Equivalence relations arising from general Polish group actions

Marcin Sabok

McGill University

BIRS Workshop: Interactions between Descriptive Set Theory and Smooth Dynamics

• • • • • • • • • • • •

Marcin Sabok

A **Polish group** is a topological group whose underlying topological space is Polish

McGill University

Image: A matched block of the second seco

A **Polish group** is a topological group whose underlying topological space is Polish

Remark

Marcin Sabok

In a way, Polish groups can be treated a far-reaching generalization of the Lie groups

イロト イヨト イヨト イ

A **Polish group** is a topological group whose underlying topological space is Polish

Remark

In a way, Polish groups can be treated a far-reaching generalization of the Lie groups

Every Polish group admits a (bounded) left-invariant metric.

Examples

the group Homeo(X), of all homeomophisms of a compact metrizable space X

Marcin Sabok

Examples

the group Homeo(X), of all homeomophisms of a compact metrizable space X

• the group Iso(X) of all **isometries** of a Polish metric space X

• • • • • • • • • • • •

< □ > < 同 > < 回 > < Ξ > < Ξ

Examples

the group Homeo(X), of all homeomophisms of a compact metrizable space X

• the group Iso(X) of all **isometries** of a Polish metric space X

the group Llso(X) of all linear isometries of a separable Banach space X

Examples

the group Homeo(X), of all homeomophisms of a compact metrizable space X

• the group Iso(X) of all **isometries** of a Polish metric space X

the group Llso(X) of all linear isometries of a separable Banach space X

the group Aut(µ) of all measure-preserving automorphisms of a standard Borel probability space.

< □ > < 同 > < Ξ > <</p>

Fact If G and H are Polish and G < H, then G is closed in H.

<ロト < 部ト < 言ト < 言ト 言 のへで McGill University

Marcin Sabok

Fact

If G and H are Polish and G < H, then G is closed in H.

Proof

Recall that if X and Y are Polish spaces and $X \subseteq Y$, then X is G_{δ} (i.e. Π_1^0) in X.

Image: A math a math

Marcin Sabok

< ロ > < 回 > < 回 > < 回 > <</p>

Fact

If G and H are Polish and G < H, then G is closed in H.

Proof

Recall that if X and Y are Polish spaces and $X\subseteq Y,$ then X is G_{δ} (i.e. $\Pi^0_1)$ in X.

The latter can be deduced from a theorem (Kuratowski) about extensions of partial continuous functions on complete metric spaces to G_{δ} sets

Replacing H with \overline{G} if needed, we can assume that G is dense in H

McGill University

Replacing H with \overline{G} if needed, we can assume that G is dense in H

Thus G is dense G_{δ} in H, and so is every of its cosets.

McGill University

Image: A matched block of the second seco

Replacing H with \overline{G} if needed, we can assume that G is dense in H

Thus G is dense G_{δ} in H, and so is every of its cosets.

This implies that G = H, by the **Baire category theorem**.

McGill University

イロト イヨト イヨト イ

Equivalence relations arising from general Polish group actions

Marcin Sabok

Definition

A Polish group G is **universal** if every Polish group embeds into G as a subgroup.

イロト イヨト イヨト イ

Definition

A Polish group G is **universal** if every Polish group embeds into G as a subgroup.

Theorem (Uspenskij)

The group $\operatorname{Homeo}([0,1]^{\mathbb{N}})$ is a universal Polish group.

McGill University

< □ > < 同 > < Ξ > <</p>

Proof sketch

Consider the **Banach space** $C_b(G)$ of bounded real-valued functions on G, equipped with the sup norm:

 $||f||_{\infty} = \sup\{f(g) : g \in G\}$

McGill University

Image: A math a math

Proof sketch

Consider the **Banach space** $C_b(G)$ of bounded real-valued functions on G, equipped with the sup norm:

$$\|f\|_{\infty} = \sup\{f(g) : g \in G\}$$

While $C_b(G)$ is not a separable Banach space, for each $g\in G$ we have the function

$$f_g(h) = d(g,h)$$

and $f_g \in C_b(G)$. Take

$$X = \operatorname{cl}\{f_g : g \in G\}$$

and note that X is a separable Banach space.

