving C^k diffeomorphisms of \mathbb{S}^1
- $\mathcal{H}^{k+\beta}$: orientation-preserving C^k diffeomorphisms of \mathbb{S}^1 with β -Hölder continuous k-th derivative

<ロト < 同ト < ヨト < ヨト

Maps of the circle

Some notation:

- Unit circle $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$
- Let $\pi : \mathbb{R} \to \mathbb{S}^1$ be the map $x \mapsto [x]$, where [x] is the positive fractional part of x
- $\bullet~\mathcal{H}:$ collection of orientation-preserving homeomorphisms of \mathbb{S}^1
- For $k \in \mathbb{N} \cup \{\infty, \omega\}$ let \mathcal{H}^k be the collection of orientation-preserving C^k diffeomorphisms of \mathbb{S}^1
- $\mathcal{H}^{k+\beta}$: orientation-preserving C^k diffeomorphisms of \mathbb{S}^1 with β -Hölder continuous k-th derivative
- A lift of $f \in \mathcal{H}$ is an increasing function $F : \mathbb{R} \to \mathbb{R}$ with [F(x)] = f([x]).

<ロ> (日) (日) (日) (日) (日)

Topological Conjugacy

A well-studied equivalence relation on ${\mathcal H}$ is conjugacy by an orientation-preserving homeomorphism.

Definition (Topological Conjugacy)

Maps $f, g \in \mathcal{H}$ are conjugate by an orientation-preserving homeomorphism if there is $\varphi \in \mathcal{H}$ such that

$$\varphi \circ f \circ \varphi^{-1} = g.$$

We write $f \sim g$

・ロト ・四ト ・ヨト ・ヨ

Topological Conjugacy

A well-studied equivalence relation on ${\mathcal H}$ is conjugacy by an orientation-preserving homeomorphism.

Definition (Topological Conjugacy)

Maps $f, g \in \mathcal{H}$ are conjugate by an orientation-preserving homeomorphism if there is $\varphi \in \mathcal{H}$ such that

$$\varphi \circ f \circ \varphi^{-1} = g.$$

We write $f \sim g$

Smale proposed using Topological Conjugacy to study the *qualitative behavior* of dynamical systems.

Smale's program

Classify systems up to Topological Conjugacy.

Philipp Kunde	(UHH)
---------------	-------

< □ > < □ > < □ > < □ > < □ > < □ >

Definition (Rotation number)

Let $f \in \mathcal{H}$ and F be a lift of f. Define

$$\tau(F) = \lim_{n \to \infty} \frac{F^n(x) - x}{n}$$

Then $\tau(f) := [\tau(F)]$ is called the *rotation number* of f.

Some properties:

- $\tau(f)$ exists and is independent of x.
- For F_1, F_2 lifts of f we have $[\tau(F_1)] = [\tau(F_2)]$.

< □ > < □ > < □ > < □ > < □ > < □ >

Topological conjugacy

An invariant: Rotation number

Definition (Rotation number)

Let $f \in \mathcal{H}$ and F be a lift of f. Define

$$\tau(F) = \lim_{n \to \infty} \frac{F^n(x) - x}{n}$$

Then $\tau(f) := [\tau(F)]$ is called the *rotation number* of f.

Some properties:

- $\tau(f)$ exists and is independent of x.
- For F_1, F_2 lifts of f we have $[\tau(F_1)] = [\tau(F_2)]$.

Proposition

If $f \sim g$, then $\tau(f) = \tau(g)$.

	Philipp	Kunde	(UHH)
--	---------	-------	-------

(日) (四) (三) (三)

Definition (Rotation number)

Let $f \in \mathcal{H}$ and F be a lift of f. Define

$$\tau(F) = \lim_{n \to \infty} \frac{F^n(x) - x}{n}$$

Then $\tau(f) := [\tau(F)]$ is called the *rotation number* of f.

Some properties:

- $\tau(f)$ exists and is independent of x.
- For F_1, F_2 lifts of f we have $[\tau(F_1)] = [\tau(F_2)]$.

Proposition

If $f \sim g$, then $\tau(f) = \tau(g)$.

Is the rotation number a *complete numerical invariant* for Topological Conjugacy?

Philipp Kunde (UHH)

Theorem (Poincaré 1885)

Let $f \in \mathcal{H}$ have an irrational rotation number. If f has a dense orbit, then $f \sim R_{\tau(f)}$.

