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1 Introduction

In 1995, Richard Stanley associated a symmetric function with every
finite graph Γ, called the chromatic symmetric function of Γ, which is a
generating function of the proper colourings of Γ.

In 2011, John Shareshian and Michelle Wachs introduced a qua-
sisymmetric refinement of the chromatic symmetric functions and they
identified a significant class of graphs whose chromatic quasisymmetric
functions are actually symmetric functions. Moreover, they conjectured
a link between these functions and the characters of representations of
symmetric groups on the cohomology space of Hessenberg varieties.

The purpose of these lectures is to survey the (quasi)symmetric
function background required to understand the constructions and how
these ideas tie together. The emphasis is on “how” things work rather
than “why”; we will endeavour to include pointers the literature for
proofs and further reading. It is hoped that these notes will provide
a road map that the interested student or researcher can follow to
gain the background required to appreciate some of the beautiful ideas
driving the research in this area.
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2 What are (chromatic) symmetric functions?

2.1 Symmetric polynomials
Some notational conventions:

• N = {0, 1, 2, . . .}
• N∗ = N \ {0} = {1, 2, . . .}
• x0

i = 1

• x(a1 ,...,an) = xa1
1 xa2

2 · · · x
an
n

• [n] = {1, 2, . . . , n}
• {{a1, . . . , an}} denotes a multiset.

Monomials We will denote a family of variables as

x = (x1, x2, . . . , xn).

For a sequence α = (a1, a2, . . . , an) of nonnegative integers, we write

xα = x(a1,...,an) = xa1
1 xa2

2 · · · x
an
n .

Every monomial xα admits a unique expression of the form

x
ai1
i1

x
ai2
i2
· · · x

ail
il

with i1 < · · · < il and ai1 , . . . , ail nonzero;

the sequence (ai1 , . . . , ail ) is called its sequence of (nonzero) exponents.

Polynomials A polynomial in the variables (x1, . . . , xn) is written as

f (x) = ∑
α∈Nn

cαxα = ∑
(a1,a2,...,an)∈Nn

c(a1,a2,...,an)

coefficient

xa1
1 xa2

2 · · · x
an
n

monomial

term

where the cα are coefficients that all belong to the same ring.

Example 1. Which of the following
polynomials are symmetric?

x2
1 + x2x3

x1x2 + x2x3 + x1x3

x2
1 + x1x2 + x2

2

N.B. The answer depends on the set of
variables!

Symmetric polynomials Let Sn denote the group of permutations of [n].
A polynomial f (x1, . . . , xn) is symmetric if

f (xσ(1), xσ(2), . . . xσ(n))

σ( f )(x1,...,xn)

= f (x1, x2, . . . , xn) for all σ ∈ Sn.

Remarks 2.
1. Since Sn is generated by adjacent transpositions (i, i + 1), to deter-

mine whether a polynomial is symmetric, it suffices to check

f (. . . , xi+1, xi, . . .) = f (. . . , xi, xi+1, . . .) for all i ∈ [n− 1].

2. Permuting variables has no effect on the multiset of exponents of a
monomial. It follows that

if f (x1, . . . , xn) is a symmetric polynomial, then the coefficient of xα

and the coefficient of xβ are equal whenever {{α}} = {{β}}.

Algebra of symmetric polynomials The sum and product of two sym-
metric polynomials in C[x1, . . . , xn] is again a symmetric polynomial in
C[x1, . . . , xn]; so we have an algebra of symmetric polynomials:

C[x1, . . . , xn]
Sn =

{
f ∈ C[x1, . . . , xn] : f is symmetric

}
.
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2.2 Monomial symmetric polynomials

Symmetrizing monomials One way to construct a symmetric polynomial
is to start with a monomial and symmetrize:

x1x4
2

symmetrize7−−−−−−−→ x1x4
2 + x2x4

1 + x1x4
3 + x2x4

3 + x3x4
1 + x3x4

2

x1x4
2x3

symmetrize7−−−−−−−→ x1x4
2x3 + x2x4

1x3 + x1x4
3x2

These polynomials are determined by the multiset of exponents of the
starting monomial, which we write as weakly-decreasing sequences:

m(4,1)(x1, x2, x3) = x1x4
2 + x4

1x2 + x1x4
3 + x4

1x3 + x2x4
3 + x4

2x3

m(4,1,1)(x1, x2, x3) = x1x4
2x3 + x4

1x2x3 + x1x2x4
3

These are the monomial symmetric polynomials: Some other examples:

m3 = x3
1 + x3

2 + x3
3

m21 = x2
1x2 + x1x2

2 + x2
1x3 + x2

2x3 + x1x2
3 + x2x2

3

m111 = x1x2x3

m(λ1,...,λl)
(x1, . . . , xn) = ∑ xλ1

i1
xλ2

i2
· · · xλl

il
,

the sum over all distinct monomials with exponents λ1 > . . . > λl .

Monomial basis It turns out that every symmetric polynomial is a linear
combination of the monomial symmetric polynomials.

Theorem 3. Every symmetric polynomial f (x1, . . . , xn) ∈ Z[x1, . . . , xn]Sn

can be written uniquely as

f (x1, . . . , xn) = ∑
λ

cλmλ(x1, . . . , xn) with cλ ∈ Z,

where the sum is over all weakly-decreasing sequences (λ1, . . . , λl) of positive
integers of length l 6 n.

Example 4. Here is a symmetric polynomial in the variables x1, x2, x3.

f (x1, x2, x3) = 2x2
1 − 3x1x2 + 2x2

2 − 3x1x3 − 3x2x3 + 2x2
3.

Pick a monomial and subtract the corresponding symmetric polynomial:

f (x1, x2, x3)− (−3)m(1,1)(x1, x2, x3) = 2x2
1 + 2x2

2 + 2x2
3

The result is a symmetric polynomial with fewer monomials. Repeat:

f (x1, x2, x3)− (−3)m(1,1)(x1, x2, x3)− 2m(2)(x1, x2, x3) = 0,

and so

f (x1, x2, x3) = 2m(2)(x1, x2, x3)− 3m(1,1)(x1, x2, x3).
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2.3 Partitions and Compositions

A sequence of positive integers

λ = (λ1, λ2, . . . , λl)

is called

• a composition of d if λ1 + λ2 + · · ·+ λl = d,
in which case we write λ ∈ Compd or λ |= d;

• a partition of d if λ1 + λ2 + · · ·+ λl = d and λ1 > λ2 > · · · > λl ,
in which case we write λ ∈ Partd or λ ` d;

We will use the following notation:

• the size or weight of λ is |λ| = λ1 + · · ·+ λl = d;

• the integers λ1, . . . , λl are called the parts of λ;

• the length of λ is its number of parts, which we denote by `(λ) = l.

• the (Young) diagram associated with λ is a collection of boxes or cells
arranged in left-justified rows, with the first row containing λ1 cells,
the second row containing λ2 cells, and so on.

Figure 1: The Young diagram of the
partition λ = (5, 4, 4, 1) ` 14.

Corollary 5. The symmetric polynomials

{mλ(x1, . . . , xn) : λ ∈ Partd & `(λ) 6 n}

form a basis of the space of symmetric polynomials in x1, . . . , xn that are
homogeneous1 of degree d. 1 Recall that a polynomial f (x1, . . . , xn)

is homogeneous of degree d if the sum
of the multiset of exponents of every
monomial appearing in f is d. That is,
f = ∑α cαxα and cα 6= 0 implies |α| = d.

Example 6. Here is the monomial basis of the space of symmetric polynomials
in x1, x2, x3 that are homogeneous of degree 3:

m3 = x3
1 + x3

2 + x3
3

m21 = x2
1x2 + x1x2

2 + x2
1x3 + x2

2x3 + x1x2
3 + x2x2

3

m111 = x1x2x3

N.B. This basis is not multiplicative:

m2m1 = m21 + m3 ( 6= m21)



lectures on symmetric functions — draft 7

2.4 Elementary symmetric polynomials

The elementary symmetric polynomials appear in the expansion of a
product of linear monic polynomials: Generating function. After substituting

t 7→ 1
t and multiplying by t3, we get

(1 + tx1)(1 + tx2)(1 + tx3)

= 1 + e1t1 + e2t2 + e3t3.

In general,

∑
k>0

ek(x1, . . . , xn)tk =
n

∏
i=1

(1 + txi).

(t− x1)(t− x2)(t− x3)

= t3 − (x1 + x2 + x3)

e1(x1,x2,x3)

t2 + (x1x2 + x1x3 + x2x3)

e2(x1,x2,x3)

t− x1x2x3

e3(x1,x2,x3)

Define the k-th elementary symmetric polynomial as

ek(x1, . . . , xn) = ∑
16i1<i2<···<ik6n

xi1 · · · xik = m1k (x1, . . . , xn).

These polynomials are algebraically independently, which implies that Some other examples:

e3 = x1x2x3

e21 = (x1x2 + x1x3 + x2x3)(x1 + x2 + x3)

e111 = (x1 + x2 + x3)
3

eλ = eλ1 eλ2 · · · eλl (λ ` n)

are linearly independent and give rise to another basis of C[x1, . . . , xn]Sn .

Fundamental theorem of symmetric polynomials

Theorem 7. Every symmetric polynomial f (x1, . . . , xn) ∈ Z[x1, . . . , xn]Sn

can be written uniquely as

f (x1, . . . , xn) = ∑
λ

cλeλ(x1, . . . , xn) with cλ ∈ Z.

In other words,2 every symmetric polynomial is a polynomial in the elemen- 2 There are two ways to interpret the
notation on the left of Equation (1), and
luckily they agree here.

• Z[e1, . . . , en] is the subring of
Z[x1, . . . , xn] generated by the poly-
nomials ek(x1, . . . xn); the theorem
states that it is Z[x1, . . . , xn]Sn .

• Z[e1, . . . , en] can also be interpreted
as a polynomial ring because

Z[y1, . . . , yn] −→ Z[e1, . . . , en]

yk 7−→ ek(x1, . . . , xn)

is an isomorphism of rings.

tary symmetric polynomials e1, e2, . . . , en:

Z[e1, . . . , en] = Z[x1, . . . , xn]
Sn . (1)

Example 8. We have3 the following expansion of m(2,1)(x1, x2, x3):

3 Here are the details of the expansion:

m(2,1)(x1, x2, x3)

= x2
1x2 + x1x2

2 + x2
1x3 + x2

2x3 + x1x2
3 + x2x2

3

= x1x2(x1 + x2) + x1x3(x1 + x3) + x2x3(x2 + x3)

= x1x2(x1 + x2 + x3) + x1x3(x1 + x2 + x3)

+ x2x3(x1 + x2 + x3)− 3x1x2x3

= e2(x1, x2, x3)e1(x1, x2, x3)− 3e3(x1, x2, x3)

m(2,1)(x1, x2, x3) = e2(x1, x2, x3)e1(x1, x2, x3)− 3e3(x1, x2, x3).

Thus, m(2,1) = f (e1, e2, e3), where f (y1, y2, y3) = y1y2 − 3y3.

Monomial expansion of elementary symmetric polynomials In the expan-
sion of e3e2e2, one finds the product(

x1
1x1

2x0
3x1

4
)

from e3

(
x0

1x1
2x1

3x0
4
)

from e2

(
x0

1x1
2x0

3x1
4
)

from e2

←→
[ 1 1 0 1

0 1 1 0
0 1 0 1

]
.

These are in bijection with 0/1-matrices whose row sums are (3, 2, 2).

