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Let S be a finite set.

An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2.

Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution

if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and

2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι.

Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R.

If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let S be a finite set. An involution on S is a bijection ι : S → S
with

ι2 = id .

So, viewed as a permutation of S , all cycles of ι are of length 1 or
2. Suppose S is signed so there is a function

sgn : S → {+1,−1}.

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have sgn s = +1, and
2. for all 2-cycles (s, t) we have sgn s = − sgn t.

If ι is a sign-reversing involution on S then∑
s∈S

sgn s = #S ι

where # is cardinality and S ι is the fixed-point set of ι. Suppose R
is a ring and weight S by a function wt : S → R. If ι is weight
preserving in that wt ι(s) = wt s for all s ∈ S , then∑

s∈S
(sgn s)(wt s) =

∑
s∈Sι

wt s.



Let
[n] = {1, 2, . . . , n}.

And denote symmetric difference of sets A,B by

A∆B = (A \ B) ∪ (B \ A).

Proposition

If n ≥ 1 then
n∑

k=0

(−1)k
(
n

k

)
= 0.

Proof.
Let S = {A ⊆ [n]}. Give S the sign function

sgnA = (−1)#A.

∴
∑
A∈S

sgnA =
n∑

k=0

∑
A∈S ,#A=k

(−1)k =
n∑

k=0

(−1)k
(
n

k

)
.

Define involution ι : S → S by ι(A) = A∆{n}. So ι has no fixed
points and is sign reversing. Thus the sum equals #S ι = 0.
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Let G = (V ,E ) be a graph.

Given a set S , a vertex coloring
κ : V → S is proper if

uv ∈ E =⇒ κ(u) ̸= κ(v).

Let P be the positive integers and x = {x1, x2, . . .}. Given a proper
vertex coloring κ : V → P we let

xκ =
∏
v∈V

xκ(v).

Stanley’s chromatic symmetric function is

X (G ) = X (G ; x) =
∑
κ

xκ

where the sum is over all proper κ : V → P.
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Let (P,≤P) be a poset.

Say P is (m + n)-free if it contains no
induced subposet isomorphic to [m] ⊎ [n].

The incomparability
graph of P is inc(P) = (P,E ) where uv ∈ E if neither u ≤P v nor
v ≤P u. Let {eλ} and {sλ} be the elementary and Schur bases for
symmetric functions, respectively. Given a basis {bλ}, a symmetric
function f (x) is b-positive if the coefficients in its expansion in this
basis are nonnegative.

Ex.

P =

u

v w

x is (3 + 1)-free

inc(P) =

u

v w

x

Conjecture (Stanley-Stembridge (3 + 1)-free Conjecture)

If P is a (3 + 1)-free poset then X (inc(P); x) is e-positive.

The Method.

1. Expand X (inc(P)) in terms of sλ using Gasharov’s P-tableaux.

2. Expand the sλ in terms of eµ using Jacobi-Trudi determinants.

3. Use a sign-reversing involution to cancel the negative terms.
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3. Use a sign-reversing involution to cancel the negative terms.
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Given poset (P,≤P), a P-tableau T of shape λ is a bijective filling
of the Young diagram of λ with the elements of P such that

1. rows are increasing with respect to ≤P , and
2. adjacent elements in a column are nondecreasing with respect

to ≤P .

Ex.
P = P2,2 =

a b

u v Some P-tableaux: a u

b v

b v

a

u

Some non-P-tableaux: a b

u v

b v

u

a

Let PT(P) and PTλ(P) be the set of all P-tableau and those of
shape λ, respectively.

Theorem (Gasharov)

If P is (3 + 1)-free and X (inc(P)) =
∑

λ cλsλ then

cλ = #PTλ(P).
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The transpose of partition λ is λt = diagonally reflect λ.

Ex. If λ = then λt = .

Theorem (dual Jacobi-Trudi determinant)

If λ = (λ1, λ2, . . .) then sλt =

∣∣∣∣∣∣∣
eλ1 eλ1+1 · · ·
eλ2−1 eλ2 · · ·
...

...
...

∣∣∣∣∣∣∣.
So writing X (inc(P)) first in sλ and then in eµ has signed
coefficients which count pairs (T , π) where T ∈ PTλ(P) and
π ∈ Sλ1 is the permutation from the determinant expansion.
Ex. If P = P2,2 then #PTλ(P) = 4 for λ = (22), (2, 12), (14).

X (inc(P)) = 4s22 + 4s2,12 + 4s14

= 4

∣∣∣∣ e2 e3
e1 e2

∣∣∣∣+ 4

∣∣∣∣ e3 e4
e0 e1

∣∣∣∣+ 4e4

= 4e22 − 4e3,1 + 4e3,1 − 4e4 + 4e4

= 4e22 .
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Let G be a graph with V = [n] and κ : [n] → P be a proper
coloring.