Theorem (Poincaré 1885)

Let $f \in \mathcal{H}$ have an irrational rotation number. If f has a dense orbit, then $f \sim R_{\tau(f)}$.

Theorem (Denjoy 1932)

If $f \in \mathcal{H}^2$ has an irrational rotation number, then f is transitive and hence $f \sim R_{\tau(f)}$.

Altogether: Irrational rotation numbers are complete invariants for C^2 -diffeomorphisms up to Topological conjugacy.

(Anti-)classification results for circle maps

Smooth conjugacy

And for smooth conjugacy?

Question

Are there complete numerical invariants for orientation-preserving diffeomorphisms of the circle up to conjugation by orientation-preserving diffeomorphisms?

A number α is called Diophantine of class $D(\nu)$ for $\nu \ge 0$, if there exists C > 0 such that

$$\left| lpha - rac{p}{q}
ight| \geq rac{\mathcal{C}}{q^{2+
u}} \; \; ext{for every} \; p \in \mathbb{Z} \; ext{and} \; q \in \mathbb{N}.$$

A number α is called *Diophantine* if it is in $D(\nu)$ for some $\nu \geq 0$.

A number α is called Diophantine of class $D(\nu)$ for $\nu \ge 0$, if there exists C > 0 such that

$$\left| lpha - rac{p}{q}
ight| \geq rac{\mathcal{C}}{q^{2+
u}} ext{ for every } p \in \mathbb{Z} ext{ and } q \in \mathbb{N}.$$

A number α is called *Diophantine* if it is in $D(\nu)$ for some $\nu \ge 0$.

An irrational number α is called *Liouville* if it is not Diophantine, that is, for every C > 0 and every $n \in \mathbb{N}$ there are infinitely many pairs $p \in \mathbb{Z}$, $q \in \mathbb{N}$ such that

$$0 < \left| \alpha - \frac{p}{q} \right| < \frac{C}{q^n}.$$

<ロト < 同ト < ヨト < ヨト

A number α is called Diophantine of class $D(\nu)$ for $\nu \ge 0$, if there exists C > 0 such that

$$\left| lpha - rac{p}{q}
ight| \geq rac{\mathcal{C}}{q^{2+
u}} ext{ for every } p \in \mathbb{Z} ext{ and } q \in \mathbb{N}.$$

A number α is called *Diophantine* if it is in $D(\nu)$ for some $\nu \geq 0$.

An irrational number α is called *Liouville* if it is not Diophantine, that is, for every C > 0 and every $n \in \mathbb{N}$ there are infinitely many pairs $p \in \mathbb{Z}$, $q \in \mathbb{N}$ such that

$$0 < \left| \alpha - \frac{p}{q} \right| < \frac{C}{q^n}$$

Theorem (Herman 1979)

If $f \in \mathcal{H}^{\infty}$ (respectively, $f \in \mathcal{H}^{\omega}$) has a Diophantine rotation number α , then f is C^{∞} -conjugate (respectively, C^{ω} -conjugate) to R_{α} .

(日)

A number α is called Diophantine of class $D(\nu)$ for $\nu \ge 0$, if there exists C > 0 such that

$$\left| lpha - rac{p}{q}
ight| \geq rac{\mathcal{C}}{q^{2+
u}} ext{ for every } p \in \mathbb{Z} ext{ and } q \in \mathbb{N}.$$

A number α is called *Diophantine* if it is in $D(\nu)$ for some $\nu \geq 0$.

An irrational number α is called *Liouville* if it is not Diophantine, that is, for every C > 0 and every $n \in \mathbb{N}$ there are infinitely many pairs $p \in \mathbb{Z}$, $q \in \mathbb{N}$ such that

$$0 < \left| \alpha - \frac{p}{q} \right| < \frac{C}{q^n}$$

Theorem (Herman 1979)

If $f \in \mathcal{H}^{\infty}$ (respectively, $f \in \mathcal{H}^{\omega}$) has a Diophantine rotation number α , then f is C^{∞} -conjugate (respectively, C^{ω} -conjugate) to R_{α} .

Theorem (Yoccoz 1984, Katznelson-Ornstein 1989)

If $f \in \mathcal{H}^k$ has a rotation number α in $D(\nu)$ with $k > \nu + 2$, then f is $C^{k-1-\nu-\varepsilon}$ -conjugate to R_{α} for every $\varepsilon > 0$.

Some negative results

Theorem (Arnold 1961)

There exists $f \in \mathcal{H}^{\omega}$ such that $f = \varphi \circ R_{\tau(f)} \circ \varphi^{-1}$ with a nondifferentiable homeomorphism φ .