Proposition 9. Let λ ∈ Partn.

eλ = ∑
µ∈Partn

Mλ,µmµ,

where Mλ,µ is the number of matrices with entries in {0, 1} whose rows sum
to λ and columns sum to µ. Consequently, the transition matrix between the
bases {mλ : λ ` n} and {eλ : λ ` n} is symmetric.
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2.5 Complete symmetric polynomials

The k-th complete homogeneous symmetric polynomial is the sum of all
monomials of degree k: Generating function. Like the ek, the hk

can also be obtained by expanding a
product:

∑
k>0

hk(x1, . . . , xn)tk =
n

∏
i=1

1
1− txi

.

hk(x1, . . . , xn) = ∑
16i16i26···6ik6n

xi1 · · · xik = ∑
λ`k

mλ(x1, . . . , xn).

These polynomials are also algebraically independent, and we define
Some other examples:

h3 = x3
1 + x2

1x2 + x1x2
2 + x3

2

x2
1x3 + x1x2x3 + x2

2x3+

x1x2
3 + x2x2

3 + x3
3

h21 = (x1 + x2 + x3)×(
x2

1 + x1x2 + x2
2+

x1x3 + x2x3 + x2
3
)

h111 = (x1 + x2 + x3)
3

hλ = hλ1 hλ2 · · · hλl .

Theorem 10. Every symmetric polynomial f (x1, . . . , xn) ∈ Z[x1, . . . , xn]Sn

can be written uniquely as

f (x1, . . . , xn) = ∑
λ

cλhλ(x1, . . . , xn) with cλ ∈ Z.

In other words,
Z[h1, . . . , hn] = Z[x1, . . . , xn]

Sn .

Monomial expansion of homogeneous symmetric polynomials Let λ ∈ Partn.

hλ = ∑
µ∈Partn

Nλ,µmµ,

where Nλ,µ is the number of matrices with entries in N whose rows
sum to λ and columns sum to µ. Consequently, the transition matrix
between the bases {mλ : λ ` n} and {hλ : λ ` n} is symmetric.

The involution ω Since hk is a symmetric polynomial in x1, . . . , xn, it
can be expressed as a polynomial in e1, . . . , en. It turns out that4 4 This can by proved by considering

e(t) = ∑
k∈N

ektk and h(t) = ∑
k∈N

hktk ;

noting that e(t)h(−t) = 1, which gives

∑
i+j=k

(−1)ieihj = 0;

and deducing the result by induction.

hk = f (e1, . . . , en) iff ek = f (h1, . . . , hn).

For example,

h3 = e111 − 2e21 + e3 and e3 = h111 − 2h21 + h3.

Proposition 11. The algebra morphism defined by

Z[e1, . . . , en]
ω−→ Z[h1, . . . , hn]

ek 7−→ hk

is an involution (that is, ωw = Id). Consequently,

Z[e1, . . . , en] = Z[h1, . . . , hn] = Z[x1, . . . , xn]
Sn .
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2.6 Power sum symmetric polynomials

The k-th power sum symmetric polynomial is

pk(x1, . . . , xn) = xk
1 + xk

2 + · · ·+ xk
n = mk(x1, . . . , xn).

These polynomials are also algebraically independent, and we define Some other examples:

p3 = x3
1 + x3

2 + x3
3

p21 = (x2
1 + x2

2 + x2
3)(x1 + x2 + x3)

p111 = (x1 + x2 + x3)
3

pλ = pλ1 pλ2 · · · pλl .

Theorem 12. Every symmetric polynomial f (x1, . . . , xn) ∈ Q[x1, . . . , xn]Sn

can be written uniquely as

f (x1, . . . , xn) = ∑
λ

cλ pλ(x1, . . . , xn) with cλ ∈ Q.

Remark 13. The result does not hold over Z because m11 = 1
2 p11 − 1

2 p2.

Monomial expansion of power sum symmetric polynomials Let λ ∈ Partn.

pλ = ∑
µ∈Partn

Rλ,µmµ,

where Rλ,µ is the number of ordered set partitions (B1, . . . , Bk) of [`(λ)]
such that µj = ∑i∈Bj

λi for all j ∈ [k].
Other examples:

p3 = m3

p21 = m21 + m3

p111 = 6m111 + 3m21 + m3

For λ = (1, 1, 1), there are 13 ordered
set partitions of [3]:

({1}, {2}, {3}) ({1}, {3}, {2})
({2}, {1}, {3}) ({3}, {1}, {2})
({2}, {3}, {1}) ({3}, {2}, {1})

({1}, {2, 3}) ({2}, {1, 3})
({3}, {1, 2}) ({1, 2}, {3})
({1, 3}, {2}) ({2, 3}, {1})

({1, 2, 3})

which result in the following sequences:

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 2) (1, 2) (1, 2)

(2, 1) (2, 1) (2, 1)

(3)

Thus,

p111 = 6m111 + 3m21 + m3.

Example 14. For instance, if λ = (2, 1), then we consider the ordered set
partitions of [2]:

({1, 2}) ({1}, {2}) ({2}, {1})

which result in the following sequences of partial sums:

(λ1 + λ2) = (3) (λ1, λ2) = (2, 1) (λ2, λ1) = (1, 2)

Thus,
p21 = m3 + m21.

Power sum expansion of elementary and homogeneous symmetric polynomials

hn = ∑
λ`n

1
zλ

pλ

en = ∑
λ`n

(−1)n−`(λ) 1
zλ

pλ

where zµ = 1d1 d1! 2d2 d2! · · · nd1 dn! and di = multi(µ).

Example 15.

h1 = p1

h2 = 1
2 p11 +

1
2 p2

h3 = 1
6 p111 +

1
2 p21 +

1
3 p3
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2.7 Schur polynomials

Recurring theme: symmetric polynomials from actions of Sn An eloquent
way to construct symmetric polynomials is from (certain) group actions
of the symmetric group. More precisely, if we have

f (xσ(1), xσ(2), . . . xσ(n))

= ∑
T∈O

xα1(T)
σ(1) xα2(T)

σ(2) · · · x
αn(T)
σ(n)

= ∑
T∈O

xα1(σT)
σ(1) xα2(σT)

σ(2) · · · xαn(σT)
σ(n)

= ∑
T∈O

x
ασ(1)(T)
σ(1) x

ασ(2)(T)
σ(2) · · · x

ασ(n)(T)
σ(n)

= f (x1, . . . , xn).

• a set of combinatorial objects O, a map α : O −→Nn, and

• an action of Sn on O satisfying αi(σ(T)) = ασ(i)(T),

then the following polynomial is symmetric:

f (x1, . . . , xn) = ∑
T∈O

xα(T) = ∑
T∈O

xα1(T)
1 xα2(T)

2 · · · xαn(T)
n .

We will apply this in a few different settings.

Tableaux Let λ ` n.

• A (Young) tableau of shape λ is a filling of the cells of the Young
diagram of λ by positive integers, called the entries of the tableau.

2 2 4 5
4 4 5 7
5 7
6

Figure 2: A semistandard tableau of
shape (4, 4, 2, 1).

• A tableau is semistandard if its entries are weakly increasing in rows
when read from left-to-right; and strictly increasing in columns when
read from longest-to-shortest row.

• A tableau of shape λ is standard if it is a semistandard whose cells
are filled with 1, 2, . . . , n (each occuring exactly once).

• The weight or content of a tableau T is the vector (a1, a2, . . .) with
ai = multi(T), where multi(T) is the number of times i occurs in T.

Schur polynomials The Schur polynomial indexed by λ is

sλ(x1, . . . , xn) = ∑
T∈SSYT(λ,[n])

xweight(T),

where SSYT(λ, [n]) is the set of semistandard tableau of shape λ and
with entries in [n].

For example, if λ = (2, 1) and n = 2, then SSYT(λ, [n]) consists of

1 1
2

1 2
2

so that
s(2,1)(x1, x2) = x2

1x2 + x1x2
2 = m(2,1)(x1, x2);

and if n = 3, then SSYT(λ, [n]) consists of

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

so that

s(2,1)(x1, x2, x3) = x2
1x2 + x2

1x3 + x1x2
2 + 2x1x2x3 + x1x2

3 + x2
2x3 + x2x2

3

= m(2,1)(x1, x2, x3) + 2m(1,1,1)(x1, x2, x3)
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Schur polynomials are symmetric First note that it suffices to show that
sλ(x1, . . . , xn) is invariant under interchanging xi and xi+1. Hence, we
need a bijection on SSYT(λ, [n]) that maps

• a tableau with a occurrences of i and b occurrences of i + 1 to

• a tableau with b occurrences of i and a occurrences of i + 1;

and fixes all other elements of the tableau. This is the Bender–Knuth
involution:

1. Let T ∈ SSYT(λ, [n]). We say an occurrence of i or i + 1 in T is
fixed if it belongs to a column that contains both i and i + 1.

1 1 1 1 2 2 2 2 2 3
2 2 3 3 3 3
3

2 and 3 are fixed

2 and 3 are non-fixed

2. In each row, interchange the number of non-fixed is and (i + 1)s:

1 1 1 1 2 2 2 3 3 3
2 2 2 3 3 3
3

row 1 : one 2 and three 3s

7→ three 2s and one 3

row 2 : two 2s and one 3s

7→ one 2 and two 3s

Monomial expansion of Schur polynomials Let λ ∈ Partn.

sλ = ∑
µ∈Partn

Kλ,µmµ,

where Kλ,µ is the number of SSYT of shape λ and content µ. More generally, if λ/ν is a skew parti-
tion of size n, then

sλ/ν = ∑
µ∈Partn

Kλ/ν,µmµ,

where Kλ/ν,µ is the number of SSYT of
shape λ/ν and content µ.

For example, SSYT((2, 1), [3]) consists of

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

One 3 of these have content that is a partition. Hence,

s(2,1) = m(2,1) + 2m(1,1,1).

Note that this formula is independent of the number of variables.

s(2,1)(x1, x2, x3) = m(2,1)(x1, x2, x3) + 2m(1,1,1)(x1, x2, x3)

s(2,1)(x1, x2) = m(2,1)(x1, x2) + 2 m(1,1,1)(x1, x2, x3)

0
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2.8 Chromatic symmetric polynomials

• A graph Γ = (V, E) consists of a finite set of vertices V and a set of
edges E, which are unordered pairs of vertices.

• A colouring of Γ is a function κ : V −→ C, where C is a set of colours.

• A colouring κ is proper if adjacent vertices have different colours:

{i, j} ∈ E =⇒ κ(i) 6= κ(j).

• The chromatic symmetric function of Γ is a sum of monomials, one
for each proper colouring of Γ:

XΓ(x1, . . . , xn) = ∑
proper

colourings
κ:V→[n]

∏
v∈V

xκ(v).

x2
1 x3 x4 x2

6

↔ x1
↔ x2
↔ x3

↔ x4
↔ x5
↔ x6

Figure 3: The monomial associated with
a proper colouring of a graph

Example 16. For Γ equal to the path graph there are

• 3! ways to colour Γ with 3 colours, each giving the monomial x1x2x3;

• 2 ways to colour Γ with 2 colours, giving the monomials x2
i xj and xix2

j .

Thus,

XΓ(x1, x2, x3) = 6x1x2x3 + x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 + x2
2x3 + x2x2

3

= 6m(1,1,1) + m(2,1)

Proposition 17. 1. XΓ(x1, . . . , xn) is a symmetric polynomial.

2. XΓ(1, . . . , 1︸ ︷︷ ︸
n

) is equal to the number of proper n-colourings of Γ.

Proof. • The second statement follows from the observation that there
is exactly one monomial for each proper n-colouring of Γ.

• The first statement follows from the fact that if σ ∈ Sn and κ : V −→
[n] is a proper colouring, then σ ◦ κ is again a proper colouring.

Example 18. For Γ in Figure 3,

XΓ = 720 m111111 + 144 m21111 + 28 m2211

= 168 s111111 + 60 s21111 + 28 s2211

= 28 e42 + 32 e51 + 108 e6

Some numerology:

28 + 32 + 108 = # acyclic orientations of Γ

28 + 32 = # acyclic orientations of Γ with 2 sinks

108 = # acyclic orientations of Γ with 1 sink
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2.9 The Stanley–Stembridge conjecture

e-expansion and acyclic orientations The numerology from the previous
example holds in general.