An ascent of κ is an edge ij with

1. i < j , and

2. κ(i) < κ(j).

Let ascκ be the number of ascents of κ.

Ex.

220 4 50

140 3 30 ascents: 23 since κ(2) = 20 < 30 = κ(3),

34 since κ(3) = 30 < 50 = κ(4).

So ascκ = 2.

If t is a variable then the Shareshian-Wachs chromatic
quasisymmetric function of a graph G with V = [n] is

X (G ; x, t) =
∑

κ:V→P proper

tascκxκ.

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUIO) then X (inc(P); x, t) is
symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUIO then X (inc(P); x, t) is e-positive.



Let G be a graph with V = [n] and κ : [n] → P be a proper
coloring. An ascent of κ is an edge ij with

1. i < j , and

2. κ(i) < κ(j).

Let ascκ be the number of ascents of κ.

Ex.

220 4 50

140 3 30 ascents: 23 since κ(2) = 20 < 30 = κ(3),

34 since κ(3) = 30 < 50 = κ(4).

So ascκ = 2.

If t is a variable then the Shareshian-Wachs chromatic
quasisymmetric function of a graph G with V = [n] is

X (G ; x, t) =
∑

κ:V→P proper

tascκxκ.

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUIO) then X (inc(P); x, t) is
symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUIO then X (inc(P); x, t) is e-positive.



Let G be a graph with V = [n] and κ : [n] → P be a proper
coloring. An ascent of κ is an edge ij with

1. i < j , and

2. κ(i) < κ(j).

Let ascκ be the number of ascents of κ.

Ex.

220 4 50

140 3 30 ascents: 23 since κ(2) = 20 < 30 = κ(3),

34 since κ(3) = 30 < 50 = κ(4).

So ascκ = 2.

If t is a variable then the Shareshian-Wachs chromatic
quasisymmetric function of a graph G with V = [n] is

X (G ; x, t) =
∑

κ:V→P proper

tascκxκ.

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUIO) then X (inc(P); x, t) is
symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUIO then X (inc(P); x, t) is e-positive.



Let G be a graph with V = [n] and κ : [n] → P be a proper
coloring. An ascent of κ is an edge ij with

1. i < j , and

2. κ(i) < κ(j).

Let ascκ be the number of ascents of κ.

Ex.

220 4 50

140 3 30 ascents: 23 since κ(2) = 20 < 30 = κ(3),

34 since κ(3) = 30 < 50 = κ(4).

So ascκ = 2.

If t is a variable then the Shareshian-Wachs chromatic
quasisymmetric function of a graph G with V = [n] is

X (G ; x, t) =
∑

κ:V→P proper

tascκxκ.

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUIO) then X (inc(P); x, t) is
symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUIO then X (inc(P); x, t) is e-positive.



Let G be a graph with V = [n] and κ : [n] → P be a proper
coloring. An ascent of κ is an edge ij with

1. i < j , and

2. κ(i) < κ(j).

Let ascκ be the number of ascents of κ.

Ex.

220 4 50

140 3 30 ascents: 23 since κ(2) = 20 < 30 = κ(3),

34 since κ(3) = 30 < 50 = κ(4).

So ascκ = 2.

If t is a variable then the Shareshian-Wachs chromatic
quasisymmetric function of a graph G with V = [n] is

X (G ; x, t) =
∑

κ:V→P proper

tascκxκ.

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUIO) then X (inc(P); x, t) is
symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUIO then X (inc(P); x, t) is e-positive.



Let G be a graph with V = [n] and κ : [n] → P be a proper
coloring. An ascent of κ is an edge ij with

1. i < j , and

2. κ(i) < κ(j).

Let ascκ be the number of ascents of κ.

Ex.

220 4 50

140 3 30 ascents: 23 since κ(2) = 20 < 30 = κ(3),

34 since κ(3) = 30 < 50 = κ(4).

So ascκ = 2.

If t is a variable then the Shareshian-Wachs chromatic
quasisymmetric function of a graph G with V = [n] is

X (G ; x, t) =
∑

κ:V→P proper

tascκxκ.

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUIO) then X (inc(P); x, t) is
symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUIO then X (inc(P); x, t) is e-positive.



Let G be a graph with V = [n] and κ : [n] → P be a proper
coloring. An ascent of κ is an edge ij with

1. i < j , and

2. κ(i) < κ(j).

Let ascκ be the number of ascents of κ.

Ex.

220 4 50

140 3 30 ascents: 23 since κ(2) = 20 < 30 = κ(3),

34 since κ(3) = 30 < 50 = κ(4).

So ascκ = 2.

If t is a variable then the Shareshian-Wachs chromatic
quasisymmetric function of a graph G with V = [n] is

X (G ; x, t) =
∑

κ:V→P proper

tascκxκ.