Inductive construction within the family of circle diffeomorphisms induced by

$$F_{\alpha}(x) = x + \alpha + \mu \sin(2\pi x)$$

Some negative results

Theorem (Arnold 1961)

There exists $f \in \mathcal{H}^{\omega}$ such that $f = \varphi \circ R_{\tau(f)} \circ \varphi^{-1}$ with a nondifferentiable homeomorphism φ .

Inductive construction within the family of circle diffeomorphisms induced by

$$F_{\alpha}(x) = x + \alpha + \mu \sin(2\pi x)$$

Conjugacies of intermediate regularity (Hasselblatt-Katok 1995)

There are examples of $f \in \mathcal{H}^{\infty}$ conjugate to some irrational rotation R_{α} via a conjugacy φ with any one of the following properties:

- φ is singular
- $\bullet \ \varphi$ is absolutely continuous, but not Lipschitz continuous
- φ is C^k , but not C^{k+1} , where $k \in \mathbb{N}$ is arbitrary.

Matsumoto 2011&2012, K 2018: Conjugacies of other intermediate regularity for prescribed Liouville rotation number.

Philipp Kunde (UHH)

AbC method

No complete numerical invariants

Theorem (K)

Let C be the collection of circle homeomorphisms with regularity (D), where (D) could be any degree of regularity from Hölder to C^{∞} . Then there is no complete numerical invariant for C-conjugacy of orientation-preserving C^{∞} diffeomorphisms of the circle.

Reduction

The main tool is the idea of a reduction for equivalence relations.

Definition (Reduction)

Let X and Y be Polish spaces (i.e. separable completely metrizable topological spaces) and $E \subseteq X \times X$, $F \subseteq Y \times Y$ be equivalence relations.

A function
$$f : X \to Y$$
 reduces E to F
if and only if
for all $x_1, x_2 \in X$: x_1Ex_2 if and only if $f(x_1)Ff(x_2)$.

Such a function f is called a Borel (respectively, continuous) reduction if f is a Borel (respectively, continuous) function.

We write $E \preceq_{\mathcal{B}} F$ (respectively, $E \preceq_{\mathcal{C}} F$)

"F is at least as complicated as E"

イロト イボト イヨト イヨト

Equality equivalence relation

For complete numerical invariants:

Equality equivalence relation

For a Polish space Y we let $=_Y \subseteq Y \times Y$ be the equality equivalence relation.

If Y is a Polish space, then there is a Borel injection $g : Y \to \mathbb{R} \setminus \mathbb{Q}$. Let f be a Borel reduction of any equivalence relation $E \subseteq X \times X$ to $(Y, =_Y)$. Then $g \circ f$ is a Borel reduction of (X, E) to $(\mathbb{R}, =_R)$.

Thus we can assume that Borel reductions to any $=_Y$ can be changed to Borel reductions to equality on the real numbers.

Equivalence relation E_0

Equivalence relation E_0

Let ${\it E}_0$ be the equivalence relation on $\{0,1\}^{\mathbb N}$ defined by setting

 $\mathbf{a}E_0\mathbf{b}$ if and only if there is $N \in \mathbb{N}$ such that $a_m = b_m$ for all m > N.

for $\mathbf{a} = (a_n)_{n \in \mathbb{N}}, \mathbf{b} = (b_n)_{n \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}}.$

Equivalence relation E_0

Equivalence relation E_0

Let E_0 be the equivalence relation on $\{0,1\}^{\mathbb{N}}$ defined by setting

 $\mathbf{a}E_0\mathbf{b}$ if and only if there is $N \in \mathbb{N}$ such that $a_m = b_m$ for all m > N.

for
$$\mathbf{a} = (a_n)_{n \in \mathbb{N}}, \mathbf{b} = (b_n)_{n \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}}.$$

We can use this to exclude the existence of complete numerical invariants:

Fact

Suppose that *E* is an equivalence relation on an uncountable Polish space *X* and $E_0 \preceq_{\mathcal{B}} E$. Then $E \not\preceq_{\mathcal{B}} =_{\mathbb{R}}$.

<ロト < 同ト < ヨト < ヨト

Let $\mathcal{H}^{\infty}_{\alpha}$ be the collection of orientation-preserving C^{∞} -diffeomorphisms with rotation number $\alpha \in \mathbb{S}^1$.