Marcin Sabok

The group G acts on of X by linear isometries via

$$g \cdot f(h) = f(g^{-1}h).$$

・ロト ・回 ト ・ ヨト ・

イロト イヨト イヨト イ

The group G acts on of X by linear isometries via

$$g \cdot f(h) = f(g^{-1}h).$$

This way, we have **embedded** G **into** Llso(X) for some separable Banach space.

Marcin Sabok

Write K for the **unit ball in the dual** X^* and note that any linear isometry of X induces a homeomorphism of K.

McGill University

イロト イヨト イヨト イ

Write K for the **unit ball in the dual** X^* and note that any linear isometry of X induces a homeomorphism of K.

Theorem (Keller)

The unit ball of the dual space of an infinite-dimensional separable Banach space is homeomorphic to the **Hilbert cube**.

< ロ > < 回 > < 回 > < 回 > <</p>

< □ > < 同 > < 回 > < Ξ > < Ξ

Write K for the **unit ball in the dual** X^* and note that any linear isometry of X induces a homeomorphism of K.

Theorem (Keller)

The unit ball of the dual space of an infinite-dimensional separable Banach space is homeomorphic to the **Hilbert cube**.

This gives the desired embedding of G into $Homeo([0,1]^{\mathbb{N}})$.

There are many other examples of universal Polish groups, and there are **pairwise non-isomorphic** universal Polish groups

Image: A math a math

There are many other examples of universal Polish groups, and there are **pairwise non-isomorphic** universal Polish groups

Is every large Polish group universal?

Image: A math a math

There are many other examples of universal Polish groups, and there are **pairwise non-isomorphic** universal Polish groups

Is every large Polish group universal?

The group $Aut(\mu)$ is **not** a universal Polish group.

McGill University

Image: A math a math

A group is **exotic** if it does not have any nontrivial unitary representations.

Image: A math a math

Marcin Sabok

McGill University

A group is **exotic** if it does not have any nontrivial unitary representations.

Theorem (Herer–Christensen) There exist exotic Polish groups.

Marcin Sabok

A group is **exotic** if it does not have any nontrivial unitary representations.

< D > < A > < B > < B >

Theorem (Herer-Christensen)

There exist exotic Polish groups.

The group $Aut(\mu)$ embeds into $U(\ell_2)$ via the Koopman representation, and so its **subgroups cannot be not exotic**.

Definition

Let G be a Polish group. A **Borel** G-space is a standard Borel space X with a Borel action $G \curvearrowright X$ by Borel automorphisms.

McGill University

Let G be a Polish group. A **Borel** G-space is a standard Borel space X with a Borel action $G \curvearrowright X$ by Borel automorphisms.

Definition

Let G be a Polish group. A Borel G-space $G \curvearrowright X$ is **universal** if for every Borel G-space $G \curvearrowright Y$ there exists a Borel G-invariant embedding of Y into X.

< □ > < 同 > < Ξ > <</p>

< □ > < 同 > < 回 > < Ξ > < Ξ

Definition

Let G be a Polish group. A **Borel** G-space is a standard Borel space X with a Borel action $G \curvearrowright X$ by Borel automorphisms.

Definition

Let G be a Polish group. A Borel G-space $G \curvearrowright X$ is **universal** if for every Borel G-space $G \curvearrowright Y$ there exists a Borel G-invariant embedding of Y into X.

Theorem (Becker-Kechris)

For every Polish group G there exists a universal Borel G-space.

Notation We denote by

$$F(G) = \{C \subseteq G : C \text{ is closed}\}$$

This space carries a standard Borel structure called the **Effros Borel space**.

Notation We denote by

$$F(G) = \{C \subseteq G : C \text{ is closed}\}$$

This space carries a standard Borel structure called the **Effros Borel space**.

If G is compact, then F(G) is the space of compact subsets of G with the $\mbox{\rm Hausdorff}$ distance.

Image: Image:

McGill University

イロト イロト イヨト イヨ

Notation We denote by

$$F(G) = \{C \subseteq G : C \text{ is closed}\}$$

This space carries a standard Borel structure called the **Effros Borel space**.

If G is compact, then F(G) is the space of compact subsets of G with the $\mbox{\rm Hausdorff}$ distance.

There is a **natural action** $G \curvearrowright F(G)$ by left multiplication.

Actions of Polish groups

Consider the countable power $F(G)^{\mathbb{N}}$ as a Borel G-space, with the coordinate-wise action

$$g \cdot (F_0, F_1, \ldots) = (gF_0, gF_1, \ldots)$$

Actions of Polish groups

Consider the countable power $F(G)^{\mathbb{N}}$ as a Borel G-space, with the coordinate-wise action

$$g \cdot (F_0, F_1, \ldots) = (gF_0, gF_1, \ldots)$$

This is a **universal** *G*-space.

McGill University

Image: A matched block of the second seco

Actions of Polish groups

イロト イボト イヨト イヨト

McGill University

Consider the countable power $F(G)^{\mathbb{N}}$ as a Borel G-space, with the coordinate-wise action

$$g \cdot (F_0, F_1, \ldots) = (gF_0, gF_1, \ldots)$$

This is a **universal** *G*-space.

Take any Borel G-space $G \curvearrowright X$. For simplicity assume that G acts by homeomorphisms and X is a zero-dimensional Polish space.

Marcin Sabok

Fix a countable **basis of topology** $\{U_n : n \in \mathbb{N}\}$ on X, consisting of clopen sets.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

McGill University

Marcin Sabok

Fix a countable **basis of topology** $\{U_n : n \in \mathbb{N}\}$ on X, consisting of clopen sets.

For each $x \in X$ and $n \in \mathbb{N}$ let

$$f_n(x) = \{h \in G : hx \in U_n\}^{-1}$$

and note that $f_n(x)$ is a **closed set**.

< □ > < 同 > < Ξ > <</p>

< □ > < 同 > < 回 > < Ξ > < Ξ

Fix a countable **basis of topology** $\{U_n : n \in \mathbb{N}\}$ on X, consisting of clopen sets.

For each $x \in X$ and $n \in \mathbb{N}$ let

$$f_n(x) = \{h \in G : hx \in U_n\}^{-1}$$

and note that $f_n(x)$ is a **closed set**.

Define $f: X \to F(G)^{\mathbb{N}}$ as

$$f(x) = (f_0(x), f_1(x), \ldots)$$

Marcin Sabok

The function f is an **injection and is** G-invariant.

McGill University

イロト イロト イヨト イヨ

Marcin Sabok

The function f is an **injection and is** G-invariant.

To see the latter, it is enough to note that

$$g\{h \in G : hx \in U_n\}^{-1} = \{h \in G : h(gx) \in U_n\}^{-1}$$

McGill University

・ロン ・日 ・ ・ ヨン・

The function f is an **injection and is** G-invariant.

To see the latter, it is enough to note that

$$g\{h \in G : hx \in U_n\}^{-1} = \{h \in G : h(gx) \in U_n\}^{-1}$$

which rewrites to

$$\{h \in G : hx \in U_n\}g^{-1} = \{h \in G : hgx \in U_n\}$$

イロト イヨト イヨト イ

and thus is satisfied.

Marcin Sabok

Extensions of actions

Suppose G is a closed subgroup of a Polish group H and $G \curvearrowright X$ is a Borel G-space. Can we extend the action of G to an action of H?

Extensions of actions

Suppose G is a closed subgroup of a Polish group H and $G \curvearrowright X$ is a Borel G-space. Can we extend the action of G to an action of H?

Theorem (Mackey–Hjorth)

Let H be a Polish group and G a closed subgroup of H. Let $G \curvearrowright X$ be a Borel G-space. Then there is a Borel $H\text{-space}\,Y$ such that

- X is a Borel subset of Y
- the actions $G \curvearrowright X$ and $G \curvearrowright Y$ agree,
- ▶ every *H*-orbit in *Y* contains exactly one *G*-orbit in *X*.

< □ > < 同 > < 回 > < Ξ > < Ξ

Proof sketch

For simplity assume X is Polish and the action $G \curvearrowright X$ is continuous by homeomorphisms.

McGill University

Image: A matched block of the second seco

Proof sketch

For simplity assume X is Polish and the action $G \frown X$ is continuous by homeomorphisms.

Consider the set $X \times H$ and the action $G \curvearrowright (X \times H)$ defined as

$$g \cdot (x,h) = (gx,gh)$$

McGill University

• • • • • • • • • • • •

Marcin Sabok

イロト イロト イヨト イヨ

Proof sketch

For simplity assume X is **Polish** and the action $G \frown X$ is **continuous by homeomorphisms**.

Consider the set $X \times H$ and the action $G \curvearrowright (X \times H)$ defined as

$$g \cdot (x,h) = (gx,gh)$$

Write Y for the quotient $(X \times H)/G$. It turns out (Hjorth) that Y is a Polish space.

For $(x,h) \in X \times H$ write [x,h] for its image in the quotient Y.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 20ペ

McGill University

Marcin Sabok

For $(x,h) \in X \times H$ write [x,h] for its image in the quotient Y.

We can embed X into Y by mapping

 $x\mapsto [x,e]$

Marcin Sabok

イロト イポト イヨト イヨ

For $(x,h) \in X \times H$ write [x,h] for its image in the quotient Y.

We can embed X into Y by mapping

 $x\mapsto [x,e]$

Define the **action** $H \curvearrowright Y$ as follows

$$k \cdot [x,h] = [x,hk^{-1}]$$

Marcin Sabok

It is easy to check that with this action we have (i) and (ii) satisfied

McGill University

< ロ > < 回 > < 回 > < 回 > <</p>

イロト イロト イヨト イヨ

It is easy to check that with this action we have (i) and (ii) satisfied

To see (iii), note that the orbit of [x,h] contains the unique G-orbit of [x,e].

Marcin Sabok

Definition

By an **orbit equivalence relation** we will mean an equivalence relation induced by orbits of an action of a Polish group on a standard Borel space.

McGill University

Image: A matched block of the second seco

Definition

By an **orbit equivalence relation** we will mean an equivalence relation induced by orbits of an action of a Polish group on a standard Borel space.

Every orbit equivalence relation is analytic

McGill University

< 口 > < 同 >

• • • • • • • • • • • •

Definition

By an **orbit equivalence relation** we will mean an equivalence relation induced by orbits of an action of a Polish group on a standard Borel space.

Every orbit equivalence relation is analytic

Definition

An orbit equivalence relation E is **complete** (or maximal) if every orbit equivalence relation can be Borel-reduced to E.

Fact

Complete orbit equivalence relations exist.

・ロト・日本・日本・日本・日本・日本

McGill University

Marcin Sabok

Fact

Complete orbit equivalence relations exist.

Proof

Marcin Sabok

This follows from the existence of a **universal Polish group** G and a **universal** G-space

McGill University

< □ > < 同 > < Ξ > <</p>

Fact

Complete orbit equivalence relations exist.

Proof

This follows from the existence of a **universal Polish group** G and a **universal** G-space

as well as the **Mackey–Hjorth extension theorem**, which implies that an orbit equivalence relation induced by a group G can be reduced to an orbit equivalence relation induced by a universal Polish group.

• • • • • • • • • • • •

There are, however, **naturally occuring** complete orbit equivalence relations.

McGill University

イロト イヨト イヨト イ

There are, however, **naturally occuring** complete orbit equivalence relations.

Let $K([0,1]^{\mathbb{N}})$ denote the space of compact subsets of the Hilbert cube.

イロト イヨト イヨト イ

イロト イポト イヨト イヨ

There are, however, **naturally occuring** complete orbit equivalence relations.

Let $K([0,1]^{\mathbb{N}})$ denote the space of compact subsets of the Hilbert cube.

Consider the relation of homeomorphism on $K([0,1]^{\mathbb{N}})$.

Recall that if K_1, K_2 are so-called **Z-sets** in the Hilbert cube, then every homeomorphism between K_1 and K_2 extends to a homeomorphism of the Hilbert cube.

McGill University

< □ > < 同 > < Ξ > <</p>

Equivalence relations arising from general Polish group actions

Marcin Sabok

Recall that if K_1, K_2 are so-called **Z-sets** in the Hilbert cube, then every homeomorphism between K_1 and K_2 extends to a homeomorphism of the Hilbert cube.

If we write

$$[0,1]^{\mathbb{N}} = [0,1]^{\mathbb{N}} \times [0,1]^{\mathbb{N}},$$

then any compact subset of the first coordinate is a Z-set.

イロト イロト イヨト イヨ

Recall that if K_1, K_2 are so-called **Z-sets** in the Hilbert cube, then every homeomorphism between K_1 and K_2 extends to a homeomorphism of the Hilbert cube.

If we write

$$[0,1]^{\mathbb{N}} = [0,1]^{\mathbb{N}} \times [0,1]^{\mathbb{N}},$$

then any compact subset of the first coordinate is a Z-set.

Thus, identifying $K(0, 1^{\mathbb{N}})$ with subsets of the first cooridinate of $[0, 1]^{\mathbb{N}} = [0, 1]^{\mathbb{N}} \times [0, 1]^{\mathbb{N}}$, we see that the relation of homeomophism on $K(0, 1^{\mathbb{N}})$ is induced by the action of Homeo $(0, 1^{\mathbb{N}})$, and thus is an orbit equivalence relation.

< ロ > < 同 > < 回 > < 3

Definition

A convex compact set C (of a locally convex space) is a **Choquet simplex** if every point of C is the barycenter of a unique probabilty measure concentrated on the extreme points of C.

< 口 > < 同 >

Marcin Sabok

Definition

A convex compact set C (of a locally convex space) is a **Choquet simplex** if every point of C is the barycenter of a unique probability measure concentrated on the extreme points of C.

Any Choquet simplex is an inverse limit of a sequence of finite-dimensional simplices (we only talk about metrizable simplices)

Poulsen simplex

There is a (unique) Choquet simplex P, called the Poulsen simplex, whose **extreme boundary is dense in** P

McGill University

Image: A math a math

Poulsen simplex

There is a (unique) Choquet simplex P, called the Poulsen simplex, whose **extreme boundary is dense in** P

The Poulsen simplex can be realized as the simplex of invariant measures on the (full) shift $\{0,1\}^{\mathbb{Z}}$.

< □ > < 同 > < Ξ > <</p>

Every (separable) Choquet simplex can be affinely embedded as **a** face into the Poulsen simplex.

McGill University

Image: A matched block of the second seco

Every (separable) Choquet simplex can be affinely embedded as **a** face into the Poulsen simplex.

Thus, we can take the space of **all closed proper faces of the Poulsen simplex** as the space of all Choquet simplices.

McGill University

Image: A math a math
< □ > < 同 > < Ξ > <</p>

Every (separable) Choquet simplex can be affinely embedded as **a** face into the Poulsen simplex.

Thus, we can take the space of **all closed proper faces of the Poulsen simplex** as the space of all Choquet simplices.

Consider the relation of **affine homeomorphism** on the space of Choquet simplices.

Write

.

Marcin Sabok

$\operatorname{Aff}(P) = \{f : P \to P : f \text{ is an affine homeomorphism}\}$

McGill University

イロト イロト イヨト イヨ

Write

$$\operatorname{Aff}(P) = \{f : P \to P : f \text{ is an affine homeomorphism}\}$$

Fact

Any affine homeomorphism between closed proper faces of P extends to a homeomorphism of P.

Marcin Sabok

Image: A matched block of the second seco

< □ > < 同 > < 回 > < Ξ > < Ξ

Write

$$\operatorname{Aff}(P) = \{f : P \to P : f \text{ is an affine homeomorphism}\}$$

Fact

Any affine homeomorphism between closed proper faces of P extends to a homeomorphism of P.

Thus, the affine homeomorphism of Choquet simplices is an **orbit** equivalence relation induced by the action of Aff(P) on the space of its closed proper faces.

Theorem (S.)

Affine homeomorphism of Choquet simplices is a complete orbit equivalence relation.

McGill University

Image: A math a math

Theorem (Zielinski)

Homeomorphism of compact metric spaces is a complete orbit equivalence relation

McGill University

< □ > < 同 > < Ξ > <</p>

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem (Zielinski)

Homeomorphism of compact metric spaces is a complete orbit equivalence relation

Proof

For each Choquet simplex C write

$$\zeta(C) = (C, \{(x, y, z) \in C^3 : z = \frac{1}{2}x + \frac{1}{2}y\}$$

Note that $\zeta(C)$ is of the form (K, R) where K is a compact space and $R \subseteq K^3$ is a closed set.

Consider the relation \simeq_3 on pairs (K_1, R_1) and (K_2, R_2) as above defined by $(K_1, R_1) \simeq_3 (K_2, R_2)$ if there **exists a** homeomorphism $f: K_1 \to K_2$ such that $f^3(R_1) = R_2$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Consider the relation \simeq_3 on pairs (K_1, R_1) and (K_2, R_2) as above defined by $(K_1, R_1) \simeq_3 (K_2, R_2)$ if there exists a homeomorphism $f: K_1 \to K_2$ such that $f^3(R_1) = R_2$.