Theorem (Shareshian-Wachs)

If P is a natural unit interval order (NUIO) then X (inc(P); x, t) is
symmetric.

Conjecture (Shareshian-Wachs)

If P is a NUIO then X (inc(P); x, t) is e-positive.



Let P be an NUIO, and so a poset on [n], and let T be a
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3. i and j are incomparable in P.

Let InvT be the set of inversions of T and invT = # InvT .
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Theorem (Shareshian-Wachs)

If P is an NUIO and X (inc(P); x, t) =
∑

λ cλ(t)sλ then

cλ(t) =
∑

T∈PTλ(P)

t invT .
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Let #P = n and λ ⊢ n.

The eh of largest subscript appearing in
the determinant for sλ is at the end of the first row. And in that
case h is the hooklength of the (1, 1) box of the diagram of λ. So
if h = n then λ is a hook.

Furthermose en only occurs as the term
in the determinant corresponding to the permutation given by
π = c , 1, 2, . . . , c − 1 where c = λ1. So if λ is a hook then let the
sign of a P-tableau T of shape λ be

sgnT = sgnλ = (−1)c−1.

If λ is a hook then its arm and leg are the boxes in the first row,
respectively first column, except (1,1).

Ex. λ = A A A A
L
L

sλ =

∣∣∣∣∣∣∣∣∣∣
e3 e4 e5 e6 e7
e0 e1 e2 e3 e4
0 e0 e1 e2 e3
0 0 e0 e1 e2
0 0 0 e0 e1

∣∣∣∣∣∣∣∣∣∣
π = 51234 sgnλ = (−1)5−1 = 1.

A = arm, L = leg.
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Let P be an NUIO on [n] and T be a P-tableau of hook shape.

Call k ∈ [n] movable in T if it can be moved from the arm to the
leg of T or vice-versa so that

1. the resulting tableau T ′ is a P-tableau, and

2. InvT = InvT ′.

Ex.

P =

1

2 3 4

5

T =
1 3 5
2
4

InvT = {23, 45}

3 is movable with T ′ = 1 5
3
2
4

. 5 is movable with T ′ = 1 3
2
5
4

.

2 and 4 are not movable.
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Lemma (Hamaker-S-Vatter)

If k is movable in T , then there is a unique position to which it
can be moved.

If k is movable in T then let T k be the result of moving k . Define
a map ι on P-tableau T of hook shape by

ι(T ) =

{
T k if k is the smallest integer which is movable in T ,
T if no element in T is movable.

Theorem (Hamaker-S-Vatter)

Let P be any NUIO on [n].

1. ι is a sign-reversing, Inv-preserving, involution on hook
P-tableaux.

2. If T is fixed by ι then it has shape (1n).

3. The coefficient cn(t) of en in X (inc(P); x, t) has nonnegative
coefficients. It is the generating function by inv of P-tableau
of column shape with no moveable elements.
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Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge
uv ∈ G by one of the arcs u⃗v or v⃗u. Call O acyclic if it has no
directed cycles. If V = [n] then an ascent of O is an arc u⃗v with
u < v , and we let ascO be the number of ascents of O.

Theorem (Stanley,Shareshian-Wachs)

If P is an NUIO on [n] and X (inc(P); x, t) =
∑

λ cλ(t)eλ, then∑
λ with m parts

cλ(t) =
∑

O with m sinks

tascO .

So if λ = (n) then cn(t) =
∑

O with 1 sink t
ascO . Given a P-tableau

T of column shape we define an orientation O of G = incP by
orienting each edge uv of G so that

u⃗v is an arc of O iff uv ∈ InvT .

Theorem (Hamaker-S-Vatter)

For any NUIO and m ≥ 0, the map T 7→ O is an inv-asc preserving
bijection from P-tableaux of column shape with m movable
elements to acyclic orientations of inc(P) with m + 1 sinks.
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Related work.

Shareshian and Wachs used an involution which is similar but not
equivalent to the involution for en in their determination of the
coefficient of pn (power sum symmetric function) in
X (inc(P); x, t).
There have been other applications of The Method. The height of
a poset P, htP, is the number of elements in a longest chain. If P
is an NUIO then htP is the bounce number of the corresponding
Dyck path. Harada and Precup proved the (3 + 1)-free conjecture
for X (inc(P); x, t) when htP = 2 using Hessenberg varieties. Cho
and Huh gave a combinatorial proof of this result using The
Method. Cho and Hong used The Method to prove the (3+ 1)-free
conjecture for X (inc(P); x) when htP = 3. Finding a proof for
X (inc(P); x, t) when htP = 3 is still open but certain special cases
were done using involutions by Cho and Hong, and by Wang using
the inverse Kostka matrx in place of the Jacobi-Trudi determinant.
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