Proposition

Let $\alpha \in \mathbb{S}^1$ be a Liouville number. There is a continuous one-to-one map

 $\Psi:\{0,1\}^{\mathbb{N}}\to\mathcal{H}^\infty_\alpha$

such that for any two sequences $\mathbf{a} = (a_n)_{n \in \mathbb{N}}$ and $\mathbf{b} = (b_n)_{n \in \mathbb{N}}$ the following properties hold:

- If there is $N \in \mathbb{N}$ such that $a_n = b_n$ for every $n \ge N$, then the C^{∞} -diffeomorphisms $\Psi(\mathbf{a})$ and $\Psi(\mathbf{b})$ are C^{∞} -conjugate.
- If there are infinitely many n ∈ N with a_n ≠ b_n, then the C[∞]-diffeomorphisms Ψ(a) and Ψ(b) are not Hölder-conjugate.

イロト 不得 トイヨト イヨト 三日

Using the notions from Descriptive Set Theory:

Corollary

Let C be the collection of circle homeomorphisms with regularity (D), where (D) could be any degree of regularity from Hölder to C^{∞} . Then there is a continuous reduction from E_0 to the C-conjugacy relation of orientation-preserving C^{∞} -diffeomorphisms of the circle.

(日)

Using the notions from Descriptive Set Theory:

Corollary

Let C be the collection of circle homeomorphisms with regularity (D), where (D) could be any degree of regularity from Hölder to C^{∞} . Then there is a continuous reduction from E_0 to the C-conjugacy relation of orientation-preserving C^{∞} -diffeomorphisms of the circle.

Hence, there is no complete numerical invariant for C-conjugacy of orientation-preserving C^{∞} diffeomorphisms of the circle.

(日) (四) (三) (三)

Ideas of proof: Building Ψ

Inductive construction of $T_{\mathbf{a}} := \Psi(\mathbf{a}) \in \mathcal{H}^{\infty}_{\alpha}$ via the AbC method:

$$T_{\mathbf{a},n} = H_{\mathbf{a},n} \circ R_{\alpha_{n+1}} \circ H_{\mathbf{a},n}^{-1}$$

with conjugation maps

$$H_{\mathbf{a},n} = H_{\mathbf{a},n-1} \circ h_{\mathbf{a},n}$$

with C^{∞} -diffeomorphism $h_{\mathbf{a},n}$ satisfying

$$h_{\mathbf{a},n} \circ R_{\frac{1}{q_n}} = R_{\frac{1}{q_n}} \circ h_{\mathbf{a},n}.$$

(日) (四) (三) (三)

Ideas of proof: Conjugation map $h_{a,n}$

Let h_{q_n} be the q_n -fold lift of \tilde{h}_n . Then

$$h_{\mathbf{a},n} = \begin{cases} h_{q_n} & \text{if } a_n = 0, \\ h_{q_n}^{-1} & \text{if } a_n = 1. \end{cases}$$

Ideas of proof: Convergence of $(T_{a,n})_n$

Note:

$$\|h_{\mathbf{a},n}\|_r \leq C_n q_n^r$$

ヘロト ヘロト ヘビト ヘビト

Ideas of proof: Convergence of $(T_{a,n})_n$

Note:

$$\left\|h_{\mathbf{a},n}\right\|_{r} \leq C_{n}q_{n}^{r}$$

Then:

$$\begin{split} & d_{n}(T_{\mathbf{a},n}, T_{\mathbf{a},n-1}) \\ &= \left\| H_{\mathbf{a},n} \circ R_{\alpha_{n+1}} \circ H_{\mathbf{a},n}^{-1} - H_{\mathbf{a},n-1} \circ R_{\alpha_{n}} \circ H_{\mathbf{a},n-1}^{-1} \right\|_{n} \\ &= \left\| H_{\mathbf{a},n} \circ R_{\alpha_{n+1}} \circ H_{\mathbf{a},n}^{-1} - H_{\mathbf{a},n-1} \circ R_{\alpha_{n}} \circ h_{\mathbf{a},n} \circ h_{\mathbf{a},n}^{-1} \circ H_{\mathbf{a},n-1}^{-1} \right\|_{n} \\ &= \left\| H_{\mathbf{a},n} \circ R_{\alpha_{n+1}} \circ H_{\mathbf{a},n}^{-1} - H_{\mathbf{a},n-1} \circ h_{\mathbf{a},n} \circ R_{\alpha_{n}} \circ h_{\mathbf{a},n}^{-1} \circ H_{\mathbf{a},n-1}^{-1} \right\|_{n} \\ &= \left\| H_{\mathbf{a},n} \circ R_{\alpha_{n+1}} \circ H_{\mathbf{a},n}^{-1} - H_{\mathbf{a},n-1} \circ R_{\alpha_{n}} \circ H_{\mathbf{a},n}^{-1} \right\|_{n} \\ &\leq C_{n} \cdot \left\| H_{n} \right\|_{n+1}^{n+1} \cdot \left\| R_{\alpha_{n+1}} - R_{\alpha_{n}} \right\|_{n} \\ &\leq C_{n} \cdot q_{n}^{(n+1)^{2}} \cdot |\alpha_{n+1} - \alpha_{n}| \\ &\leq C_{n} \cdot q_{n}^{(n+1)^{2}} \cdot 2 \cdot |\alpha - \alpha_{n}| \,, \end{split}$$

