Chromatic Symmetric Functions and Sign-Reversing Involutions

Bruce Sagan Michigan State University www.math.msu.edu/~sagan

joint work with Zachary Hamaker and Vincent Vatter

BIRS Workshop on Interactions between Hessenberg Varieties, Chromatic Functions, and LLT Polynomials

Sign-reversing involutions

The $(3+1)$-free Conjecture

The coefficient of e_{n}

Other results and future work

Outline

Sign-reversing involutions

The $(3+1)$-free Conjecture

The coefficient of e_{n}

Other results and future work

Let S be a finite set.

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id} .
$$

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id} .
$$

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2.

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id} .
$$

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is signed so there is a function

$$
\operatorname{sgn}: S \rightarrow\{+1,-1\}
$$

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id} .
$$

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is signed so there is a function

$$
\operatorname{sgn}: S \rightarrow\{+1,-1\} .
$$

Call ι a sign-reversing involution

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id} .
$$

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is signed so there is a function

$$
\operatorname{sgn}: S \rightarrow\{+1,-1\} .
$$

Call ι a sign-reversing involution if

1. for all 1 -cycles (s) we have $\operatorname{sgn} s=+1$, and

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id} .
$$

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is signed so there is a function

$$
\operatorname{sgn}: S \rightarrow\{+1,-1\}
$$

Call ι a sign-reversing involution if

1. for all 1 -cycles (s) we have $\operatorname{sgn} s=+1$, and
2. for all 2 -cycles (s, t) we have $\operatorname{sgn} s=-\operatorname{sgn} t$.

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id}
$$

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is signed so there is a function

$$
\operatorname{sgn}: S \rightarrow\{+1,-1\}
$$

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have $\operatorname{sgn} s=+1$, and
2. for all 2 -cycles (s, t) we have $\operatorname{sgn} s=-\operatorname{sgn} t$.

If ι is a sign-reversing involution on S then

$$
\sum_{s \in S} \operatorname{sgn} s=\# S^{\iota}
$$

where \# is cardinality and S^{ι} is the fixed-point set of ι.

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id}
$$

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is signed so there is a function

$$
\operatorname{sgn}: S \rightarrow\{+1,-1\}
$$

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have $\operatorname{sgn} s=+1$, and
2. for all 2 -cycles (s, t) we have $\operatorname{sgn} s=-\operatorname{sgn} t$.

If ι is a sign-reversing involution on S then

$$
\sum_{s \in S} \operatorname{sgn} s=\# S^{\iota}
$$

where \# is cardinality and S^{ι} is the fixed-point set of ι. Suppose R is a ring and weight S by a function wt $: S \rightarrow R$.

Let S be a finite set. An involution on S is a bijection $\iota: S \rightarrow S$ with

$$
\iota^{2}=\mathrm{id}
$$

So, viewed as a permutation of S, all cycles of ι are of length 1 or 2. Suppose S is signed so there is a function

$$
\operatorname{sgn}: S \rightarrow\{+1,-1\}
$$

Call ι a sign-reversing involution if

1. for all 1-cycles (s) we have $\operatorname{sgn} s=+1$, and
2. for all 2 -cycles (s, t) we have $\operatorname{sgn} s=-\operatorname{sgn} t$.

If ι is a sign-reversing involution on S then

$$
\sum_{s \in S} \operatorname{sgn} s=\# S^{\iota}
$$

where \# is cardinality and S^{ι} is the fixed-point set of ι. Suppose R is a ring and weight S by a function wt $: S \rightarrow R$. If ι is weight preserving in that wt $\iota(s)=\mathrm{wt} s$ for all $s \in S$, then

$$
\sum_{s \in S}(\operatorname{sgn} s)(\mathrm{wt} s)=\sum_{s \in S^{\iota}} \mathrm{wt} s
$$

$$
[n]=\{1,2, \ldots, n\} .
$$

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$.

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$. Give S the sign function

$$
\operatorname{sgn} A=(-1)^{\# A}
$$

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$. Give S the sign function

$$
\operatorname{sgn} A=(-1)^{\# A}
$$

$\therefore \sum_{A \in S} \operatorname{sgn} A$

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$. Give S the sign function

$$
\therefore \sum_{A \in S} \operatorname{sgn} A=\sum_{k=0}^{n} \sum_{A \in S, \# A=k}^{\operatorname{sgn} A=(-1)^{\# A} .}(-1)^{k}
$$

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$. Give S the sign function

$$
\therefore \sum_{A \in S} \operatorname{sgn} A=\sum_{k=0}^{n} \sum_{A \in S, \# A=k}(-1)^{k}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} .
$$

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$. Give S the sign function

$$
\therefore \sum_{A \in S} \operatorname{sgn} A=\sum_{k=0}^{n} \sum_{A \in S, \# A=k}(-1)^{k}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} .
$$

Define involution $\iota: S \rightarrow S$ by $\iota(A)=A \Delta\{n\}$.

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$. Give S the sign function

$$
\therefore \sum_{A \in S} \operatorname{sgn} A=\sum_{k=0}^{n} \sum_{A \in S, \# A=k}(-1)^{k}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} .
$$

Define involution $\iota: S \rightarrow S$ by $\iota(A)=A \Delta\{n\}$. So ι has no fixed points

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$. Give S the sign function

$$
\therefore \sum_{A \in S} \operatorname{sgn} A=\sum_{k=0}^{n} \sum_{A \in S, \# A=k}(-1)^{k}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} .
$$

Define involution $\iota: S \rightarrow S$ by $\iota(A)=A \Delta\{n\}$. So ι has no fixed points and is sign reversing.

Let

$$
[n]=\{1,2, \ldots, n\}
$$

And denote symmetric difference of sets A, B by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Proposition
If $n \geq 1$ then

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Proof.
Let $S=\{A \subseteq[n]\}$. Give S the sign function

$$
\therefore \sum_{A \in S} \operatorname{sgn} A=\sum_{k=0}^{n} \sum_{A \in S, \# A=k}(-1)^{k}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} .
$$

Define involution $\iota: S \rightarrow S$ by $\iota(A)=A \Delta\{n\}$. So ι has no fixed points and is sign reversing. Thus the sum equals $\# S^{\iota}=0$.

Outline

Sign-reversing involutions

The $(3+1)$-free Conjecture

The coefficient of e_{n}

Other results and future work

Let $G=(V, E)$ be a graph.

Let $G=(V, E)$ be a graph. Given a set S, a vertex coloring $\kappa: V \rightarrow S$ is proper if

$$
u v \in E \Longrightarrow \kappa(u) \neq \kappa(v)
$$

Let $G=(V, E)$ be a graph. Given a set S, a vertex coloring $\kappa: V \rightarrow S$ is proper if

$$
u v \in E \Longrightarrow \kappa(u) \neq \kappa(v)
$$

Let \mathbb{P} be the positive integers and $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots\right\}$.

Let $G=(V, E)$ be a graph. Given a set S, a vertex coloring $\kappa: V \rightarrow S$ is proper if

$$
u v \in E \Longrightarrow \kappa(u) \neq \kappa(v)
$$

Let \mathbb{P} be the positive integers and $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots\right\}$. Given a proper vertex coloring $\kappa: V \rightarrow \mathbb{P}$ we let

$$
\mathbf{x}^{\kappa}=\prod_{v \in V} x_{\kappa(v)}
$$

Let $G=(V, E)$ be a graph. Given a set S, a vertex coloring $\kappa: V \rightarrow S$ is proper if

$$
u v \in E \Longrightarrow \kappa(u) \neq \kappa(v)
$$

Let \mathbb{P} be the positive integers and $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots\right\}$. Given a proper vertex coloring $\kappa: V \rightarrow \mathbb{P}$ we let

$$
\mathbf{x}^{\kappa}=\prod_{v \in V} x_{\kappa(v)}
$$

Stanley's chromatic symmetric function is

$$
X(G)=X(G ; \mathbf{x})=\sum_{\kappa} \mathbf{x}^{\kappa}
$$

where the sum is over all proper $\kappa: V \rightarrow \mathbb{P}$.

Let $\left(P, \leq_{P}\right)$ be a poset.

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$.

Let $(P, \leq P)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$.

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq p u$.

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq p u$.

$$
\operatorname{inc}(P)=v \quad w
$$

$$
u
$$

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq_{P} u$. Let $\left\{e_{\lambda}\right\}$ and $\left\{s_{\lambda}\right\}$ be the elementary and Schur bases for symmetric functions, respectively.

$$
\operatorname{inc}(P)=v
$$

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq_{P} u$. Let $\left\{e_{\lambda}\right\}$ and $\left\{s_{\lambda}\right\}$ be the elementary and Schur bases for symmetric functions, respectively. Given a basis $\left\{b_{\lambda}\right\}$, a symmetric function $f(\mathbf{x})$ is b-positive if the coefficients in its expansion in this basis are nonnegative.

$$
\operatorname{inc}(P)=v
$$

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq_{P} u$. Let $\left\{e_{\lambda}\right\}$ and $\left\{s_{\lambda}\right\}$ be the elementary and Schur bases for symmetric functions, respectively. Given a basis $\left\{b_{\lambda}\right\}$, a symmetric function $f(\mathbf{x})$ is b-positive if the coefficients in its expansion in this basis are nonnegative.

Conjecture (Stanley-Stembridge $(3+1)$-free Conjecture) If P is a $(3+1)$-free poset then $X(\operatorname{inc}(P) ; \mathbf{x})$ is e-positive.

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq_{P} u$. Let $\left\{e_{\lambda}\right\}$ and $\left\{s_{\lambda}\right\}$ be the elementary and Schur bases for symmetric functions, respectively. Given a basis $\left\{b_{\lambda}\right\}$, a symmetric function $f(\mathbf{x})$ is b-positive if the coefficients in its expansion in this basis are nonnegative.

Conjecture (Stanley-Stembridge $(3+1)$-free Conjecture) If P is a $(3+1)$-free poset then $X(\operatorname{inc}(P) ; \mathbf{x})$ is e-positive.

The Method.

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq_{P} u$. Let $\left\{e_{\lambda}\right\}$ and $\left\{s_{\lambda}\right\}$ be the elementary and Schur bases for symmetric functions, respectively. Given a basis $\left\{b_{\lambda}\right\}$, a symmetric function $f(\mathbf{x})$ is b-positive if the coefficients in its expansion in this basis are nonnegative.

Conjecture (Stanley-Stembridge $(3+1)$-free Conjecture) If P is a $(3+1)$-free poset then $X(\operatorname{inc}(P) ; \mathbf{x})$ is e-positive.

The Method.

1. Expand $X(\operatorname{inc}(P))$ in terms of s_{λ} using Gasharov's P-tableaux.

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq_{P} u$. Let $\left\{e_{\lambda}\right\}$ and $\left\{s_{\lambda}\right\}$ be the elementary and Schur bases for symmetric functions, respectively. Given a basis $\left\{b_{\lambda}\right\}$, a symmetric function $f(\mathbf{x})$ is b-positive if the coefficients in its expansion in this basis are nonnegative.

Conjecture (Stanley-Stembridge $(3+1)$-free Conjecture) If P is a $(3+1)$-free poset then $X(\operatorname{inc}(P) ; \mathbf{x})$ is e-positive.

The Method.

1. Expand $X(\operatorname{inc}(P))$ in terms of s_{λ} using Gasharov's P-tableaux.
2. Expand the s_{λ} in terms of e_{μ} using Jacobi-Trudi determinants.

Let $\left(P, \leq_{P}\right)$ be a poset. Say P is $(m+n)$-free if it contains no induced subposet isomorphic to $[m] \uplus[n]$. The incomparability graph of P is $\operatorname{inc}(P)=(P, E)$ where $u v \in E$ if neither $u \leq_{P} v$ nor $v \leq_{P} u$. Let $\left\{e_{\lambda}\right\}$ and $\left\{s_{\lambda}\right\}$ be the elementary and Schur bases for symmetric functions, respectively. Given a basis $\left\{b_{\lambda}\right\}$, a symmetric function $f(\mathbf{x})$ is b-positive if the coefficients in its expansion in this basis are nonnegative.

Conjecture (Stanley-Stembridge $(3+1)$-free Conjecture)
If P is a $(3+1)$-free poset then $X(\operatorname{inc}(P) ; \mathbf{x})$ is e-positive.

The Method.

1. Expand $X(\operatorname{inc}(P))$ in terms of s_{λ} using Gasharov's P-tableaux.
2. Expand the s_{λ} in terms of e_{μ} using Jacobi-Trudi determinants.
3. Use a sign-reversing involution to cancel the negative terms.

Given poset $\left(P, \leq_{P}\right)$, a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that

Given poset $\left(P, \leq_{P}\right)$, a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that
1 . rows are increasing with respect to \leq_{P}, and

Given poset $\left(P, \leq_{P}\right)$, a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that

1. rows are increasing with respect to \leq_{P}, and
2. adjacent elements in a column are nondecreasing with respect to \leq_{p}.

Given poset $\left(P, \leq_{P}\right)$, a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that

1. rows are increasing with respect to \leq_{P}, and
2. adjacent elements in a column are nondecreasing with respect to \leq_{p}.
Ex.

$$
P=P_{2,2}=u
$$

Given poset $\left(P, \leq_{P}\right)$, a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that
1 . rows are increasing with respect to \leq_{P}, and
2. adjacent elements in a column are nondecreasing with respect to \leq_{P}.
Ex.

$P=P_{2,2}=u$$\quad v$ Some P-tableaux: | a | u |
| :--- | :--- |
| b | v |
| a | b |
| a | |

Given poset $\left(P, \leq_{P}\right)$, a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that
1 . rows are increasing with respect to \leq_{P}, and
2. adjacent elements in a column are nondecreasing with respect to \leq_{p}.

Given poset $\left(P, \leq_{P}\right)$, a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that
1 . rows are increasing with respect to \leq_{P}, and
2. adjacent elements in a column are nondecreasing with respect to \leq_{p}.
Ex.

b

Some non-P-tableaux: \begin{tabular}{|l|l|}
\hlinea \& b

\hlineu \& v

\hline

\hlineb \& v

\hlineu \&

\cline { 1 - 2 } \&

\&
\end{tabular}

Let $\mathrm{PT}(P)$ and $\mathrm{PT}_{\lambda}(P)$ be the set of all P-tableau and those of shape λ, respectively.

Given poset $\left(P, \leq_{P}\right)$, a P-tableau T of shape λ is a bijective filling of the Young diagram of λ with the elements of P such that
1 . rows are increasing with respect to \leq_{P}, and
2. adjacent elements in a column are nondecreasing with respect to \leq_{p}.
Ex.

Let $\mathrm{PT}(P)$ and $\mathrm{PT}_{\lambda}(P)$ be the set of all P-tableau and those of shape λ, respectively.
Theorem (Gasharov)
If P is $(3+1)$-free and $X(\operatorname{inc}(P))=\sum_{\lambda} c_{\lambda} s_{\lambda}$ then

$$
c_{\lambda}=\# \mathrm{PT}_{\lambda}(P) .
$$

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ.

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ. Ex. If $\lambda=\square$ then $\lambda^{t}=\square \square \square$.

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ.

Theorem (dual Jacobi-Trudi determinant)

$$
\text { If } \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \text { then } s_{\lambda^{t}}=\left|\begin{array}{ccc}
e_{\lambda_{1}} & e_{\lambda_{1}+1} & \cdots \\
e_{\lambda_{2}-1} & e_{\lambda_{2}} & \cdots \\
\vdots & \vdots & \vdots
\end{array}\right| \text {. }
$$

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ.

Theorem (dual Jacobi-Trudi determinant)
If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ then $s_{\lambda t}=\left|\begin{array}{ccc}e_{\lambda_{1}} & e_{\lambda_{1}+1} & \cdots \\ e_{\lambda_{2}-1} & e_{\lambda_{2}} & \cdots \\ \vdots & \vdots & \vdots\end{array}\right|$.
So writing $X(\operatorname{inc}(P))$ first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T, π) where $T \in \mathrm{PT}_{\lambda}(P)$ and $\pi \in \mathfrak{S}_{\lambda_{1}}$ is the permutation from the determinant expansion.

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ.

Theorem (dual Jacobi-Trudi determinant)
If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ then $s_{\lambda} t=\left|\begin{array}{ccc}e_{\lambda_{1}} & e_{\lambda_{1}+1} & \cdots \\ e_{\lambda_{2}-1} & e_{\lambda_{2}} & \cdots \\ \vdots & \vdots & \vdots\end{array}\right|$.
So writing $X(\operatorname{inc}(P))$ first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T, π) where $T \in \mathrm{PT}_{\lambda}(P)$ and $\pi \in \mathfrak{S}_{\lambda_{1}}$ is the permutation from the determinant expansion. Ex. If $P=P_{2,2}$ then $\# \mathrm{PT}_{\lambda}(P)=4$ for $\lambda=\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ.

Theorem (dual Jacobi-Trudi determinant)
If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ then $s_{\lambda^{t}}=\left|\begin{array}{ccc}e_{\lambda_{1}} & e_{\lambda_{1}+1} & \cdots \\ e_{\lambda_{2}-1} & e_{\lambda_{2}} & \cdots \\ \vdots & \vdots & \vdots\end{array}\right|$.
So writing $X(\operatorname{inc}(P))$ first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T, π) where $T \in \mathrm{PT}_{\lambda}(P)$ and $\pi \in \mathfrak{S}_{\lambda_{1}}$ is the permutation from the determinant expansion. Ex. If $P=P_{2,2}$ then $\# \mathrm{PT}_{\lambda}(P)=4$ for $\lambda=\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

$$
X(\operatorname{inc}(P))=4 s_{2^{2}}+4 s_{2,1^{2}}+4 s_{1^{4}}
$$

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ.
Ex. If $\lambda=\square \square$ then $\lambda^{t}=\square \square \square$.
Theorem (dual Jacobi-Trudi determinant)
If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ then $s_{\lambda^{t}}=\left|\begin{array}{ccc}e_{\lambda_{1}} & e_{\lambda_{1}+1} & \cdots \\ e_{\lambda_{2}-1} & e_{\lambda_{2}} & \cdots \\ \vdots & \vdots & \vdots\end{array}\right|$.
So writing $X(\operatorname{inc}(P))$ first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T, π) where $T \in \mathrm{PT}_{\lambda}(P)$ and $\pi \in \mathfrak{S}_{\lambda_{1}}$ is the permutation from the determinant expansion. Ex. If $P=P_{2,2}$ then $\# \mathrm{PT}_{\lambda}(P)=4$ for $\lambda=\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

$$
\begin{aligned}
X(\operatorname{inc}(P)) & =4 s_{2^{2}}+4 s_{2,1^{2}}+4 s_{1^{4}} \\
& =4\left|\begin{array}{ll}
e_{2} & e_{3} \\
e_{1} & e_{2}
\end{array}\right|+4\left|\begin{array}{ll}
e_{3} & e_{4} \\
e_{0} & e_{1}
\end{array}\right|+4 e_{4}
\end{aligned}
$$

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ.
Ex. If $\lambda=\square \square$ then $\lambda^{t}=\square \square \square$.
Theorem (dual Jacobi-Trudi determinant)
If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ then $s_{\lambda^{t}}=\left|\begin{array}{ccc}e_{\lambda_{1}} & e_{\lambda_{1}+1} & \cdots \\ e_{\lambda_{2}-1} & e_{\lambda_{2}} & \cdots \\ \vdots & \vdots & \vdots\end{array}\right|$.
So writing $X(\operatorname{inc}(P))$ first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T, π) where $T \in \mathrm{PT}_{\lambda}(P)$ and $\pi \in \mathfrak{S}_{\lambda_{1}}$ is the permutation from the determinant expansion. Ex. If $P=P_{2,2}$ then $\# \mathrm{PT}_{\lambda}(P)=4$ for $\lambda=\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

$$
\begin{aligned}
X(\operatorname{inc}(P)) & =4 s_{2^{2}}+4 s_{2,1^{2}}+4 s_{1^{4}} \\
& =4\left|\begin{array}{ll}
e_{2} & e_{3} \\
e_{1} & e_{2}
\end{array}\right|+4\left|\begin{array}{ll}
e_{3} & e_{4} \\
e_{0} & e_{1}
\end{array}\right|+4 e_{4} \\
& =4 e_{2^{2}}-4 e_{3,1}+4 e_{3,1}-4 e_{4}+4 e_{4}
\end{aligned}
$$

The transpose of partition λ is $\lambda^{t}=$ diagonally reflect λ.
Ex. If $\lambda=\square \square$ then $\lambda^{t}=\square \square \square$.
Theorem (dual Jacobi-Trudi determinant)
If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ then $s_{\lambda^{t}}=\left|\begin{array}{ccc}e_{\lambda_{1}} & e_{\lambda_{1}+1} & \cdots \\ e_{\lambda_{2}-1} & e_{\lambda_{2}} & \cdots \\ \vdots & \vdots & \vdots\end{array}\right|$.
So writing $X(\operatorname{inc}(P))$ first in s_{λ} and then in e_{μ} has signed coefficients which count pairs (T, π) where $T \in \mathrm{PT}_{\lambda}(P)$ and $\pi \in \mathfrak{S}_{\lambda_{1}}$ is the permutation from the determinant expansion. Ex. If $P=P_{2,2}$ then $\# \mathrm{PT}_{\lambda}(P)=4$ for $\lambda=\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

$$
\begin{aligned}
X(\operatorname{inc}(P)) & =4 s_{2^{2}}+4 s_{2,1^{2}}+4 s_{1^{4}} \\
& =4\left|\begin{array}{ll}
e_{2} & e_{3} \\
e_{1} & e_{2}
\end{array}\right|+4\left|\begin{array}{ll}
e_{3} & e_{4} \\
e_{0} & e_{1}
\end{array}\right|+4 e_{4} \\
& =4 e_{2^{2}}-4 e_{3,1}+4 e_{3,1}-4 e_{4}+4 e_{4} \\
& =4 e_{2^{2}}
\end{aligned}
$$

Let G be a graph with $V=[n]$ and $\kappa:[n] \rightarrow \mathbb{P}$ be a proper coloring.

Let G be a graph with $V=[n]$ and $\kappa:[n] \rightarrow \mathbb{P}$ be a proper coloring. An ascent of κ is an edge ij with

1. $i<j$, and
2. $\kappa(i)<\kappa(j)$.

Let G be a graph with $V=[n]$ and $\kappa:[n] \rightarrow \mathbb{P}$ be a proper coloring. An ascent of κ is an edge ij with

1. $i<j$, and
2. $\kappa(i)<\kappa(j)$.

Let asc κ be the number of ascents of κ.

Let G be a graph with $V=[n]$ and $\kappa:[n] \rightarrow \mathbb{P}$ be a proper coloring. An ascent of κ is an edge ij with

1. $i<j$, and
2. $\kappa(i)<\kappa(j)$.

Let asc κ be the number of ascents of κ.
Ex. 40 (1)-(3) 30 ascents: 23 since $\kappa(2)=20<30=\kappa(3)$, 34 since $\kappa(3)=30<50=\kappa(4)$.
20 (2) (4) 50 So asc $\kappa=2$.

Let G be a graph with $V=[n]$ and $\kappa:[n] \rightarrow \mathbb{P}$ be a proper coloring. An ascent of κ is an edge ij with

1. $i<j$, and
2. $\kappa(i)<\kappa(j)$.

Let asc κ be the number of ascents of κ.

If t is a variable then the Shareshian-Wachs chromatic quasisymmetric function of a graph G with $V=[n]$ is

$$
X(G ; \mathbf{x}, t)=\sum_{\kappa: V \rightarrow \mathbb{P} \text { proper }} t^{\text {asc } \kappa} \mathbf{x}^{\kappa} .
$$

Let G be a graph with $V=[n]$ and $\kappa:[n] \rightarrow \mathbb{P}$ be a proper coloring. An ascent of κ is an edge ij with

1. $i<j$, and
2. $\kappa(i)<\kappa(j)$.

Let asc κ be the number of ascents of κ.
Ex. 40 (1)-(3) 30 ascents: 23 since $\kappa(2)=20<30=\kappa(3)$, 34 since $\kappa(3)=30<50=\kappa(4)$.
20 (2) (4) 50 So asc $\kappa=2$.
If t is a variable then the Shareshian-Wachs chromatic quasisymmetric function of a graph G with $V=[n]$ is

$$
X(G ; \mathbf{x}, t)=\sum_{\kappa: V \rightarrow \mathbb{P} \text { proper }} t^{\text {asc } \kappa} \mathbf{x}^{\kappa} .
$$

Theorem (Shareshian-Wachs)
If P is a natural unit interval order (NUIO) then $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ is symmetric.

Let G be a graph with $V=[n]$ and $\kappa:[n] \rightarrow \mathbb{P}$ be a proper coloring. An ascent of κ is an edge ij with

1. $i<j$, and
2. $\kappa(i)<\kappa(j)$.

Let asc κ be the number of ascents of κ.
Ex. 40 (1)-(3) 30 ascents: 23 since $\kappa(2)=20<30=\kappa(3)$, 34 since $\kappa(3)=30<50=\kappa(4)$.
20 (2) (4) 50 So asc $\kappa=2$.
If t is a variable then the Shareshian-Wachs chromatic quasisymmetric function of a graph G with $V=[n]$ is

$$
X(G ; \mathbf{x}, t)=\sum_{\kappa: V \rightarrow \mathbb{P} \text { proper }} t^{\operatorname{asc} \kappa} \mathbf{x}^{\kappa} .
$$

Theorem (Shareshian-Wachs)
If P is a natural unit interval order (NUIO) then $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ is symmetric.

Conjecture (Shareshian-Wachs)
If P is a NUIO then $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ is e-positive.

Let P be an NUIO, and so a poset on $[n]$, and let T be a P-tableau.

Let P be an NUIO, and so a poset on [n], and let T be a P-tableau. An inversion in T is a pair $i, j \in[n]$ with

1. $i<j$,
2. i is in a lower row than j, and
3. i and j are incomparable in P.

Let P be an NUIO, and so a poset on [n], and let T be a P-tableau. An inversion in T is a pair $i, j \in[n]$ with

1. $i<j$,
2. i is in a lower row than j, and
3. i and j are incomparable in P.

Let $\operatorname{Inv} T$ be the set of inversions of T and $\operatorname{inv} T=\# \operatorname{Inv} T$.

Let P be an NUIO, and so a poset on [n], and let T be a P-tableau. An inversion in T is a pair $i, j \in[n]$ with

1. $i<j$,
2. i is in a lower row than j, and
3. i and j are incomparable in P.

Let $\operatorname{Inv} T$ be the set of inversions of T and $\operatorname{inv} T=\# \operatorname{Inv} T$.
Ex.

$$
P=2 \bullet 4 \quad T=\begin{array}{|l|l|l}
\hline 1 & 3 & 5 \\
\hline 2 & & \text { Inv } T=\{23,45\} \\
\hline 4 &
\end{array}
$$

Let P be an NUIO, and so a poset on [n], and let T be a P-tableau. An inversion in T is a pair $i, j \in[n]$ with

1. $i<j$,
2. i is in a lower row than j, and
3. i and j are incomparable in P.

Let $\operatorname{Inv} T$ be the set of inversions of T and $\operatorname{inv} T=\# \operatorname{Inv} T$.
Ex.

$$
P=204 \quad T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & & \text { Ex. } \\
\hline 4 & \text { Inv } T=\{23,45\}
\end{array}
$$

Theorem (Shareshian-Wachs)
If P is an NUIO and $X(\operatorname{inc}(P) ; \mathbf{x}, t)=\sum_{\lambda} c_{\lambda}(t) s_{\lambda}$ then

$$
c_{\lambda}(t)=\sum_{T \in \mathrm{PT}_{\lambda}(P)} t^{\mathrm{inv} T}
$$

Outline

Sign-reversing involutions

The (3+1)-free Conjecture

The coefficient of e_{n}

Other results and future work

Let $\# P=n$ and $\lambda \vdash n$.

Let $\# P=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row.

Let \#P $=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ.

Let $\# P=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ. So if $h=n$ then λ is a hook.

Let \#P $=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ. So if $h=n$ then λ is a hook.

Let \#P $=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ. So if $h=n$ then λ is a hook. Furthermose e_{n} only occurs as the term in the determinant corresponding to the permutation given by $\pi=c, 1,2, \ldots, c-1$ where $c=\lambda_{1}$.

Ex. $\lambda=$| L | $A\|A\| A$ |
| :--- | :--- | :--- | :--- |
| L | |\(\quad s_{\lambda}=\left|\begin{array}{ccccc}e_{3} \& e_{4} \& e_{5} \& e_{6} \& e_{7}

e_{0} \& e_{1} \& e_{2} \& e_{3} \& e_{4}

0 \& e_{0} \& e_{1} \& e_{2} \& e_{3}

0 \& 0 \& e_{0} \& e_{1} \& e_{2}

0 \& 0 \& 0 \& e_{0} \& e_{1}\end{array}\right|\)

Let \#P $=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ. So if $h=n$ then λ is a hook. Furthermose e_{n} only occurs as the term in the determinant corresponding to the permutation given by $\pi=c, 1,2, \ldots, c-1$ where $c=\lambda_{1}$.

$\pi=51234$

Let $\# P=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ. So if $h=n$ then λ is a hook. Furthermose e_{n} only occurs as the term in the determinant corresponding to the permutation given by $\pi=c, 1,2, \ldots, c-1$ where $c=\lambda_{1}$. So if λ is a hook then let the sign of a P-tableau T of shape λ be

$$
\operatorname{sgn} T=\operatorname{sgn} \lambda=(-1)^{c-1} .
$$

Ex. $\lambda=$		$A\|A\| A \mid A$
L		
L		

$$
s_{\lambda}=\left|\begin{array}{ccccc}
e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
e_{0} & e_{1} & e_{2} & e_{3} & e_{4} \\
0 & e_{0} & e_{1} & e_{2} & e_{3} \\
0 & 0 & e_{0} & e_{1} & e_{2} \\
0 & 0 & 0 & e_{0} & e_{1}
\end{array}\right|
$$

$\pi=51234$

Let \#P $=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ. So if $h=n$ then λ is a hook. Furthermose e_{n} only occurs as the term in the determinant corresponding to the permutation given by $\pi=c, 1,2, \ldots, c-1$ where $c=\lambda_{1}$. So if λ is a hook then let the sign of a P-tableau T of shape λ be

$$
\operatorname{sgn} T=\operatorname{sgn} \lambda=(-1)^{c-1} .
$$

Ex. $\lambda=\begin{aligned} & \left|\begin{array}{l}L|A| A \mid A \\ L \\ L\end{array} \quad s_{\lambda}=\left|\begin{array}{ccccc}e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\ e_{0} & e_{1} & e_{2} & e_{3} & e_{4} \\ 0 & e_{0} & e_{1} & e_{2} & e_{3} \\ 0 & 0 & e_{0} & e_{1} & e_{2} \\ 0 & 0 & 0 & e_{0} & e_{1}\end{array}\right|\right. \\ & \pi=51234 \quad \operatorname{sgn} \lambda=(-1)^{5-1}=1 .\end{aligned}$.

Let $\# P=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ. So if $h=n$ then λ is a hook. Furthermose e_{n} only occurs as the term in the determinant corresponding to the permutation given by $\pi=c, 1,2, \ldots, c-1$ where $c=\lambda_{1}$. So if λ is a hook then let the sign of a P-tableau T of shape λ be

$$
\operatorname{sgn} T=\operatorname{sgn} \lambda=(-1)^{c-1} .
$$

If λ is a hook then its arm and leg are the boxes in the first row, respectively first column, except $(1,1)$.

Ex. $\left.\lambda=$| \square |
| :--- |
| L |
| L |$|A| A \right\rvert\, A$

$\pi=51234 \quad s_{\lambda}=|$| e_{3} | e_{4} | e_{5} | e_{6} | e_{7} |
| :---: | :---: | :---: | :---: | :---: |
| e_{0} | e_{1} | e_{2} | e_{3} | e_{4} |
| 0 | e_{0} | e_{1} | e_{2} | e_{3} |
| 0 | 0 | e_{0} | e_{1} | e_{2} |
| 0 | 0 | 0 | e_{0} | e_{1} |

$\operatorname{sgn} \lambda=(-1)^{5-1}=1$.

Let $\# P=n$ and $\lambda \vdash n$. The e_{h} of largest subscript appearing in the determinant for s_{λ} is at the end of the first row. And in that case h is the hooklength of the $(1,1)$ box of the diagram of λ. So if $h=n$ then λ is a hook. Furthermose e_{n} only occurs as the term in the determinant corresponding to the permutation given by $\pi=c, 1,2, \ldots, c-1$ where $c=\lambda_{1}$. So if λ is a hook then let the sign of a P-tableau T of shape λ be

$$
\operatorname{sgn} T=\operatorname{sgn} \lambda=(-1)^{c-1} .
$$

If λ is a hook then its arm and leg are the boxes in the first row, respectively first column, except $(1,1)$.

Ex. $\lambda=$| $\square A\|A\| A \mid A$ |
| :--- |
| L |
| L |\(\quad s_{\lambda}=\left|\begin{array}{ccccc}e_{3} \& e_{4} \& e_{5} \& e_{6} \& e_{7}

e_{0} \& e_{1} \& e_{2} \& e_{3} \& e_{4}

0 \& e_{0} \& e_{1} \& e_{2} \& e_{3}

0 \& 0 \& e_{0} \& e_{1} \& e_{2}

0 \& 0 \& 0 \& e_{0} \& e_{1}\end{array}\right|\)
$\pi=51234 \quad \operatorname{sgn} \lambda=(-1)^{5-1}=1$.
$A=\operatorname{arm}, L=$ leg.

Let P be an NUIO on $[n$] and T be a P-tableau of hook shape.

Let P be an NUIO on [n] and T be a P-tableau of hook shape. Call $k \in[n]$ movable in T if it can be moved from the arm to the leg of T or vice-versa so that

1. the resulting tableau T^{\prime} is a P-tableau, and
2. $\operatorname{Inv} T=\operatorname{Inv} T^{\prime}$.

Let P be an NUIO on [n] and T be a P-tableau of hook shape. Call $k \in[n]$ movable in T if it can be moved from the arm to the leg of T or vice-versa so that

1. the resulting tableau T^{\prime} is a P-tableau, and
2. $\operatorname{Inv} T=\operatorname{Inv} T^{\prime}$.

Let P be an NUIO on [n] and T be a P-tableau of hook shape. Call $k \in[n]$ movable in T if it can be moved from the arm to the leg of T or vice-versa so that

1. the resulting tableau T^{\prime} is a P-tableau, and
2. $\operatorname{Inv} T=\operatorname{Inv} T^{\prime}$.

3 is movable with $T^{\prime}=$| 1 | 5 |
| :--- | :--- |
| 3 | |
| 2 | |
| 4 | |.

Let P be an NUIO on [n] and T be a P-tableau of hook shape. Call $k \in[n]$ movable in T if it can be moved from the arm to the leg of T or vice-versa so that

1. the resulting tableau T^{\prime} is a P-tableau, and
2. $\operatorname{Inv} T=\operatorname{Inv} T^{\prime}$.

$$
T=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & & \operatorname{Inv} T=\{23,45\} \\
\hline 4 & &
\end{array}
$$

3 is movable with $T^{\prime}=$\begin{tabular}{|l|l}
\hline 1 \& 5

\hline 3 \& .5 is movable with $T^{\prime}=$| 1 | 3 |
| :--- | :--- |
| 2 | 3 |
| 4 | |

\hline 4 \&

\hline
\end{tabular}.

Let P be an NUIO on [n] and T be a P-tableau of hook shape. Call $k \in[n]$ movable in T if it can be moved from the arm to the leg of T or vice-versa so that

1. the resulting tableau T^{\prime} is a P-tableau, and
2. $\operatorname{Inv} T=\operatorname{Inv} T^{\prime}$.

$$
T=\begin{array}{|l|l|l}
\hline 1 & 3 & 5 \\
\hline 2 & & \operatorname{Inv} T=\{23,45\} \\
\hline 4 &
\end{array}
$$

3 is movable with $T^{\prime}=$| 1 | 5 |
| :--- | :--- |
| 3 | .5 |
| 2 | |.

2 and 4 are not movable.

Lemma (Hamaker-S-Vatter)
If k is movable in T, then there is a unique position to which it can be moved.

Lemma (Hamaker-S-Vatter)

If k is movable in T, then there is a unique position to which it can be moved.
If k is movable in T then let T^{k} be the result of moving k.

Lemma (Hamaker-S-Vatter)

If k is movable in T, then there is a unique position to which it
can be moved.
If k is movable in T then let T^{k} be the result of moving k. Define a map ι on P-tableau T of hook shape by
$\iota(T)= \begin{cases}T^{k} & \text { if } k \text { is the smallest integer which is movable in } T, \\ T & \text { if no element in } T \text { is movable. }\end{cases}$

Lemma (Hamaker-S-Vatter)

If k is movable in T, then there is a unique position to which it
can be moved.
If k is movable in T then let T^{k} be the result of moving k. Define a map ι on P-tableau T of hook shape by
$\iota(T)= \begin{cases}T^{k} & \text { if } k \text { is the smallest integer which is movable in } T, \\ T & \text { if no element in } T \text { is movable. }\end{cases}$

Theorem (Hamaker-S-Vatter)
Let P be any NUIO on [n].

Lemma (Hamaker-S-Vatter)

If k is movable in T, then there is a unique position to which it
can be moved.
If k is movable in T then let T^{k} be the result of moving k. Define a map ι on P-tableau T of hook shape by
$\iota(T)= \begin{cases}T^{k} & \text { if } k \text { is the smallest integer which is movable in } T, \\ T & \text { if no element in } T \text { is movable. }\end{cases}$

Theorem (Hamaker-S-Vatter)
Let P be any NUIO on [n].

1. ι is a sign-reversing, Inv-preserving, involution on hook P-tableaux.

Lemma (Hamaker-S-Vatter)

If k is movable in T, then there is a unique position to which it can be moved.
If k is movable in T then let T^{k} be the result of moving k. Define a map ι on P-tableau T of hook shape by
$\iota(T)= \begin{cases}T^{k} & \text { if } k \text { is the smallest integer which is movable in } T, \\ T & \text { if no element in } T \text { is movable. }\end{cases}$

Theorem (Hamaker-S-Vatter)
Let P be any NUIO on [n].

1. ι is a sign-reversing, Inv-preserving, involution on hook P-tableaux.
2. If T is fixed by ι then it has shape $\left(1^{n}\right)$.

Lemma (Hamaker-S-Vatter)

If k is movable in T, then there is a unique position to which it can be moved.
If k is movable in T then let T^{k} be the result of moving k. Define a map ι on P-tableau T of hook shape by
$\iota(T)= \begin{cases}T^{k} & \text { if } k \text { is the smallest integer which is movable in } T, \\ T & \text { if no element in } T \text { is movable. }\end{cases}$

Theorem (Hamaker-S-Vatter)
Let P be any NUIO on [n].

1. ι is a sign-reversing, Inv-preserving, involution on hook P-tableaux.
2. If T is fixed by ι then it has shape $\left(1^{n}\right)$.
3. The coefficient $c_{n}(t)$ of e_{n} in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ has nonnegative coefficients.

Lemma (Hamaker-S-Vatter)

If k is movable in T, then there is a unique position to which it can be moved.
If k is movable in T then let T^{k} be the result of moving k. Define a map ι on P-tableau T of hook shape by
$\iota(T)= \begin{cases}T^{k} & \text { if } k \text { is the smallest integer which is movable in } T, \\ T & \text { if no element in } T \text { is movable. }\end{cases}$

Theorem (Hamaker-S-Vatter)
Let P be any NUIO on [n].

1. ι is a sign-reversing, Inv-preserving, involution on hook P-tableaux.
2. If T is fixed by ι then it has shape $\left(1^{n}\right)$.
3. The coefficient $c_{n}(t)$ of e_{n} in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ has nonnegative coefficients. It is the generating function by inv of P-tableau of column shape with no moveable elements.

Outline

> Sign-reversing involutions

> The $(3+1)$-free Conjecture

> The coefficient of e_{n}

Other results and future work

Acyclic orientations.

Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge $u v \in G$ by one of the $\operatorname{arcs} \overrightarrow{u v}$ or $\overrightarrow{v u}$.

Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge $u v \in G$ by one of the arcs $\overrightarrow{u v}$ or $\overrightarrow{v u}$. Call O acyclic if it has no directed cycles.

Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge $u v \in G$ by one of the arcs $\overrightarrow{u v}$ or $\overrightarrow{v u}$. Call O acyclic if it has no directed cycles. If $V=[n]$ then an ascent of O is an arc $\overrightarrow{u v}$ with $u<v$, and we let asc O be the number of ascents of O.

Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge $u v \in G$ by one of the arcs $\overrightarrow{u v}$ or $\overrightarrow{v u}$. Call O acyclic if it has no directed cycles. If $V=[n]$ then an ascent of O is an arc $\overrightarrow{u v}$ with $u<v$, and we let asc O be the number of ascents of O.
Theorem (Stanley,Shareshian-Wachs)
If P is an NUIO on $[n]$ and $X(\operatorname{inc}(P) ; \mathbf{x}, t)=\sum_{\lambda} c_{\lambda}(t) e_{\lambda}$, then

$$
\sum_{\lambda \text { with m parts }} c_{\lambda}(t)=\sum_{O \text { with } m \text { sinks }} t^{\text {asc } O}
$$

Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge $u v \in G$ by one of the arcs $\overrightarrow{u v}$ or $\overrightarrow{v u}$. Call O acyclic if it has no directed cycles. If $V=[n]$ then an ascent of O is an arc $\overrightarrow{u v}$ with $u<v$, and we let asc O be the number of ascents of O.
Theorem (Stanley, Shareshian-Wachs)
If P is an NUIO on $[n]$ and $X(\operatorname{inc}(P) ; \mathbf{x}, t)=\sum_{\lambda} c_{\lambda}(t) e_{\lambda}$, then

$$
\sum_{\lambda \text { with } m \text { parts }} c_{\lambda}(t)=\sum_{O \text { with } m \text { sinks }} t^{\mathrm{asc} O}
$$

So if $\lambda=(n)$ then $c_{n}(t)=\sum_{O \text { with } 1 \text { sink }} t^{\text {asc } O}$.

Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge $u v \in G$ by one of the arcs $\overrightarrow{u v}$ or $\overrightarrow{v u}$. Call O acyclic if it has no directed cycles. If $V=[n]$ then an ascent of O is an arc $\overrightarrow{u v}$ with $u<v$, and we let asc O be the number of ascents of O.
Theorem (Stanley,Shareshian-Wachs)
If P is an NUIO on $[n]$ and $X(\operatorname{inc}(P) ; \mathbf{x}, t)=\sum_{\lambda} c_{\lambda}(t) e_{\lambda}$, then

$$
\sum_{\lambda \text { with } m \text { parts }} c_{\lambda}(t)=\sum_{O \text { with m sinks }} t^{\text {asc } O}
$$

So if $\lambda=(n)$ then $c_{n}(t)=\sum_{O \text { with } 1 \text { sink }} t^{\text {asc } O}$. Given a P-tableau T of column shape we define an orientation O of $G=\operatorname{inc} P$ by orienting each edge $u v$ of G so that

$$
\overrightarrow{u v} \text { is an arc of } O \text { iff } u v \in \operatorname{Inv} T .
$$

Acyclic orientations.

An orientation O of a graph G is obtained by replacing each edge $u v \in G$ by one of the arcs $\overrightarrow{u v}$ or $\overrightarrow{v u}$. Call O acyclic if it has no directed cycles. If $V=[n]$ then an ascent of O is an arc $\overrightarrow{u v}$ with $u<v$, and we let asc O be the number of ascents of O.
Theorem (Stanley,Shareshian-Wachs)
If P is an NUIO on $[n]$ and $X(\operatorname{inc}(P) ; \mathbf{x}, t)=\sum_{\lambda} c_{\lambda}(t) e_{\lambda}$, then

$$
\sum_{\lambda \text { with } m \text { parts }} c_{\lambda}(t)=\sum_{O \text { with m sinks }} t^{\text {asc } O}
$$

So if $\lambda=(n)$ then $c_{n}(t)=\sum_{O \text { with } 1 \text { sink }} t^{\text {asc } O}$. Given a P-tableau T of column shape we define an orientation O of $G=\operatorname{inc} P$ by orienting each edge $u v$ of G so that

$$
\overrightarrow{u v} \text { is an arc of } O \text { iff } u v \in \operatorname{Inv} T .
$$

Theorem (Hamaker-S-Vatter)
For any NUIO and $m \geq 0$, the map $T \mapsto O$ is an inv-asc preserving bijection from P-tableaux of column shape with m movable elements to acyclic orientations of inc (P) with $m+1$ sinks.

Related work.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.
There have been other applications of The Method.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.
There have been other applications of The Method. The height of a poset P, ht P, is the number of elements in a longest chain.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.
There have been other applications of The Method. The height of a poset P, ht P, is the number of elements in a longest chain. If P is an NUIO then ht P is the bounce number of the corresponding Dyck path.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.
There have been other applications of The Method. The height of a poset P, ht P, is the number of elements in a longest chain. If P is an NUIO then ht P is the bounce number of the corresponding Dyck path. Harada and Precup proved the $(3+1)$-free conjecture for $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ when ht $P=2$ using Hessenberg varieties.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.
There have been other applications of The Method. The height of a poset P, ht P, is the number of elements in a longest chain. If P is an NUIO then ht P is the bounce number of the corresponding Dyck path. Harada and Precup proved the $(3+1)$-free conjecture for $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ when ht $P=2$ using Hessenberg varieties. Cho and Huh gave a combinatorial proof of this result using The Method.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.
There have been other applications of The Method. The height of a poset P, ht P, is the number of elements in a longest chain. If P is an NUIO then ht P is the bounce number of the corresponding Dyck path. Harada and Precup proved the $(3+1)$-free conjecture for $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ when ht $P=2$ using Hessenberg varieties. Cho and Huh gave a combinatorial proof of this result using The Method. Cho and Hong used The Method to prove the $(3+1)$-free conjecture for $X(\operatorname{inc}(P) ; \mathbf{x})$ when ht $P=3$.

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.
There have been other applications of The Method. The height of a poset P, ht P, is the number of elements in a longest chain. If P is an NUIO then ht P is the bounce number of the corresponding Dyck path. Harada and Precup proved the $(3+1)$-free conjecture for $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ when ht $P=2$ using Hessenberg varieties. Cho and Huh gave a combinatorial proof of this result using The Method. Cho and Hong used The Method to prove the $(3+1)$-free conjecture for $X(\operatorname{inc}(P) ; \mathbf{x})$ when ht $P=3$. Finding a proof for $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ when ht $P=3$ is still open but certain special cases were done using involutions by Cho and Hong,

Related work.

Shareshian and Wachs used an involution which is similar but not equivalent to the involution for e_{n} in their determination of the coefficient of p_{n} (power sum symmetric function) in $X(\operatorname{inc}(P) ; \mathbf{x}, t)$.
There have been other applications of The Method. The height of a poset P, ht P, is the number of elements in a longest chain. If P is an NUIO then ht P is the bounce number of the corresponding Dyck path. Harada and Precup proved the $(3+1)$-free conjecture for $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ when ht $P=2$ using Hessenberg varieties. Cho and Huh gave a combinatorial proof of this result using The Method. Cho and Hong used The Method to prove the $(3+1)$-free conjecture for $X(\operatorname{inc}(P) ; \mathbf{x})$ when ht $P=3$. Finding a proof for $X(\operatorname{inc}(P) ; \mathbf{x}, t)$ when ht $P=3$ is still open but certain special cases were done using involutions by Cho and Hong, and by Wang using the inverse Kostka matrx in place of the Jacobi-Trudi determinant.

References

1. Cho, S.; Hong, J. Positivity of chromatic symmetric functions associated with Hessenberg functions of bounce number 3, Electron. J. Combin. 29 (2022), Paper No. 2.19, 37 pp.
2. Cho, S.; Huh, J.; On e-positivity and e-unimodality of chromatic quasisymmetric functions, SIAM J. Discrete Math. 33 (2019), 2286-2315.
3. Harada, M.; Precup, M. The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture, Algebr. Comb. 2 (2019), 1059-1108.
4. Sagan, B.; Vatter, V.; Bijective proofs of proper coloring theorems, Amer. Math. Monthly 128 (2021), 483-499.
5. Shareshian, J.; Wachs, M. Chromatic quasisymmetric functions, Adv. Math., 295 (2016), 497-551.
6. Stanley, R. A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., 111 (1995), 166-194.
7. Stanley, R.; Stembridge, J. On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A 62 (1993), no. 2, 261-279.
8. Wang, S.; The e-positivity of the chromatic symmetruc functions and the inverse Kostka matrix, arXiv 2210.07567.

THANKS FOR LISTENING!