Theorem 19 (Stanley). Let Γ be a graph and suppose the expansion of XΓ in
the basis of elementary symmetric polynomials is

XΓ = ∑
λ

cλeλ.

Then

∑
λ

`(λ)=j

cλ = number of acyclic orientations of Γ with exactly j sinks.

Example 20. This holds even if XΓ is not e-positive. For example, the chro-
matic symmetric polynomial of the claw graph K1,3 is

XK1,3 = e(2,1,1) − 2e(2,2) + 5e(3,1) + 4e(4).

And K1,3 admits: 1 acyclic orientation with exactly 3 sinks; 3 = 5− 2 acyclic
orientations with exactly 2 sinks; 6 acyclic orientations with exactly 1 sinks.

Trees and chromatic symmetric polynomials Given that the coefficients of
the e-expansion of XΓ is related to interesting properties of the graph,
one can inquire which properties of Γ are encoded by XΓ. One question
posed by Stanley (1995) is whether a tree can be reconstructed from XΓ.
This has been verified for trees up to 29 vertices.

This is not true of every graph, since there are different (non-tree)
graphs that share the same chromatic symmetric polynomial.

Figure 4: The (3 + 1)-poset is the direct
sum of a 3-chain and a 1-chain.

Figure 5: K1,3, or the claw graph. A
graph is clawfree if it does not contain
an induced subgraph isomorphic to
K1,3. The incomparability graph of a
poset P is clawfree iff P is (3 + 1)-free.

The Stanley–Stembridge conjecture It is an open problem to character-
ize graphs Γ for which XΓ is e-positive. A conjecture of Stanley and
Stembridge, which predates the introduction of chromatic symmetric
polynomials, posits e-positivity for a certain graphs defined as follows.

The incomparability graph of a poset P is the graph on P with edges

E(Inc(P)) =
{
{i, j} : i and j are incomparable in P

}
.

A poset is (3 + 1)-free if it does not contain an induced subposet iso-
morphic to the direct sum of a 3-chain and a 1-chain; see Figure 4.

Conjecture 21 (Stanley–Stembridge). If Γ is the incomparability graph of a
(3 + 1)-free poset, then XΓ is e-positive.

A significant step towards proving this conjecture was made by
Mathieu Guay-Paquet, who proved it is sufficient to prove the conjecture
for posets that are both (3 + 1)-free and (2 + 2)-free. This smaller class
of posets will help establish the link with Hessenberg varieties.
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2.10 Symmetric polynomials versus symmetric functions

A word of caution A word of caution is warranted at this point.

• I have deliberately restrained myself from using the terminology
“symmetric function”. However, many people refer to symmetric
polynomials as symmetric functions. (But they are not the same thing!)

• One reason for this is that symmetric functions can be viewed as
formal power series in countably many variables {x1, x2, x3, . . .}
that are invariant under permutations of the variables.

• I find this leads to confusion when one is first learning about about
symmetric functions, even more so once one realizes that symmetric
functions aren’t really functions at all.5 5 At least, not in the obvious sense.

Motivation After working a bit with symmetric polynomials, one starts
to recognize that many relations between symmetric polynomials do
not depend on the number of variables. For example, we saw that

m(2,1)(x1, x2, x3) = e2(x1, x2, x3)e1(x1, x2, x3)− 3e3(x1, x2, x3),

which remains valid if we work over any number of variables:

m(2,1)(x1, . . . , xn) = e2(x1, . . . , xn)e1(x1, . . . , xn)− 3e3(x1, . . . , xn).

We can summarize this observation by dropping any reference to the
variables and writing

m(2,1) = e(2,1) − 3e(3).

This raises the question of whether there exists a ring that formalizes
this idea. We are looking for a ring Sym with the following properties:

1. Sym has various bases {mλ}, {eλ}, etc.—all indexed by partitions;

2. symmetric polynomials are “shadows” of elements of Sym: The relation between symmetric
functions and symmetric polynomials
parallels Plato’s Theory of Forms, which
posits that the physical world is only a
shadow of the realm of concepts.

mλ 7→ mλ(x1, . . . , xn);

3. identities in Sym reflect identities among symmetric polynomials
that are independent of the number of variables.
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Formal power series Let CJxK denote the C-algebra of all formal power
series in the variables x = (x1, x2, x3, . . .). The elements of CJxK are
(possibly infinite) linear combinations of the form

∑
α=(α1,α2,...)
finite support

cα xα1
1 xα2

2 · · ·
xα

A power series ∑α cαxα is said to be

1. homogeneous of degree d if cα 6= 0 implies deg(xα) = d for all α;

2. of bounded degree if there is a d such that cα 6= 0 implies deg(xα) 6 d.
Of bounded degree:

x2
1 + x2

2 + x2
3 + · · ·

Not of bounded degree:

1 + x1 + x2
1 + x3

1 + · · ·

Each symmetric group Sn acts on CJxK by permuting {x1, . . . , xn}.

Definition 22. The algebra of symmetric functions in x = (x1, x2, . . .) is

Sym = Sym(x) =

 f ∈ CJXK :
f is of bounded degree,

and for all n ∈N we have
σ · f = f for all σ ∈ Sn

 .

The elements of Sym are called symmetric functions. It is a graded ring:

Sym =
⊕
d∈N

Symd,

where

Symd(x) = { f ∈ Sym(x) : f is homogeneous of degree d} .

Monomial symmetric functions In analogy with monomial symmetric
polynomials, define the monomial symmetric function mλ as the sum over
all distinct monomials of exponent λ:

m(3) = x3
1 + x3

2 + x3
3 + · · ·+ x3

19 + · · ·+ x3
23 + · · ·

m(2,1) = x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 + · · ·+ x2
19x23 + x19x2

23 + · · ·

m(1,1,1) = x1x2x3 + x1x2x4 + x1x3x5 + · · ·+ x19x23x74 + · · ·

Theorem 23. Every symmetric function f ∈ Sym can be written uniquely
as a finite6 linear combination of the form 6 The finiteness follows from the fact

that f is of bounded degree.

f = ∑
λ∈Part

cλmλ,

where the sum ranges over all partitions λ. If f ∈ Symd, then

f = ∑
λ∈Partd

cλmλ.
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Other bases of symmetric functions The other bases of Sym are defined
in analogy with the other bases of symmetric polynomials.

ek = ∑
i1<i2<···<ik

xi1 · · · xik = m1k

hk = ∑
i16i26···6ik

xi1 · · · xik = ∑
λ`k

mλ

pk = ∑
i

xk
i = mk

sλ = ∑
T∈SSYT(λ)

xweight(T) = ∑
µ`|λ|

Kλ,µmµ

Relationship with symmetric polynomials For each n ∈ N, there is an
algebra morphism obtained by setting the variables xn+1, xn+2, . . . to 0:

Sym evaln−−−→ C[x1, . . . , xn]
Sn .

For d 6 n, this restricts to an isomorphism of vector spaces

Symd
evaln−−−→ C[x1, . . . , xn]

Sn
d

because

• {mλ : λ ∈ Partd} is a basis of Symd, and

• {mλ(x1, . . . , xn) : λ ∈ Partd} is a basis7 of C[x1, . . . , xn]
Sn
d . 7 Recall from Corollary 5 that the

polynomials mλ(x1, . . . , xn) as λ ranges
over all partitions of d of length at most
n form a basis of C[x1, . . . , xn]

Sn
d . Since

d 6 n, we have `(λ) 6 d 6 n and so the
second condition is superfluous.

Thus,8

8 In other words, the algebra of symmet-
ric functions is an inverse limit:

Sym = lim←−
n

C[x1, . . . , xn]
Sn

identities that are valid in C[x1, . . . , xn]
Sn for all n

are also valid in Sym.
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2.11 Symmetric functions via algebraic independence

Another way to construct the algebra of symmetric functions is based on
the algebraic independence of the elementary symmetric polynomials:

C[x1, . . . , xn]
Sn = C[e1, . . . , en].

One defines Sym to be a commutative ring generated by countably
many indeterminates denoted e1, e2, . . .,

Sym = C[e1, e2, e3, . . .].

For each n ∈N, there is an algebra morphism

Sym evaln−−−→ C[x1, . . . , xn]
Sn

ek 7−→ ek(x1, . . . , xn).

The other bases of Sym are defined in relation to the eλ; for example,

ek = m1k

pk = mk

hk = ∑
λ`k

mλ

sλ = ∑
µ`|λ|

Kλ,µmµ

Remark 24. This is the approach used in SageMath’s implementation
of Sym: one defines an algebra with a basis indexed by partitions and
then other bases are defined with respect to this basis.

2.12 Symmetric functions, TL;DR

There is an abstract algebra of symmetric functions called Sym that
admits a basis indexed by partitions,

{eλ : λ ∈ Part},

and projections onto the algebras of symmetric polynomials

Sym evaln−−−→ C[x1, . . . , xn]
Sn

eλ 7−→ eλ(x1, . . . , xn)

If an identity holds in each of the projections, then it holds in Sym:

for f , g ∈ Sym,

f = g⇐⇒ f (x1, . . . , xn)︸ ︷︷ ︸
evaln( f )

= g(x1, . . . , xn)︸ ︷︷ ︸
evaln(g)

for all n ∈N.

To verify an identity in Sym, it suffices to verify it in C[x1, . . . , xn]Sn for
a sufficiently large n:

f = g ⇐⇒ f (x1, . . . , xn) = g(x1, . . . , xn)

for some n > max{deg( f ), deg(g)}.
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2.13 Some expansions
Expanding eλ results in a sum of
monomials of the form

(xa1,1
1 xa1,2

2 . . . xa1,n
n )

eλ1

· · · (x
al,1
1 x

al,2
2 . . . x

al,n
n )

eλl

where (ak,1, ak,2, . . . , ak,n) is a sequence
of 0s and 1s that sum to λk. Thus, they
are in bijection with 0/1-matrices [ai,j]i,j
whose row sums are λ.

Monomial expansion of elementary symmetric functions Let λ ∈ Partn.

eλ = ∑
µ∈Partn

Mλ,µmµ,

where Mλ,µ is the number of matrices with entries in {0, 1} whose rows
sum to λ and columns sum to µ. Consequently, the transition matrix
between the bases {mλ : λ ` n} and {eλ : λ ` n} is symmetric.

Monomial expansion of homogeneous symmetric functions Let λ ∈ Partn.

hλ = ∑
µ∈Partn

Nλ,µmµ,

where Nλ,µ is the number of matrices with entries in N whose rows
sum to λ and columns sum to µ. Consequently, the transition matrix
between the bases {mλ : λ ` n} and {hλ : λ ` n} is symmetric.

Monomial expansion of power sum symmetric functions Let λ ∈ Partn.

pλ = ∑
µ∈Partn

Rλ,µmµ,

where Rλ,µ is the number of ordered set partitions (B1, . . . , Bk) of [`(λ)]
such that µj = ∑i∈Bj

λi for all j ∈ [k].

Power sum expansion of elementary and homogeneous symmetric functions

hn = ∑
λ`n

1
zλ

pλ

en = ∑
λ`n

(−1)n−`(λ) 1
zλ

pλ

where

zµ = 1d1 d1! 2d2 d2! · · · ndn dn! where di = multi(µ).

Monomial expansion of Schur functions Let λ ∈ Partn.

sλ = ∑
µ∈Partn

Kλ,µmµ,

where Kλ,µ is the number of SSYT of shape λ and content µ. More generally, if λ/ν is a skew parti-
tion of size n, then

sλ/ν = ∑
µ∈Partn

Kλ/ν,µmµ,

where Kλ/ν,µ is the number of SSYT of
shape λ/ν and content µ.
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2.14 What to read next

A very delightful introduction to generating functions that does an
excellent job of (visually) presenting the underlying ideas appears in

• Concrete Mathematics: A Foundation for Computer Science, by
Ronald Graham, Donald Knuth, and Oren Patashnik; see Chapter 7.