which can be made small since α is Liouville.

Philipp Kunde (UHH)

ヘロト ヘロト ヘビト ヘビト

Ideas of proof

We consider $T_{\mathbf{a},n} \to T_{\mathbf{a}} = H_{\mathbf{a}} \circ R_{\alpha} \circ H_{\mathbf{a}}^{-1}$ and $T_{\mathbf{b},n} \to T_{\mathbf{b}} = H_{\mathbf{b}} \circ R_{\alpha} \circ H_{\mathbf{b}}^{-1}$.

The conjugation maps $H_{\mathbf{b},n}H_{\mathbf{a},n}^{-1} \to H_{\mathbf{b}}H_{\mathbf{a}}^{-1}$ in \mathcal{H} .

We consider $T_{\mathbf{a},n} \to T_{\mathbf{a}} = H_{\mathbf{a}} \circ R_{\alpha} \circ H_{\mathbf{a}}^{-1}$ and $T_{\mathbf{b},n} \to T_{\mathbf{b}} = H_{\mathbf{b}} \circ R_{\alpha} \circ H_{\mathbf{b}}^{-1}$.

The conjugation maps $H_{\mathbf{b},n}H_{\mathbf{a},n}^{-1} \to H_{\mathbf{b}}H_{\mathbf{a}}^{-1}$ in \mathcal{H} .

• If $\mathbf{a}E_0\mathbf{b}$, then there is $N \in \mathbb{N}$ such that $a_n = b_n$ for all n > N. Hence:

$$\begin{aligned} H_{\mathbf{b},n}H_{\mathbf{a},n}^{-1} &= H_{\mathbf{b},N} \circ h_{\mathbf{b},N+1} \circ \cdots \circ h_{\mathbf{b},n} \circ h_{\mathbf{a},n}^{-1} \circ \cdots \circ h_{\mathbf{a},N+1}^{-1} \circ H_{\mathbf{a},N}^{-1} \\ &= H_{\mathbf{b},N}H_{\mathbf{a},N}^{-1} \in \mathcal{H}^{\infty}. \end{aligned}$$

<ロ> (日) (日) (日) (日) (日)

We consider $T_{\mathbf{a},n} \to T_{\mathbf{a}} = H_{\mathbf{a}} \circ R_{\alpha} \circ H_{\mathbf{a}}^{-1}$ and $T_{\mathbf{b},n} \to T_{\mathbf{b}} = H_{\mathbf{b}} \circ R_{\alpha} \circ H_{\mathbf{b}}^{-1}$.

The conjugation maps $H_{\mathbf{b},n}H_{\mathbf{a},n}^{-1} \to H_{\mathbf{b}}H_{\mathbf{a}}^{-1}$ in \mathcal{H} .

• If $\mathbf{a}E_0\mathbf{b}$, then there is $N \in \mathbb{N}$ such that $a_n = b_n$ for all n > N. Hence:

$$\begin{aligned} H_{\mathbf{b},n}H_{\mathbf{a},n}^{-1} &= H_{\mathbf{b},N} \circ h_{\mathbf{b},N+1} \circ \cdots \circ h_{\mathbf{b},n} \circ h_{\mathbf{a},n}^{-1} \circ \cdots \circ h_{\mathbf{a},N+1}^{-1} \circ H_{\mathbf{a},N}^{-1} \\ &= H_{\mathbf{b},N}H_{\mathbf{a},N}^{-1} \in \mathcal{H}^{\infty}. \end{aligned}$$

• Otherwise: $H_{b,n}H_{a,n}^{-1}$ does not converge in any Hölder space by construction of \tilde{h}_n .

Thank you very much for your attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで