Chromatic Symmetric Functions and Sign-Reversing Involutions

Bruce Sagan Michigan State University www.math.msu.edu/~sagan

joint work with Zachary Hamaker and Vincent Vatter

BIRS Workshop on Interactions between Hessenberg Varieties, Chromatic Functions, and LLT Polynomials

 $Sign-reversing\ involutions$

The (3+1)-free Conjecture

The coefficient of e_n

Other results and future work

Let S be a finite set. An *involution* on S is a bijection $\iota:S\to S$ with

$$\iota^2 = \mathrm{id}$$
.

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is *signed* so there is a function

$$\mathrm{sgn}: \mathcal{S} \to \{+1, -1\}.$$

Call ι a sign-reversing involution if

- 1. for all 1-cycles (s) we have $\operatorname{sgn} s = +1$, and
- 2. for all 2-cycles (s, t) we have $\operatorname{sgn} s = -\operatorname{sgn} t$.

If ι is a sign-reversing involution on S then

$$\sum_{s \in S} \operatorname{sgn} s = \#S^{\iota}$$

where # is cardinality and S^{ι} is the fixed-point set of ι . Suppose R is a ring and weight S by a function $\operatorname{wt}: S \to R$. If ι is weight preserving in that $\operatorname{wt}\iota(s) = \operatorname{wt} s$ for all $s \in S$, then

$$\sum_{s \in S} (\operatorname{sgn} s)(\operatorname{wt} s) = \sum_{s \in S^{\iota}} \operatorname{wt} s.$$

Let

$$[n] = \{1, 2, \ldots, n\}.$$

And denote symmetric difference of sets A, B by

$$A\Delta B=(A\setminus B)\cup (B\setminus A).$$

Proposition

If n > 1 then

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

Proof.

Let $S = \{A \subseteq [n]\}$. Give S the sign function

$$\operatorname{sgn} A = (-1)^{\# A}.$$

Define involution $\iota: S \to S$ by $\iota(A) = A\Delta\{n\}$. So ι has no fixed points and is sign reversing. Thus the sum equals $\#S^{\iota} = 0$.

Let G = (V, E) be a graph. Given a set S, a vertex coloring $\kappa: V \to S$ is *proper* if

$$uv \in E \implies \kappa(u) \neq \kappa(v).$$

Let $\mathbb P$ be the positive integers and $\mathbf x=\{x_1,x_2,\ldots\}$. Given a proper vertex coloring $\kappa:V\to\mathbb P$ we let

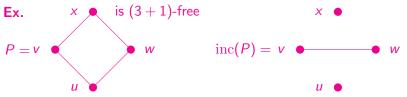
$$\mathbf{x}^{\kappa} = \prod_{v \in V} x_{\kappa(v)}.$$

Stanley's chromatic symmetric function is

$$X(G) = X(G; \mathbf{x}) = \sum_{\kappa} \mathbf{x}^{\kappa}$$

where the sum is over all proper $\kappa: V \to \mathbb{P}$.

Let (P, \leq_P) be a poset. Say P is (m+n)-free if it contains no induced subposet isomorphic to $[m] \uplus [n]$. The *incomparability graph of* P is $\mathrm{inc}(P) = (P, E)$ where $uv \in E$ if neither $u \leq_P v$ nor $v \leq_P u$. Let $\{e_\lambda\}$ and $\{s_\lambda\}$ be the elementary and Schur bases for symmetric functions, respectively. Given a basis $\{b_\lambda\}$, a symmetric function $f(\mathbf{x})$ is b-positive if the coefficients in its expansion in this basis are nonnegative.



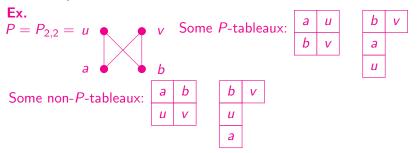
Conjecture (Stanley-Stembridge (3+1)-free Conjecture) If P is a (3+1)-free poset then $X(\operatorname{inc}(P); \mathbf{x})$ is e-positive.

The Method.

- 1. Expand $X(\operatorname{inc}(P))$ in terms of s_{λ} using Gasharov's P-tableaux.
- 2. Expand the s_{λ} in terms of e_{μ} using Jacobi-Trudi determinants.
- 3. Use a sign-reversing involution to cancel the negative terms.

Given poset (P, \leq_P) , a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that

- 1. rows are increasing with respect to \leq_P , and
- 2. adjacent elements in a column are nondecreasing with respect to \leq_P .



Let PT(P) and $PT_{\lambda}(P)$ be the set of all P-tableau and those of shape λ , respectively.

Theorem (Gasharov)

If
$$P$$
 is $(3+1)$ -free and $X(\operatorname{inc}(P)) = \sum_{\lambda} c_{\lambda} s_{\lambda}$ then $c_{\lambda} = \# \operatorname{PT}_{\lambda}(P)$.

The *transpose* of partition λ is $\lambda^t =$ diagonally reflect λ .

Ex. If
$$\lambda =$$
 then $\lambda^t =$.

Theorem (dual Jacobi-Trudi determinant)

If
$$\lambda=(\lambda_1,\lambda_2,\ldots)$$
 then $s_{\lambda^t}=\left|\begin{array}{ccc} e_{\lambda_1} & e_{\lambda_1+1} & \cdots \\ e_{\lambda_2-1} & e_{\lambda_2} & \cdots \\ \vdots & \vdots & \vdots \end{array}\right|.$

So writing $X(\operatorname{inc}(P))$ first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T,π) where $T\in \operatorname{PT}_{\lambda}(P)$ and $\pi\in\mathfrak{S}_{\lambda_1}$ is the permutation from the determinant expansion. **Ex.** If $P=P_{2,2}$ then $\#\operatorname{PT}_{\lambda}(P)=4$ for $\lambda=(2^2),(2,1^2),(1^4)$.

$$X(\operatorname{inc}(P)) = 4s_{2^{2}} + 4s_{2,1^{2}} + 4s_{1^{4}}$$

$$= 4 \begin{vmatrix} e_{2} & e_{3} \\ e_{1} & e_{2} \end{vmatrix} + 4 \begin{vmatrix} e_{3} & e_{4} \\ e_{0} & e_{1} \end{vmatrix} + 4e_{4}$$

$$= 4e_{2^{2}} - 4e_{3,1} + 4e_{3,1} - 4e_{4} + 4e_{4}$$

$$= 4e_{2^{2}}.$$

Let G be a graph with V=[n] and $\kappa:[n]\to\mathbb{P}$ be a proper coloring. An *ascent* of κ is an edge ij with

- 1. i < j, and
- 2. $\kappa(i) < \kappa(j)$.

Let $\operatorname{asc} \kappa$ be the number of ascents of κ .

Ex. 40 1 3 30 ascents: 23 since
$$\kappa(2) = 20 < 30 = \kappa(3)$$
, 34 since $\kappa(3) = 30 < 50 = \kappa(4)$. So asc $\kappa = 2$.

If t is a variable then the Shareshian-Wachs *chromatic* quasisymmetric function of a graph G with V = [n] is

$$X(G;\mathbf{x},t) = \sum_{\kappa:V o \mathbb{P} ext{ proper}} t^{\mathsf{asc}\,\kappa} \mathbf{x}^{\kappa}.$$

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUIO) then $X(\text{inc}(P); \mathbf{x}, t)$ is symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUIO then $X(inc(P); \mathbf{x}, t)$ is e-positive.

Let P be an NUIO, and so a poset on [n], and let T be a P-tableau. An *inversion* in T is a pair $i,j\in[n]$ with

- 1. i < j,
- 2. i is in a lower row than j, and
- 3. i and j are incomparable in P.

Let Inv T be the set of inversions of T and inv $T = \# \operatorname{Inv} T$.

Ex.
$$5 \bullet 4$$
 $T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$ Inv $T = \{23, 45\}$

Theorem (Shareshian-Wachs)

If P is an NUIO and $X(\mathrm{inc}(P);\mathbf{x},t)=\sum_{\lambda}c_{\lambda}(t)s_{\lambda}$ then

$$c_{\lambda}(t) = \sum_{T \in \mathsf{PT}_{\lambda}(P)} t^{\mathrm{inv} \ T}.$$

Let #P=n and $\lambda\vdash n$. The e_h of largest subscript appearing in the determinant for s_λ is at the end of the first row. And in that case h is the hooklength of the (1,1) box of the diagram of λ . So if h=n then λ is a hook. Furthermose e_n only occurs as the term in the determinant corresponding to the permutation given by $\pi=c,1,2,\ldots,c-1$ where $c=\lambda_1$. So if λ is a hook then let the sign of a P-tableau T of shape λ be

$$\operatorname{sgn} T = \operatorname{sgn} \lambda = (-1)^{c-1}.$$

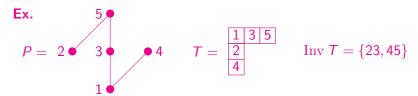
If λ is a hook then its *arm* and *leg* are the boxes in the first row, respectively first column, except (1,1).

$$\pi = 51234$$
 $\operatorname{sgn} \lambda = (-1)^{5-1} = 1.$

$$A = \text{arm}, L = \text{leg}.$$

Let P be an NUIO on [n] and T be a P-tableau of hook shape. Call $k \in [n]$ movable in T if it can be moved from the arm to the leg of T or vice-versa so that

- 1. the resulting tableau T' is a P-tableau, and
- 2. Inv T = Inv T'.