Afterwards, I strongly recommend

• The Symmetric Group: Representations, Combinatorial
Algorithms, and Symmetric Functions, by Bruce E.Sagan.

• Chapter 4, sections 4.1–4.6, on symmetric functions.

• Chapter 5, section 5, on chromatic symmetric functions.

Other nice introductions to symmetric functions can by found in:

• Combinatorics: The Art of Counting, by Bruce E. Sagan.

• Enumerative Combinatorics, volume 2, by Richard P. Stanley.

After having read these notes, you should have enough background to
start9 reading Stanley’s paper in which XΓ is introduced and to begin 9 One does not read a paper in one

sitting, but in phases. See

1. How to Read Mathematics, by Shai
Simonson and Fernando Gouvea

2. How to Read a Research Paper, by
Matt Baker

3. How to Read a [Computer Science]
Paper, by S. Keshav

appreciating some of the results. It contains formulas for expansions
of the XΓ in other bases, the connection with acyclic orientiations, and
other nice properties.

• A Symmetric Function Generalization of the Chromatic Polyno-
mial of a Graph, by Richard P. Stanley (1995).
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3 Symmetric functions from representations of symmetric groups

3.1 Initiation to representation theory

A representation (over C) of a group G is a morphism of groups

ρ : G −→ GL(V), where V is a C-vector space.

By fixing a basis of V, we get a matrix representation of G:

ρ : G −→ GLn(C).

G-modules It is important to view ρ as a linear action of G on V via

g •~v = ρ(g)(~v) (g ∈ G, ~v ∈ V)

With this definition, on has

g •
(
α~v + β~u

)
= α(g •~v) + β(g • ~u) (~v,~u ∈ V, g ∈ G, α, β ∈ C) (2)

(gh) •~v = g • (h •~v) (~v ∈ V, g, h ∈ G) (3)

e •~v = ~v (~v ∈ V) (4)

A CG-module, or more simply a G-module, is a C-vector space V equipped
with an action of G verifying the conditions (2), (3), (4).

From modules to representations Let V be a G-module with basis B and
action denoted by g •~v. Then the function ρ : G −→ GLn(K)

ρ(g) = [g]B ,

where [g]B is the matrix of ~v 7→ g •~v in B, is a representation of G.
~e1

~e2

~e3

Figure 6: Triangle situated in R3. There
are six isometries: the identity element;
counter-clockwise rotations of 2π/3
and 4π/3 degrees about the center of
the triangle; and the refletions in the
angle bisectors at vertices ~e1, ~e2, ~e3.

Illustrating example

• Let G be the group of isometries of the triangle in R3 whose vertices
are ~e1, ~e2 and ~e3; cf. Figure 6.

• R3 is a G-module: g •~v is the image of ~v under the isometry g.

• Each isometry is a linear transformation, so it can be represented
by a matrix (with respect to the basis (~e1,~e2,~e3)):[ 1 0 0

0 1 0
0 0 1

] [ 0 1 0
0 0 1
1 0 0

] [ 0 0 1
1 0 0
0 1 0

] [ 1 0 0
0 0 1
0 1 0

] [ 0 0 1
0 1 0
1 0 0

] [ 0 1 0
1 0 0
0 0 1

]
• Expressing these in the basis B = (~e1 −~e2,~e2 −~e3,~e1 +~e2 +~e3), we

get block diagonal matrices:[ 1 0 0
0 1 0
0 0 1

] [
−1 1 0
−1 0 0
0 0 1

] [
0 −1 0
1 −1 0
0 0 1

] [ 1 0 0
1 −1 0
0 0 1

] [
0 −1 0
−1 0 0
0 0 1

] [ −1 1 0
0 1 0
0 0 1

]
• Thus, we have a direct sum decomposition of our vector space

R3 = vect{~e1 −~e2,~e2 −~e3} ⊕ vect{~e1 +~e2 +~e3}

into subspaces that are stable10 for the action of G. 10 W ⊆ V is stable for the action of G if
g • ~w ∈W for all g ∈ G, ~w ∈W.

• General objective: find the finest such decomposition.
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Maschke’s Theorem A module/representation V is irreducible if

• it is non-trivial; and

• it does not admit a proper subspace that is stable for the action of G.

Theorem 25. Let G be a finite group.
For every complex representation G

ρ−→ GL(V), there exists

• a basis B of V and

• irreducible matrix representations ρ1, . . . , ρk of G

such that, for every g ∈ G,

[
ρ(g)

]
B =


ρ1(g) 0 · · · 0

0 ρ2(g) · · · 0
...

...
. . .

...
0 0 · · · ρk(g)

 . (5)

Main problems of representation theory

• Given a group G, determine all its irreducible representations.

• Given a representation, determine its irreducible subrepresentations
up to isomorphism (this is its character).

• Given a representation V, decompose it into a direct sum of ir-
reducible subrepresentations; in other words, find a basis B with
respect to which the matrices [ρ(g)]B are block diagonal as in (5).

Characters The character of a representation ρ : G −→ GLn(C) is the
function χρ : G −→ C defined by

χρ(g) = trace(ρ(g)) (g ∈ G).

Here are a few important properties of characters.

1. Representations are isomorphic iff they have the same character.

2. Characters are constant on conjugacy classes:

if g and h are conjugate in G, then χρ(g) = χρ(h).

3. Since conjugacy classes of Sn correspond to partitions of λ of n, it
is customary to write11 11 The cycle type of a permutation is

the size of the cycles appearing in its
(disjoint) cycle decomposition.

[31524] = (1 3 5 4 2)

cycletype([31524]) = (5)

[52431] = (1 5) (2) (3 4)

cycletype([53241]) = (2, 2, 1)

χ(λ) = χ(w) for any permutation w of cycle type λ.
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3.2 Frobenius characteristic

The Frobenius characteristic establishes a correspondence between
characeters of symmetric groups and symmetric functions.

Frobenius characteristic Let V be a representation of Sn with character
χV . The Frobenius characteristic of V is

Frob(V) =
1
n! ∑

σ∈Sn

χV(σ)pcycletype(σ).

By grouping together terms with the same value of cycletype, we get

Frob(V) = ∑
µ`n

χV(µ)
pµ

zµ
,

where12 12 n!
zµ

is the size of the conjugacy class
of permutations of cycle type µ; equiva-
lently, zµ is the size of the centralizer of
a permutation of cycle type µ.

zµ = 1d1 d1! 2d2 d2! · · · nd1 dn! where di = multi(µ).

Example 26. Returning to our illustrating example of Figure 6, we get

1
6

(
3p111 + 0p3 + 0p3 + p21 + p21 + p21

)
= 1

2 p111 +
1
2 p21

= s21 + s3

Theorem 27. Let CF(Sn) be the algebra of characters13 of Sn. The Frobenius 13 This is usually called the algebra of
class functions.characteristic Frob :

⊕
n CF(Sn) −→ Sym is an algebra isomorphism.

1. The Frobenius characteristic of an irreducible representation of Sn is a
Schur function sλ with λ ` n; and conversely.

2. If χ and ψ are characters of Sn and Sm, respectively, then

Frob(χ)Frob(ψ) = Frob
(

IndSn+m
Sn×Sm

(χψ)
)

.

3. If χ and ψ are characters of Sn, then〈
χ, ψ

〉
Sn

=
〈
Frob(χ), Frob(ψ)

〉
Sym. 〈

χ, ψ
〉

Sn
=

1
n! ∑

σ∈Sn

χ(σ)ψ(σ)〈
sλ, sµ

〉
Sym = δλ,µRemark 28. Notably, the coefficients in the expansion of Frob(V) in

the Schur basis are the multiplicities of the irreducible representations
appearing in a direct sum decomposition of V into irreducibles.
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Graded Frobenius characteristic We will often work with infinite dimen-
sional representations that break down into finite-dimensional pieces.

A vector space V is graded if there are subspaces Vd of V, one for
each d ∈N, such that

V =
⊕
d∈N

Vd.

A graded representation is a graded vector space V =
⊕

d Vd equipped
with an action of the group that maps each component Vd to itself.

In this case, the graded Frobenius characteristic of V =
⊕

d Vd is

Frob(V)(t) = ∑
d

Frob(Vd)td ∈ SymJtK.

3.3 Example: Coinvariant algebra

Consider C[x1, x2, x3] with an action of S3 given by

σ f (x1, x2, x3) = f (xσ(1), xσ(2), xσ(3)).

The ideal generated by the elementary symmetric polynomials

〈e1, e2, e3〉 =
〈

x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3
〉

is invariant under the action of S3 (it consists of symmetric functions).
Thus, the quotient space is also a representation of S3:

C[x1, x2, x3]/〈e1, e2, e3〉.

A basis of this vector space is given by the Schubert polynomials.

S321 = x2
1x2

S312 = x2
1S231 = x1x2

S213 = x1 S132 = x1 + x2

S123 = 1

Figure 7: Schubert polynomials for
permutations of size n = 3.

Schubert polynomials Schubert polynomials are a family of polynomials
indexed by permutations. They can be defined recursively as follows.

1. If w0 is the permutation [n, n− 1, . . . , 2, 1], define

Sw0 = xn−1
1 xn−2

2 · · · x1
n−1.

2. If Sw is defined and w(i) > w(i + 1), define

Swsi = ∂i(Sw),

where the i-th divided difference operator is define as

∂i
(

f (x1, . . . , xn)
)
=

f (x1, . . . , xn)− si
(

f (x1, . . . , xn)
)

xi − xi+1
.

Theorem 29. The Schubert polynomials determine a vector space basis of the
quotient space C[x1, . . . , xn]/In, where In = 〈e1, . . . , en〉. More precisely,{

Sw + In : w ∈ Sn
}

is a basis of C[x1, . . . , xn]/In.
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x2
1x2

123 x2
1x2

132 −x2
1x2

213 −x2
1x2

231 x2
1x2

312 x2
1x2

321 −x2
1x2

x1x2 x2
1

123 x1x2 x2
1

132 −x1x2 − x2
1 x2

1
213 x1x2 −x1x2 − x2

1
231 x2

1 −x1x2 − x2
1

312 −x1x2 − x2
1 x1x2

321 x2
1 x1x2

x1 x1 + x2

123 x1 x1 + x2
132 x1 x1 − (x1 + x2)
213 −x1 + (x1 + x2) x1 + x2
231 −x1 + (x1 + x2) −x1
312 −(x1 + x2) x1 − (x1 + x2)
321 −(x1 + x2) −x1

Figure 8: The action of S3 on the
Schubert basis of C[x1, x2, x3]/I3.

Action of S3 in the Schubert basis It turns out that the subspaces

vect{x2
1x2 + I3} vect{x1x2 + I3, x2

1 + I3}
vect{1 + I3} vect{x1 + I3, x1 + x2 + I3}

are stable for the action of S3; cf. Figure 8.

For example,
s2
(

x2
1x2
)
= x2

1x3,

and since

(x1x2 + x1x3 + x2x3)

I3

x1 = x2
1x2 + x2

1x3 + x1x2x3

I3

,

we have
x2

1x3 + I3 = −x2
1x2 + I3.

As another example,
s2
(

x1x2
)
= x1x3,

and since
(x1 + x2 + x3)

I3

x1 = x2
1 + x1x2 + x1x3

we have
x1x3 + I3 = −(x1x2 + I3)− (x2

1 + I3).

The following table presents the representation matrices on these
subspaces.

S3 vect{x2
1x2} vect{x1x2, x2

1} vect{x1, x1 + x2} vect{1}

123 [ 1 ]
[

1 0
0 1

] [
1 0
0 1

]
[ 1 ]

132 [ −1 ]
[
−1 0
−1 1

] [
1 1
0 −1

]
[ 1 ]

213 [ −1 ]
[

1 −1
0 −1

] [
−1 0

1 1

]
[ 1 ]

231 [ 1 ]
[

0 −1
1 −1

] [
−1 −1

1 0

]
[ 1 ]

312 [ 1 ]
[
−1 1
−1 0

] [
0 1
−1 −1

]
[ 1 ]

321 [ −1 ]
[
−1 0
−1 1

] [
0 −1
−1 0

]
[ 1 ]

Graded Frobenius characteristic

Frob
(
C[x1, x2, x3]/〈e1, e2, e3〉

)
= s111t3 + s21t2 + s21t + s3.
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3.4 Example: Hessenberg ring

123 · f
312

321

231

213

123

132

f321

f231 f312

f213 f132

f123

132 · f
312

321

231

213

123

132

132( f231)

132( f321) 132( f213)

132( f312) 132( f123)

132( f132)

213 · f
312

321

231

213

123

132

213( f312)

213( f132) 213( f321)

213( f123) 213( f231)

213( f213)

231 · f
312

321

231

213

123

132

231( f213)

231( f123) 231( f231)

231( f132) 231( f321)

231( f312)

312 · f
312

321

231

213

123

132

312( f132)

312( f312) 312( f123)

312( f321) 312( f213)

312( f231)

321 · f
312

321

231

213

123

132

321( f123)

321( f213) 321( f132)

321( f231) 321( f312)

321( f321)

Figure 9: Action of S3 on elements of
the Hessenberg ring.

(Big) Hessenberg ring Consider the ring whose elements are tuples of
polynomials from C[t1, t2, t3], one for each permutation w ∈ S3. We
visualize elements as

312

321

231

213

123

132

t2
1(t2 − t3)

t2t3 (t1 + t3)

5t1 1

0

Addition and multiplication are defined component-wise.

Action of Sn If f (w, t1, . . . , tn) denotes the polynomial associated with
w ∈ Sn, then for all v ∈ Sn, we have

(v · f )
(
w, t1, . . . , tn

)
= f

(
v−1w, tv(1), . . . , tv(n)

)
.

In other words,

the polynomial at the vertex w in v · f , is obtained from the polynomial
at the vertex v−1w by permuting its variables according to v.

f
312

321

231

213

123

132

f321

f231 f312

f213 f132

f123

v·−7−−−−→ v · f
312

321

231

213

123

132

v( fv−1321)

v( fv−1231) v( fv−1312)

v( fv−1213) v( fv−1132)

v( fv−1123)

Example 30. To simplify notation, let us write:

tij = ti − tj

Then

s1 •
312

321

231

213

123

132

t21

t31 0

0 0

0

=
312

321

231

213

123

132

0

0 t12

0 t32

0

s1 •
312

321

231

213

123

132

0

t32 0

t12 0

0

=
312

321

231

213

123

132

0

0 0

0 t31

t21
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s1 · f
312

321

231

213

123

132

s1( f312)

s1( f132) s1( f321)

s1( f123) s1( f231)

s1( fs1 )

s2 · f
312

321

231

213

123

132

s2( f231)

s2( f321) s2( f213)

s2( f312) s2( f123)

s2( fs2 )

Figure 10: Action of s1 and s2 on
elements of the Hessenberg ring.

A subquotient of the Hessenberg ring Consider the quotient ring R/I,
where R is the subring generated by

b1

312

321

231

213

123

132

1

1 1

1 1

1

b3

312

321

231

213

123

132

t21

t31 0

0 0

0

b5

312

321

231

213

123

132

t32

0 t31

0 0

0

b2

312

321

231

213

123

132

t21t32

0 0

0 0

0

b4

312

321

231

213

123

132

0

t23 0

t21 0

0

b6

312

321

231

213

123

132

0

0 t12

0 t32

0

and I is the ideal generated by

t1

312

321

231

213

123

132

t1

t1 t1

t1 t1

t1

t2

312

321

231

213

123

132

t2

t2 t2

t2 t2

t2

t3

312

321

231

213

123

132

t3

t3 t3

t3 t3

t3

It turns out that {b1 + I, . . . , b6 + I} is a vector space basis of R/I.

Action on b1. We begin by observing w · b1 = b1 for all w ∈ S3; thus,

S3 acts trivially on the vector space vect{b1 + I}.

Action on b2. We compute

s1 · b2

312

321

231

213

123

132

0

0 t12t31

0 0

0

= b2

312

321

231

213

123

132

t21t32

0 0

0 0

0

+ (t1 − t2)b5

312

321

231

213

123

132

t12t32

0 t12t31

0 0

0

s2 · b2

312

321

231

213

123

132

0

t31t23 0

0 0

0

= b2

312

321

231

213

123

132

t21t32

0 0

0 0

0

+ (t2 − t3)b3

312

321

231

213

123

132

t21t23

t31t23 0

0 0

0

It follows that w ·
(
b2 + I

)
= b2 + I for all w ∈ S3, and so

S3 acts trivially on vect{b2 + I}.
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s1 • b3

312

321

231

213

123

132

t21

t31 0

0 0

0

= b6

312

321

231

213

123

132

0

0 t12

0 t32

0

s1 • b5

312

321

231

213

123

132

t32

0 t31

0 0

0

= b5

312

321

231

213

123

132

t32

0 t31

0 0

0

s2 • b3

312

321

231

213

123

132

t21

t31 0

0 0

0

= b3

312

321

231

213

123

132

t21

t31 0

0 0

0

s2 • b4

312

321

231

213

123

132

0

t23 0

t21 0

0

= b5

312

321

231

213

123

132

t32

0 t31

0 0

0

s1 · b4

312

321

231

213

123

132

0

0 0

0 t13

t12

= b3

312

321

231

213

123

132

t21

t31 0

0 0

0

+ b4

312

321

231

213

123

132

0

t23 0

t21 0

0

+ −b6

312

321

231

213

123

132

0

0 t21

0 t23

0

+ t1 − t2

312

321

231

213

123

132

t12

t12 t12

t12 t12

t12

= −b4

312

321

231

213

123

132

0

t32 0

t12 0

0

+ −b5

312

321

231

213

123

132

t23

0 t13

0 0

0

+ r1 − r2

312

321

231

213

123

132

t32

t23 t31

t21 t13

t12

s2 · b6

312

321

231

213

123

132

0

0 0

t13 0

t23

= −b4

312

321

231

213

123

132

0

t32 0

t12 0

0

+ b5

312

321

231

213

123

132

t32

0 t31

0 0

0

+ b6

312

321

231

213

123

132

0

0 t12

0 t32

0

+ t2 − t3

312

321

231

213

123

132

t23

t23 t23

t23 t23

t23

= −b3

312

321

231

213

123

132

t12

t13 0

0 0

0

+ −b6

312

321

231

213

123

132

0

0 t21

0 t23

0

+ r2 − r3

312

321

231

213

123

132

t21

t31 t12

t13 t32

t23

Figure 11: Action of si on b3, b4, b5, b6.
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Action on b3, . . . , b6. In Figure 11, we have the action of s1 and s2 on
b3, . . . , b6; from which the matrices representing the action of s1, s2 and
s1s2 on vect{b3 + I, b4 + I, b5 + I, b6 + I} are

[s1] =

[
0 1 0 1
0 1 0 0
0 0 1 0
1 −1 0 0

]
[s2] =

[
1 0 0 0
0 0 1 −1
0 1 0 1
0 0 0 1

]
[s1s2] =

[
0 0 1 0
0 0 1 −1
0 1 0 1
1 0 −1 1

]

Hence, the Frobenius characteristic of this representation is

1
6
(4p111 + (3× 2)p21 + (2× 1)p3)

=
2
3

p111 + p21 +
1
3

p3

= 2s3 + s21

and the graded Frobenius characteristic of R/I is

Frob(R/I) = s3t2 + (2s3 + s21)t + s3.

A second subquotient of the Hessenberg ring Consider instead the quotient
ring R/J, with R as above and J the ideal generated by

r1

312

321

231

213

123

132

t3

t2 t3

t2 t1

t1

r2

312

321

231

213

123

132

t2

t3 t1

t1 t3

t2

r3

312

321

231

213

123

132

t1

t1 t2

t3 t2

t3

Combining the identites from Figure 11 with The matrices representing action of S3
on vect{b3 + J, . . . , b6 + J} are:

[s1] =

[
0 0 0 1
0 −1 0 0
0 −1 1 0
1 0 0 0

]

[s2] =

[
1 0 0 −1
0 0 1 0
0 1 0 0
0 0 0 −1

]

[s1s2] =

[
0 0 0 −1
0 0 −1 0
0 1 −1 0
1 0 0 −1

]
The character χ satisfies

χ([1, 1, 1]) = 4

χ([2, 1]) = 0

χ([3]) = −2

whose Frobenius characteristic is 2s21.

s1 · b2

312

321

231

213

123

132

0

0 t12t31

0 0

0

= −b2

312

321

231

213

123

132

−t21t32

0 0

0 0

0

+ (r2 − r3)b5

312

321

231

213

123

132

t21t32

0 t12t31

0 0

0

s2 · b2

312

321

231

213

123

132

0

t31t23 0

0 0

0

= −b2

312

321

231

213

123

132

−t21t32

0 0

0 0

0

+ (r1 − r2)b3

312

321

231

213

123

132

t32t21

t31t23 0

0 0

0

it follows that the graded Frobenius characteristic of R/J is

Frob(R/J) = s111t2 + 2s21t + s3.



lectures on symmetric functions — draft 29

3.5 What to read next

For the representation theory of the symmetric group, I recommend

• The Symmetric Group: Representations, Combinatorial
Algorithms, and Symmetric Functions, by Bruce E.Sagan.

• Chapter 1, Group Representations

• Chapter 2, Representations of the Symmetric Group

For a general introduction to representation theory of finite groups, I
recommend:

• Representations and Characters of Groups,
by Gordon James and Martin Liebeck.

There are many other great resources, but these two are excellent start-
ing points into the theory, and include many examples and exercises.
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4 What are (chromatic) quasisymmetric functions?

Quasisymmetric functions are refinements of symmetric functions.

4.1 Quasisymmetric functions

Recall that a symmetric function can be viewed as a formal power series
of bounded degree such that monomoials with the same multiset of
nonzero exponents have the same coefficient:

Symmetric functions: the coefficient of xα1
i1

xα2
i2
· · · xαl

il
equals the coefficient

of xβ1
j1

xβ2
j2
· · · xβl

jl
whenever {{α1, . . . , αl}} = {{β1, . . . , βl}}.

A quasisymmetric function requires that monomoials with the same
sequence of nonzero exponents have the same coefficient:

Quasisymmetric functions: the coefficient of xα1
i1

xα2
i2
· · · xαl

il
equals the

coefficient of xβ1
j1

xβ2
j2
· · · xβl

jl
whenever (α1, . . . , αl) = (β1, . . . , βl).

Monomial quasisymmetric functions Let α be a composition. The mono-
mial quasisymmetric function Mα is defined as

Mα = ∑
i1<i2<···<il

xα1
i1

xαl
i2
· · · xαl

il
.

For example,

M(2,1) = ∑
i<j

x2
i xj = x2

1x2 + x2
1x3 + x2

2x3 + · · ·

M(1,2) = ∑
i<j

xix2
j = x1x2

2 + x1x2
3 + x2x2

3 + · · ·

m(2,1) = M(2,1) + M(1,2)

More generally, every mλ is refined by the Mα:

mλ = ∑
rearrangements

α of λ

Mα.

Algebra structure Let QSym denote the set of quasisymmetric functions.
It is closed under sums and products, thus it is an algebra.