Two Choquet simplices C_1 and C_2 are affinely homeomorphic if and only if $\zeta(C_1)\simeq_3\zeta(C_2)$

There exists a Borel reduction of \simeq_3 to the relation of homeomorphism of compact metric spaces

<□▶ < @ ▶ < E ▶ < E ▶ E クへで McGill University

Marcin Sabok

There exists a Borel reduction of \simeq_3 to the relation of homeomorphism of compact metric spaces

Precomposing such reduction with ζ gives a **reduction** of affine homeomorphism of Choquet simplices to the homeomorphism of compact metric spaces

Image: A math a math

There exists a Borel reduction of \simeq_3 to the relation of homeomorphism of compact metric spaces

Precomposing such reduction with ζ gives a **reduction** of affine homeomorphism of Choquet simplices to the homeomorphism of compact metric spaces

Thus, homeomorphism of compact metric spaces is also complete.

• • • • • • • • • • • •

There are many isomorphism relations considered in topological and measurable dynamics.

McGill University

< ロ > < 回 > < 回 > < 回 > <</p>

There are many isomorphism relations considered in topological and measurable dynamics.

Let us say a **topological dynamical system** is a compact metric space X with an action of \mathbb{Z} on it via a homeomorphism $T: X \to X$.

< □ > < 同 > < 回 > < Ξ > < Ξ

< □ > < 同 > < 回 > < Ξ > < Ξ

There are many isomorphism relations considered in topological and measurable dynamics.

Let us say a **topological dynamical system** is a compact metric space X with an action of \mathbb{Z} on it via a homeomorphism $T: X \to X$.

Two such systems (X_1, T_1) and (X_2, T_2) are **topologically conjugate** if there is a homeomorphism of X_1 and X_2 which conjugates T_1 to T_2 .

One can consider the space of all (metric) topological systems by embedding them into a universal system and the **relation of topological conjugacy** on them is an analytic equivalence relation

McGill University

Image: A math a math

One can consider the space of all (metric) topological systems by embedding them into a universal system and the **relation of topological conjugacy** on them is an analytic equivalence relation

There is an easy reduction of the homeomorphism of compact metric spaces to the conjugacy of topological systems

< 口 > < 同 >

→ Ξ →

For a compact space X consider the **shift** $X^{\mathbb{Z}}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Marcin Sabok

For a compact space X consider the **shift** $X^{\mathbb{Z}}$

If $X^{\mathbb{Z}}$ is conjugate to $Y^{\mathbb{Z}},$ then X and Y are homeomorphic as X is identified with the set of fixed points

$$\{(\ldots, x, x, x, \ldots) : x \in X\}$$

of $X^{\mathbb{Z}}$.

McGill University

Image: A math a math

Marcin Sabok

Thus

$X\mapsto X^{\mathbb{Z}}$

is a **reduction** from homeomorphism of compact spaces to topological conjugacy of topological systems.

McGill University

イロト イヨト イヨト イ

Let us end with a question.

McGill University

Marcin Sabok

Let us end with a question.

Consider dynamical systems of the form (X, mu, T) where X is a **compact metric space**, $T: X \to X$ is a homeomorphism and μ is an **atomless probability measure**.

・ロン ・日 ・ ・ ヨン・

< □ > < 同 > < 回 > < Ξ > < Ξ

Let us end with a question.

Consider dynamical systems of the form (X, mu, T) where X is a **compact metric space**, $T: X \to X$ is a homeomorphism and μ is an **atomless probability measure**.

Say that (X, μ, T) is **conjugate** to (Y, ν, S) if there is a homeomorphism from X to Y which maps μ to ν and conjugates T to S.

Question

Suppose (X, μ) and (Y, ν) are two compact spaces with atomless probability measures. Are the following equivalent?

- there exists a homeomorphism from X to Y which maps μ to ν
- ▶ the shifts $(X^{\mathbb{Z}}, \mu^{\mathbb{Z}}, S)$ and $(Y^{\mathbb{Z}}, \nu^{\mathbb{Z}}, S)$ are **conjugate**

イロト イヨト イヨト イヨ