3 is movable with
$$T' = \begin{bmatrix} 1 & 5 \\ \hline 3 \\ \hline 2 \\ \hline 4 \end{bmatrix}$$
 . 5 is movable with $T' = \begin{bmatrix} 1 & 3 \\ \hline 2 \\ \hline 5 \\ \hline 4 \end{bmatrix}$.

2 and 4 are not movable.

Lemma (Hamaker-S-Vatter)

If k is movable in T, then there is a unique position to which it can be moved.

If k is movable in T then let T^k be the result of moving k. Define a map ι on P-tableau T of hook shape by

$$\iota(T) = \begin{cases} T^k & \text{if } k \text{ is the smallest integer which is movable in } T, \\ T & \text{if no element in } T \text{ is movable.} \end{cases}$$

Theorem (Hamaker-S-Vatter)

Let P be any NUIO on [n].

- 1. ι is a sign-reversing, Inv-preserving, involution on hook P-tableaux.
- 2. If T is fixed by ι then it has shape (1^n) .
- 3. The coefficient $c_n(t)$ of e_n in $X(\operatorname{inc}(P); \mathbf{x}, t)$ has nonnegative coefficients. It is the generating function by inv of P-tableau of column shape with no moveable elements.

Acyclic orientations.

An *orientation* O of a graph G is obtained by replacing each edge $uv \in G$ by one of the arcs $u\vec{v}$ or $v\vec{u}$. Call O acyclic if it has no directed cycles. If V = [n] then an ascent of O is an arc $u\vec{v}$ with u < v, and we let asc O be the number of ascents of O.

Theorem (Stanley, Shareshian-Wachs)

If P is an NUIO on [n] and $X(\operatorname{inc}(P); \mathbf{x}, t) = \sum_{\lambda} c_{\lambda}(t)e_{\lambda}$, then

$$\sum_{\lambda \; ext{with m parts}} c_{\lambda}(t) = \sum_{O \; ext{with m sinks}} t^{\mathsf{asc} \; O}.$$

So if $\lambda=(n)$ then $c_n(t)=\sum_{O \text{ with } 1 \text{ sink }} t^{\operatorname{asc} O}$. Given a P-tableau T of column shape we define an orientation O of $G=\operatorname{inc} P$ by orienting each edge uv of G so that

 \vec{uv} is an arc of O iff $uv \in \text{Inv } T$.

Theorem (Hamaker-S-Vatter)

For any NUIO and $m \ge 0$, the map $T \mapsto O$ is an inv-asc preserving bijection from P-tableaux of column shape with m movable elements to acyclic orientations of $\operatorname{inc}(P)$ with m+1 sinks.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_n in their determination of the coefficient of p_n (power sum symmetric function) in $X(\operatorname{inc}(P); \mathbf{x}, t)$.

There have been other applications of The Method. The *height* of

a poset P, ht P, is the number of elements in a longest chain. If P is an NUIO then ht P is the bounce number of the corresponding Dyck path. Harada and Precup proved the (3+1)-free conjecture for $X(\operatorname{inc}(P);\mathbf{x},t)$ when ht P=2 using Hessenberg varieties. Cho and Huh gave a combinatorial proof of this result using The Method. Cho and Hong used The Method to prove the (3+1)-free conjecture for $X(\operatorname{inc}(P);\mathbf{x})$ when ht P=3. Finding a proof for $X(\operatorname{inc}(P);\mathbf{x},t)$ when ht P=3 is still open but certain special cases were done using involutions by Cho and Hong, and by Wang using the inverse Kostka matrx in place of the Jacobi-Trudi determinant.

References

- 1. Cho, S.; Hong, J. Positivity of chromatic symmetric functions associated with Hessenberg functions of bounce number 3, *Electron. J. Combin.* 29 (2022), Paper No. 2.19, 37 pp.
- 2. Cho, S.; Huh, J.; On *e*-positivity and *e*-unimodality of chromatic quasi-symmetric functions, *SIAM J. Discrete Math.* 33 (2019), 2286—2315.
- 3. Harada, M.; Precup, M. The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture, *Algebr. Comb.* 2 (2019), 1059—1108.
- 4. Sagan, B.; Vatter, V.; Bijective proofs of proper coloring theorems, *Amer. Math. Monthly* 128 (2021), 483—499.
- 5. Shareshian, J.; Wachs, M. Chromatic quasisymmetric functions, *Adv. Math.*, 295 (2016), 497–551.
- 6. Stanley, R. A symmetric function generalization of the chromatic polynomial of a graph, *Adv. Math.*, 111 (1995), 166–194.
- 7. Stanley, R.; Stembridge, J. On immanants of Jacobi-Trudi matrices and permutations with restricted position, *J. Combin. Theory Ser. A* 62 (1993), no. 2, 261–279.
- 8. Wang, S.; The *e*-positivity of the chromatic symmetruc functions and the inverse Kostka matrix, arXiv 2210.07567.

THANKS FOR

LISTENING!