Proposition 31.
Mα Mβ = ∑

γ

cγ
α,β Mγ,

where cγ
α,β is the number of ways of writing γ as a shuffle sum of α and β.

Example 32.

M[1,2]M[1] = M[1,2,1] + M[1,1+2] + M[1,1,2] + M[1+1,2] + M[1,1,2]

= M[1,2,1] + M[1,3] + M[1,1,2] + M[2,2] + M[1,1,2]
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Fundamental quasisymmetric functions The (Gessel) fundamental quasisym-
metric function Fα indexed by the composition α is

Fα = ∑
β refines α

Mβ.

(1, 1, 1, 1)

(1, 1, 2) (1, 2, 1) (2, 1, 1)

(1, 3) (2, 2) (3, 1)

(4)

Figure 12: Refinement order on compo-
sitions

For example,

F(2,2) = M(2,2) + M(1,1,2) + M(2,1,1) + M(1,1,1,1)

F(1,3) = M(1,3) + M(1,1,2) + M(1,2,1) + M(1,1,1,1)

Some special cases of the fundamental quasisymmetric functions are

F(1n) = M(1n) = m(1n) = en

F(n) = ∑
α∈Compn

Mα = ∑
λ∈Partn

= hn

The fundamental quasisymmetric functions form a basis of QSym
because

Mα = ∑
β refines α

(−1)`(β)−`(α)Fβ.

For example,

M(2,2) = F(2,2) − F(1,1,2) − F(2,1,1) + F(1,1,1,1)

M(1,3) = F(1,3) − F(1,1,2) − F(1,2,1) + F(1,1,1,1)

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Figure 13: Refinement order on com-
positions of 4 under the bijection with
subsets of [3]

Fundamental quasisymmetric expansion of Schur functions There is a bi-
jection between compositions of n and subsets of [n− 1]:

Compn ←→ P([n− 1])(
α1, α2, . . . , αl

) Des7−−−→
{

α1, α1 + α2, . . . , α1 + · · ·+ αl−1
}

(
i1, i2 − i1, . . . , n− il

) compn←−−− [
{

i1 < i2 < · · · < il
}

With this bijection, we can express Fα directly as a formal power series:

Fα = ∑
i16i26···6in

ij<ij+1 if j∈Des(α)

xi1 xi2 · · · xin .

T Des(T) comp5(Des(T))

1 3 5
2 4

{
1, 3
} (

1, 2, 2
)

1 3 4
2 5

{
1, 4
} (

1, 3, 1
)

1 2 4
3 5

{
2, 4
} (

2, 2, 1
)

1 2 5
3 4

{
2
} (

2, 3
)

1 2 3
4 5

{
3
} (

3, 2
)

Figure 14: Descent sets of standard
tableaux of shape (3, 2).

Theorem 33 (Gessel). For any partition λ,

sλ = ∑
T∈SYT(λ)

Fcomp(Des(T))

where Des(T) is the set of i in T such that i + 1 appears below i in T (not
necessarily in the same column).

For example, from Figure 14,

s(3,2) = F(1,2,2) + F(1,3,1) + F(2,2,1) + F(2,3) + F(3,2).
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In a future version of these notes, I
would like to include a section called
Fun with fundamental qua-
sisymmetric functions with some
complementary results/applications,
such as:

• product formula for fundamental
quasisymmetric functions

• going from a fundamental expan-
sion to a Schur expansion via the
Jacobi-Trudi formula

• the Gessel–Reutenauer symmetric
function

4.2 Chromatic quasisymmetric functions

Let Γ = (V, E) be a finite graph on the vertex set V = [n]. We will
consider colourings of the vertices of Γ by positive integers.

N.B. We require here that both the vertex set and the set of colours is ordered.

Recall that a function κ : [n]→N∗ is a proper colouring of Γ if adjacent
vertices are assigned different colours:

{i, j} ∈ E =⇒ κ(i) 6= κ(j).

Define the ascent set and ascent statistic of κ as

AscΓ(κ) = {(i, j) ∈ E : i < j & κ(i) < κ(j)}
ascΓ(κ) = |AscΓ(κ)|.

The chromatic quasisymmetric polynomial14 of Γ is 14 One can think of this as either:

• a quasisymmetric function
in x1, x2, . . . with coefficients
in C[t], i.e. as an element of
QSymC[t](x1, x2, . . .); or

• a polynomial in t with coefficients
in QSym, i.e. as an element of
QSym[t].

XΓ(x; t) = ∑
proper

colourings
κ:[n]→N∗

tascΓ(κ)xκ(1)xκ(2) · · · xκ(n).

Example Let Γ be the path graph 1 2 3 .

• There are two ways to colour Γ with colours { < }:

There is one ascent, giving tM(1,2).

There is one ascent, giving tM(2,1).

• There are 3! ways to colour Γ with colours {1, 2, 3}, one for each
w ∈ S3; the number of ascents of the associated colouring is the
number of ascents of w. This gives (t2 + 4t + 1)M(1,1,1).

Thus,

XΓ(x; t) =
(
t2 + 4t + 1

)
M(1,1,1) + tM(1,2) + tM(2,1)

=
(
t2 + 4t + 1

)
m(1,1,1) + tm(2,1)

Problem In the above example, XΓ(x; t) turned out to be a symmetric
function. This is not always that case. 15 An open problem is to charac- 15 Exercise. Compute the chromatic

quasisymmetric function of the graph

1 3 2

terize the (ordered) graphs Γ for which the quasisymmetric chromatic
function Xγ(x; t) is symmetric.
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Some other examples

Example 34. Let Γ = ([n], ∅). Every κ : [n] → N∗ is a proper colouring,
and asc(κ) = 0 for all κ, so

XΓ(x; t) = ∑
k1,k2,...,kn

xk1 xk2 · · · xkn .

Note that the indices k1, . . . , kn are independent and run through N∗; hence

XΓ(x; t) =
(

∑
k

xk

)n
= en

1 = e(1n).

Example 35. Let Γ be the complete graph on n vertices. Every κ : [n]→N∗

that is a proper colouring of Γ is an injective map, hence

XΓ(x; t) = ∑
injective

κ:[n]→N∗

tasc(κ)xκ(1)xκ(2) · · · xκ(n)

Since asc(κ) depends only on the relative order of (κ(1), κ(2), . . . , κ(n)), we
have in this case that

asc(κ) = asc(std(κ))

where std(κ) is the unique permutation in Sn whose elements appear in the
same relative order as (κ(1), κ(2), . . . , κ(n)). So we group together the κ with
the same value for std:

XΓ(x; t) = ∑
σ∈Sn

tasc(σ) ∑
injective

κ:[n]→N∗

std(κ)=σ

xκ(1)xκ(2) · · · xκ(n)

Note that the monomials in the inner sum are in bijection with the set of all
square-free monomials: if xi1 xi2 · · · xin is square-free with i1 < · · · < in, then
κ(j) = iσ(j) is a proper colouring of Γ and std(κ) = σ. Thus,

XΓ(x; t) = en ∑
σ∈Sn

tasc(σ) = [n]t! en,

where in the last equality we use a well-known identity.16 16 Notation:

[n]t ! = [n]t[n− 1]t · · · [1]t
[i]t = 1 + t + t2 + · · ·+ ti−1
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4.3 Natural unit interval orders

Hessenberg vectors h = (h1, . . . , hn) ∈Nn is a Hessenberg vector if

h1 6 h2 6 · · · 6 hn and i 6 hi 6 n for all i ∈ [n].

Given a Hessenberg vector h = (h1, . . . , hn), define a poset Ph on [n] by

i <h j iff hi < j.

and let Γh = Inc(Ph) be the incomparability graph of Ph:

i and j are connected by an edge in Γh iff

i and j are incomparable in Ph.

To simplify notation, for Hessenberg vectors h, we write

Xh(x; t) = XΓh
(x; t).

X(3,3,3)(x; t) =
(
t3 + 2t2 + 2t + 1

)
m(1,1,1)

=
(
t3 + 2t2 + 2t + 1

)
s(1,1,1)

=
(
t3 + 2t2 + 2t + 1

)
e(3)

X(2,3,3)(x; t) =
(
t2 + 4t + 1

)
m(1,1,1) + tm(2,1)

=
(
t2 + 2t + 1

)
s(1,1,1) + ts(2,1)

= te(2,1) +
(
t2 + t + 1

)
e(3)

X(2,2,3)(x; t) =
(
3t + 3

)
m(1,1,1) +

(
t + 1

)
m(2,1)

=
(
t + 1

)
s(1,1,1) +

(
t + 1

)
s(2,1)

=
(
t + 1

)
e(2,1)

X(1,3,3)(x; t) =
(
3t + 3

)
m(1,1,1) +

(
t + 1

)
m(2,1)

=
(
t + 1

)
s(1,1,1) +

(
t + 1

)
s(2,1)

=
(
t + 1

)
e(2,1)

X(1,2,3)(x; t) = 6m(1,1,1) + 3m(2,1) + m(3)

= s(1,1,1) + 2s(2,1) + s(3)

= e(1,1,1)

Example Let h = (2, 3, 3).

• P(2,3,3) is the poset on {1, 2, 3} with exactly one relation 1 <h 3.

• Its incomparability graph Γ(2,3,3) is

1 2 3

• Thus,
X(2,3,3)(x; t) =

(
t2 + 4t + 1

)
m(1,1,1) + tm(2,1)

Xh(x; t) is symmetric

Theorem 36 (Shareshian–Wachs). If h is a Hessenberg vector, then the
chromatic quasisymmetric function Xh(x; t) is a symmetric function.

The idea of the proof is reminiscent of the Bender–Knuth involution
on semistandard tableaux.

1. Note it suffices to prove invariance under exchanging xc and xc+1.

2. Fix a proper colouring κ of Γh. It turns out that the (induced)
subgraph on the vertices coloured c and c + 1 is a disjoint union of
paths v1 − v2 − · · · − vj with vertices satisfying v1 < v2 < · · · < vj.

1

2

3

4

5

6

7

8

9

10

11

1

4

6

9

2

3 5 7

8

10

11

Figure 15: The Shareshian–Wachs
involution interchanges these two
colourings.

3. For each of these connected components v1 − v2 − · · · − vj:

• if j is even, then do nothing;

• if j is odd, then exchange the colours c and c + 1.

4. The result is a proper colouring with the same ascent statistic.
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Example 37 (Shareshian–Wachs involution). Let

h = (3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 11).

A proper colouring of Γh with { < < } is

1

2

3

4

5

6

7

8

9

10

11

The subgraph induced by the colours { , }, which we assume adjacent, is

2

3 5 7

8

10

11

The Shareshian–Wachs involution maps this subgraph to

2

3 5 7

8

10

11

and thus the image of Γh is

1

4

6

9

2

3 5 7

8

10

11

Note the ascent statistic of Γh and that of its image are equal (even though the
ascent set changes).

4.4 Strengthenings of the Stanley–Stembridge conjecture

Conjecture 38 (Stanley–Stembridge). If Γ is the incomparability graph of a
(3 + 1)-free poset, then the chromatic symmetric function XΓ(x) is e-positive.

Theorem 39 (Guay-Paquet). If Xh(x) is e-positive for all Hessenberg vectors
h, then the Stanley–Stembridge conjecture holds.

Conjecture 40 (Shareshian–Wachs). For every Hessenberg vector h, the
chromatic quasisymmetric function Xh(x; t) is e-positive.
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4.5 Some expansions of chromatic quasisymmetric functions

Schur-expansion Gasharov proved that the chromatic symmetric func-
tion XΓ(x) is Schur-positive whenever Γ is a (3 + 1)-free poset. This
result was extended to chromatic quasisymmetric functions of natural
unit interval orders by Shareshian–Wachs. 17 17 N.B. Incomparability graphs of

natural unit interval orders are both
(3 + 1)-free and (2 + 2)-free.

x y =⇒ x <P y

x
y =⇒ y 6<P x

Figure 16: Illustration of the conditions
defining a P-tableaux

Let P be a poset and λ a partition. A P-tableau of shape λ is a filling
of the diagram of λ with elements of P such that

1. every element of P appears exactly once;
2. if y appears immediately to the right of x, then x <P y;
3. if y appears immediately below18 x, then y 6<P x.

18 in English notation

For a P-tableau T and Γ = Inc(P), define

invΓ(T) =
∣∣∣{{i, j} ∈ E(Γ) : i < j and i is in a row below j in T

}∣∣∣
Theorem 41 (Shareshian–Wachs, Theorem 6.3). Let h be a Hessenberg
vector. Recall that Γh denotes the incomparability graph of the natural unit
interval order Ph. Then

Xh(x; t) = ∑
Ph-tableaux T

tinvΓh (T)sshape(T)

= ∑
λ

 ∑
Ph-tableaux T
shape(T)=λ

tinvΓh (T)

 sλ.

Example 42. Let h = (2, 3, 3). Then P(2,3,3) and Γ(2,3,3) are as follows.

1

2

3

P(2,3,3)

1 2 3

Γ(2,3,3)

The P-tableaux, with their inversions highlighted, are

1 3
2

1
2
3

1
3
2

2
1
3

3
2
1

Thus,
X(2,3,3)(x; t) = ts(2,1) + (1 + 2t + t2)s(1,1,1).



lectures on symmetric functions — draft 37

Fundamental-expansion Chow described an expansion of XΓ(x) in the
F-basis of QSym, which Shareshian and Wachs19 generalized to an 19 Note that the Shareshian–Wachs

paper uses a nonstandard definition of
Fα; see their footnote 3.

expansion of XΓ(x; t).

• For a graph Γ with vertex set [n] and a permutation σ ∈ Sn, define

invΓ(σ) =
∣∣∣{{u, v} ∈ E(Γ) : u < v and v appears before u in σ

}∣∣∣
• For a poset P on [n] and a permutation σ ∈ Sn, define If we define

DesP(σ) =
{

i ∈ [n− 1] : σ(i) >P σ(i+ 1)
}

,

then

AscP(σ) = [n− 1] \DesP(σ).

AscP(σ) =

{
i ∈ [n− 1] :

i and i + 1 are incomparable in P
or σ(i) <P σ(i + 1)

}
asccompP(σ) = compn(AscP(σ))

Theorem 43 (Shareshian–Wachs, Theorem 3.1). Let Γ be the incompara-
bility graph of a poset P on [n].

XΓ(x; t) = ∑
σ∈Sn

tinvΓ(σ)Frev(asccompP(σ))

Example 44. Let P be the poset on [3] whose only relation is 1 <P 3. Then
Γ = Inc(P) is the graph 1− 2− 3 with edges {1, 2} and {2, 3}.

is edge a Γ-inversion? is position a P-ascent?
S3 (1, 3) (2, 3) invΓ 1 2 AscP asccompP

[123] no no 0 yes yes {1, 2} (1, 1, 1)
[132] no yes 1 yes yes {1, 2} (1, 1, 1)
[213] yes no 1 yes yes {1, 2} (1, 1, 1)
[231] yes no 1 yes no {1} (1, 2)
[312] no yes 1 no yes {2} (2, 1)
[321] yes yes 2 yes yes {1, 2} (1, 1, 1)

e(3) = F(1,1,1)

e(2,1) = F(1,1,1) + F(1,2) + F(2,1)

e(1,1,1) = F(1,1,1) + 2F(1,2) + 2F(2,1) + F(3)

XΓ(x; t) = F(1,1,1) +
(
2F(1,1,1) + F(2,1) + F(1,2)

)
t + F(1,1,1)t

2

= e(3) +
(
e(3) + e(2,1)

)
t + e(3)t

2

Example 45. Let P be the poset on [3] whose only relation is 1 <P 2. Then
Γ = Inc(P) is the graph 1− 3− 2 with edges {1, 3} and {2, 3}.

is edge a Γ-inversion? is position a P-ascent?
S3 (1, 3) (2, 3) invΓ 1 2 AscP asccompP

[123] no no 0 yes yes {1, 2} (1, 1, 1)
[132] no yes 1 yes yes {1, 2} (1, 1, 1)
[213] no no 0 no yes {2} (2, 1)
[231] yes no 1 yes yes {1, 2} (1, 1, 1)
[312] yes yes 2 yes yes {1, 2} (1, 1, 1)
[321] yes yes 2 yes no {1} (1, 2)

XΓ(x; t) =
(

F(1,1,1) + F(2,1)
)
t0 + 2F(1,1,1)t

1 +
(

F(1,1,1) + F(1,2)
)
t2

=
(
1 + 2t + t2)F(1,1,1) + F(1,2) + t2F(2,1)

Takeway messages:

1. XΓ(x; t) depends on the labelling of
the vertices of Γ.

2. If Γ′ is a relabelling of Γ, it is
possible that XΓ(x; t) is symmetric
and XΓ′ (x; t) is not symmetric.

Add section What to read next that
– cites recent trends in quasisymmetric functions https://
arxiv.org/pdf/1810.07148.pdf;
– cite recent Symmetric Functions Cataolog;
– cite tutorial on Symmetric Functions in SageMath

https://arxiv.org/pdf/1810.07148.pdf
https://arxiv.org/pdf/1810.07148.pdf
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5 LLT polynomials / Plethysm

5.1 (Unicellular) LLT polynomials

Figure 17: The skew-partition
(4, 2, 2, 1)/(3, 2, 1) consists of the 3

depicted white cells.

0
−2

Figure 18: Diagonal index of the cells
(2, 2) and (3, 1).

LLT polynomials are a family of symmetric functions introduced by
A Lascoux, B Leclerc, and J-Y Thibon as a means to study plethysm
coefficients. There are multiple ways to index the LLT polynomials, and
we will follow the definition as presented in Haglund–Haiman–Loeher,
in which the LLT polynomials are indexed by skew-partitions.

Skew-partitions If λ and µ are partitions such that the diagram of λ

contains the diagram of µ, then the skew-partition λ/µ consists of the
cells of λ that do not belong to µ.

If a cell c lies in row i and column j, then diagonal index20 is
20 Sometimes called the “content” of the
cell.diag(c) = j− i.

Tuple of skew-tableaux A semistandard skew-tableau of shape λ/µ is a
filling of the cells of the diagram of λ/µ such that the entries are weakly
increasing in rows and strictly increasing in columns.

Given a tuple of semistandard skew-tableaux(
T1, . . . , Tk)

~T

∈ SSYT
(
ν1)× SSYT

(
ν2)× · · · × SSYT

(
νk)

SSYT(~ν), where ~ν=(ν1,ν2,...,νk)

we say that cells c ∈ νi and d ∈ νj form an inversion of ~T if

• ~T(c) > ~T(d), where ~T(c) denotes the entry in cell c; and either

• i < j and diag(c) = diag(d), or i > j and diag(c) = diag(d) + 1.

Let Inv(~T) denote the set of inversions of ~T, and inv(~T) = |Inv(~T)|.

(Unicellular) LLT polynomials The LLT polynomial indexed by ~ν is

LLT~ν(x; t) = ∑
~T∈SSYT(~ν)

tinv(~T)x~T .

If every νi in ~ν is a single cell, then LLT~ν(x; t) is unicellular. • LLT~ν(x; t) are symmetric in the
x variables; see, for example,
Theorem 3.3 of HHL2005.

• In HHL2005, this function is
denoted G~ν(x; t).

Expansion in the fundamental quasisymmetric basis

LLT~ν(x; t) = ∑
~T∈SYT(ν)

tinv(~T)Fidescomp(~T)(x),

where the inverse descent composition is computed from the reading
word of ~T (which is obtained by traversing the cells of ~ν in the opposite
order of the one we define below).
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5.2 Unicellular LLT polynomials and chromatic quasisymmetric functions

It turns out there is an intriguing relationship between unicellular LLT
polynomials and chromatic quasisymmetric functions. To understand
this, we begin by reformulating Inv(~T) in terms of the ascent statistic
of a certain graph associated with ~ν.

diag(c) = diag(d)
diag(c) = diag(d′) + 1

νj′

νi

νj

d′

c

d

Figure 19: Illustration of the defining
conditions of the edges of Γ~ν.

Order on the cells of ~ν Given a tuple of skew-partitions

~ν = (ν1, ν2, . . . , νk),

align the diagrams on a grid so that cells with the same diagonal index
lie on the same diagonal. Order the cells by scanning along diagonals
from right-to-left, starting with the bottom-most diagonal:21 21 If we write ξ(c) = (j− i,−a,−i) for

the cell c in position (i, j) of νa, then we
are ordering the cells of ~ν in increasing
lexicographic order of ξ(c).

8 11

2 5

4 7 10

1

9

3 6

Graph associated to ~ν Define a graph Γ~ν (cf. Figure 19 and Figure 20) on
the cells of ~ν with an edge connecting c ∈ νi and d ∈ νj whenever

• i < j and diag(c) = diag(d); or

• i > j and diag(c) = diag(d) + 1.

Since these are precisely the conditions from the definition of Inv(~T),

Inv(~T) =
{
{u, v} ∈ E(Γ~ν) : u < v & ~T(u) < ~T(v)

}
= AscΓ~ν(

~T),

where we view ~T as a function from the cells of ~ν into N∗.

Figure 20: The graph Γ~ν for ~ν =
(21/2, 32/31, 21/3, 11/1).

Proposition 46. If ~ν is unicellular, then

LLT~ν(x; t) = ∑
all colourings

κ:[k]→N∗

tasc(κ)xκ(1)xκ(2) · · · xκ(k),

where k = `(~ν) and asc(κ) = |AscΓshape(~ν)
(κ)|.

Proof. If ~ν is unicellular, then ~T ∈ SSYT(~ν) associates a positive integer
κ(i) to the unique cell in component i of ~ν; in other words, it defines a
map κ : [k]→N∗, and conversely.

There is an operation on the algebra of symmetric functions that has
the effect of eliminating the improper colourings in the summation. cite Haglund–Xin, Novelli–Thibon, Carlsson–Mellit
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Theorem 47. If ~ν is unicellular, then

XΓ~ν(x; t) =
1

(t− 1)|`(~ν)|
LLT~ν[(t− 1)x; t].

Figure 21: Γ(1/∅,2/1,3/1)

Example 48. Consider ~ν =
(
(1)/∅, (2)/(1), (3)/(2)

)
. Then

Γ~ν = 1 2 3 = Γ(2,3,3).

We compute Γ~ν explicitly22 by working with the variables (x1, x2, x3). There 22 Or, one can use the formula for the
expansion of LLT~ν(x; t) in the basis of
fundamental quasisymmetric functions.

LLT~ν(x; t)

= ∑
~T∈SYT(ν)

tinv(~T)Fidescomp(~T)

= ∑
w∈S3

tascΓ~ν
(w)Fidescomp(rev(w))(x)

= t2F(1,1,1) + 2t(F(1,2) + F(2,1)) + F(3)

= t2s(1,1,1) + 2ts(2,1) + s(3)

rev(w) iDes comp3

[321] {1, 2} (1, 1, 1)
[231] {1} (1, 2)
[312] {2} (2, 1)
[132] {2} (2, 1)
[213] {1} (1, 2)
[123] {} (3)

w ascΓ~ν

[123] 2

[132] 1

[213] 1

[231] 1

[312] 1

[321] 0

are 33 = 27 possible colourings, which we represent as words.

κ asc(κ) κ asc(κ) κ asc(κ)

111 0 211 0 311 0
112 1 212 1 312 1
113 1 213 1 313 1
121 1 221 0 321 0
122 1 222 0 322 0
123 2 223 1 323 1
131 1 231 1 331 0
132 1 232 1 332 0
133 1 233 1 333 0

LLT(3,3,3) = LLT(
1/∅,1/∅,1/∅

)
= t3s(1,1,1) + (t2 + t)s(2,1) + s(3)

LLT(2,3,3) = LLT(
1/∅,2/1,3/2

)
= t2s(1,1,1) + 2ts(2,1) + s(3)

LLT(2,2,3) = LLT(
1/∅,1/∅,3/2

)
= ts(1,1,1) + (t + 1)s(2,1) + s(3)

LLT(1,3,3) = LLT(
3/2,1/∅,3/2

)
= ts(1,1,1) + (t + 1)s(2,1) + s(3)

LLT(1,2,3) = LLT(
1/∅,3/2,5/4

)
= s(1,1,1) + 2s(2,1) + s(3)

Thus,

LLT~ν(x1, x2, x3; t)

=
(

x3
1 + x2

1x2 + x1x2
2 + x3

2 + x2
1x3 + x1x2x3 + x2

2x3 + x1x2
3 + x2x2

3 + x3
3
)

2
(
x2

1x2 + x1x2
2 + x2

1x3 + 2x1x2x3 + x2
2x3 + x1x2

3 + x2x2
3
)
t + x1x2x3t2

= s(3) + 2s(2,1)t + s(1,1,1)t
2

= 1
6
(
t2 + 4t + 1

)
p(1,1,1) − 1

2
(
t− 1

)(
t + 1

)
p(2,1) +

1
3 (t− 1)2 p(3).

The plethystic substitution satisfies

pk[(t− 1)x] = (tk − 1)pk(x)

so that

p(3)[(t− 1)x] = (t3 − 1)p(3)(x)

p(2,1)[(t− 1)x] = (t2 − 1)(t− 1)p(2,1)(x)

p(1,1,1)[(t− 1)x] = (t− 1)3 p(1,1,1)(x)

and hence

1
(t−1)3 LLT~ν[(t− 1)x; t]

= 1
6 (t

2 + 4t + 1)p(1,1,1) − 1
2 (t + 1)2 p(2,1) +

1
3 (t

2 + t + 1)p(3)

= (t2 + 2t + 1)s(1,1,1) + ts(2,1) = X(2,3,3)(x; t).
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5.3 What is plethysm?

Characters of GLn(C) For each partition λ such that `(λ) 6 n, there
exists an irreducible GLn(C)-representation ρλ that admits a basis23 23 Derutys’s construction (1892)

Eλ =
{

eT : T ∈ SSYT(λ, [n])
}

satisfying
diag(x1, . . . , xn) • eT = xT eT .

Its character is trace of matrix representing this action:

χλ(x1, . . . , xn) = ∑
T∈SSYT(λ,[n])

xT = sλ(x1, . . . , xn).

Notation:

x2
1x3 ←→ 1 1

3
←→ x1 x1

x3

Illustrating example

1. For n = 2 and λ = (2),

ρ(2)

([
x1 0
0 x2

])
=

x2
1 0 0

0 x1x2 0
0 0 x2

2

 =


x 1 1 0 0

0 x 1 2 0

0 0 x 2 2


whose trace is

x 1 1
+ x 1 2

+ x 2 2
= ∑

T∈SSYT((2),[2])
xT = s(2)(x1, x2).

2. For n = 3 and λ = (2, 1),

[ y1 0 0
0 y2 0
0 0 y3

]
ρλ7−→



y
1 1
2 · · · · · · ·

· y
1 1
3 · · · · · ·

· · y
1 2
2 · · · · ·

· · · y
1 2
3 · · · ·

· · · · y
1 3
2 · · ·

· · · · · y
1 3
3 · ·

· · · · · · y
2 2
3 ·

· · · · · · · y
2 3
3


whose trace is

∑
T∈SSYT((2,1),[3])

yT = s(2,1)(y1, y2, y3).

3. Observe that we can compose these representations and that the
character of the composition ρ(2,1) ◦ ρ(2) is

s(2,1)

(
x 1 1 , x 1 2 , x 2 2

)
= s(2,1)

(
x2

1, x1x2, x2
2

)
=
(

s(3,2,1) + s(4,2) + s(5,1)

)
(x1, x2).
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Composition of GL-characters Let

GLn(K)
ρ−→ GLm(K) and GLm(K)

τ−→ GL`(K)

be two representations such that the composition τ ◦ ρ is defined.

The character χτ [χρ] of τ ◦ ρ : GLn(K) −→ GL`(K) is obtained by replacing
the i-th variable of χτ(y1, . . . , ym) by the i-th monomial in of χρ(x1, . . . , xn).

This operation on polynomials admits an extension to Sym (i.e., so that
the result is independent of the number of variables).

Motivation of the axiomatic definition What should f [g] look like?
For all A ∈ GLn(K),

(ρ1 ⊕ ρ2)(τ(A)) = ρ1(τ(A))⊕ ρ2(τ(A))

(ρ1 ⊗ ρ2)(τ(A)) = ρ1(τ(A))⊗ ρ2(τ(A))

1. If ρ = ρ1 ⊕ ρ2, then (ρ1 ⊕ ρ2) ◦ τ = (ρ1 ◦ τ)⊕ (ρ2 ◦ τ), so that

χ(ρ1⊕ρ2)◦τ = χρ1⊕ρ2 [χτ ] =
(
χρ1 + χρ2

)
[χτ ]

χ(ρ1⊕ρ2)◦τ = χ(ρ1◦τ)⊕(ρ2◦τ)

= χρ1◦τ + χρ2◦τ = χρ1 [χτ ] + χρ2 [χτ ].

So one would like

( f1 + f2)[g] = f1[g] + f2[g] ( f1, f2, g ∈ Sym)

Similarly, by considering tensor products of representations,24 24 If ρ = ρ1 ⊗ ρ2, then

(ρ1 ⊗ ρ2) ◦ τ = (ρ1 ◦ τ)⊗ (ρ2 ◦ τ),

and so

χ(ρ1⊗ρ2)◦τ

= χρ1⊗ρ2 [χτ ]

=
(
χρ1 χρ2

)
[χτ ]

and

χ(ρ1⊗ρ2)◦τ

= χ(ρ1◦τ)⊗(ρ2◦τ)

= χρ1◦τχρ2◦τ = χρ1 [χτ ]χρ2 [χτ ].

( f1 f2)[g] = f1[g] f2[g] ( f1, f2, g ∈ Sym)

2. Under the projections Sym −→ C[x1, . . . , xn]Sn , we would expect

pr[ps](x1, . . . , xn) = pr[xs
1 + · · ·+ xs

n] = xsr
1 + · · ·+ xsr

n

= prs(x1, . . . , xn) = ps[pr](x1, . . . , xn)

pr[ps + pt](x1, . . . , xn) = pr

[
xs

1 + · · ·+ xs
n + xt

1 + · · ·+ xt
n

]
=
(

xsr
1 + · · ·+ xsr

n
)
+
(
xtr

1 + · · ·+ xtr
n
)

=
(

pr[ps] + pr[pt]
)
(x1, . . . , xn)

pr[ps pt](x1, . . . , xn) = pr

[(
xs

1 + · · ·+ xs
n
)(

xt
1 + · · ·+ xt

n
)]

= ∑
i

∑
j
(xs

i yt
j)

r = ∑
i

xsr
i ∑

j
ytr

i

=
(

pr[ps]pr[pt]
)
(x1, . . . , xn)

These conditions uniquely define an operation on Sym, called plethysm.
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Plethysm There exists a unique operation on Sym, called plethysm and
denoted by f [g], satisfying:

(P1) f 7→ f [g] is an algebra morphism for all g ∈ Sym.

(P2) g 7→ pr[g] is an algebra morphism for all r > 1. Attention: the function g 7→ f [g] is not
in general an algebra map.

(P3) pr[ps] = prs for all r, s > 1.

Furthermore, this operation satisfies the following properties.

1. pr[ f ](x1, . . . , xn) = f (xr
1, . . . , xr

n) for all f ∈ Sym and r > 1.

2. pr[ f ] = f [pr] for all f ∈ Sym and r > 1.

3. p1[ f ] = f = f [p1] for all f ∈ Sym.

4. f [g[h]] = ( f [g])[h] for all f , g, h ∈ Sym.

5.4 Plethystic notation

Another widespread way to define plethysm makes use of the notion
of an “alphabet”. The guiding principal here is that:

an expression of the form f [A] represents the image of f ∈ Sym under a ring
morphism φA : Sym −→ R that is determined by an element A of the ring R.

The rings and ring morphisms here turn out to be quite special.

Lambda rings A λ-ring is a commutative ring R equipped with a family
of operators λk : R −→ R, one for each k ∈ N, that verify conditions
that abstract the operations of direct sum ⊕, tensor product ⊗, and the
exterior product Λk on vector spaces. For instance, one has One also has

λ2(uv) = λ1(u)2λ2(v) + λ2(u)λ1(v)2

− 2λ2(u)λ2(v)

which parallels the vector space isomor-
phism[
Λ2(U ⊗V

)]
⊕ 2
[
Λ2(U)⊗Λ2(V)

]
∼=
[
Λ1(U)⊗Λ1(U)⊗Λ2(V)

]
⊕
[
Λ2(U)⊗Λ1(V)⊗Λ1(V)

]

λk(u + v) =
n

∑
i=0

λi(u)λn−i(v)

because for vector spaces U and V one has

Λk(U ⊕V) =
n⊕

i=0

Λi(U)⊗Λn−i(V).

Sym is a λ-ring Sym is a λ-ring with operations λk(e1) = ek, which
parallels the fact that the GLn(C)-character of ΛkCn is ek. Moreover,

Sym is the free λ-ring on one generator; it is generated by e1.

Consequently, each element A of a λ-ring R determines a unique
morphism of λ-rings25 φA : Sym −→ R such that 25 A morphism of λ-rings is a ring

morphism that commutes with the λk

operations.φA(e1) = A and f [g] := φg( f ).

f [g] is characterized by φ f [g] = φg ◦ φ f ,
which says that plethysm corresponds
to the composition of λ-ring endomor-
phisms of Sym.
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Example 49. Here are some common examples that one finds in the literature.

• It is customary to write X = x1 + x2 + x3 + · · · , where {x1, x2, . . .} is
the set of variables. In this case, X is precisely e1 so that φ = IdSym and

f [X] = f [x1 + x2 + x3 + · · · ] = f [e1] = f .

• For a finite set of variables, commonly written as Xn = x1 + x2 + · · ·+ xn,
one has

f [x1 + x2 + · · ·+ xn] = f (x1, x2, . . . , xn).

Here, φ is the canonical projection of Sym onto C[x1, . . . , xn]Sn .

• The notation f [X + Y] corresponds to the coproduct26 of f , defined by 26 Sym is a Hopf algebra, so admits a
product, coproduct, antipode, etc.

f [X + Y] = ∆( f ) = f [p1 ⊗ 1 + 1⊗ p1],

where φ = ∆ : Sym −→ Sym⊗ Sym, ∆(pk) = pk ⊗ 1 + 1⊗ pk.

• The notation f [−X] is the image of f under the endomorphism of Sym
defined by φ(pk) = −pk (this is the antipode of Sym).

The (t− 1)-transform of Sym So how does one interpret f [(t− 1)X]?

• Firstly, (t − 1)X = (t − 1)e1, so we are working with the λ-ring
morphism that maps e1 to (t− 1)e1.

• However, one needs to be careful because the base ring is C[t],
which is a λ-ring via the operations

λk(z) =
(

z
k

)
(z ∈ C)

and λk(t) =


1, si k = 0,

t, si k = 1,

0, si k > 2.

With this in mind, we compute p2[(t− 1)X] as follows.

p2[(t− 1)X]

= φ(t−1)e1
(p2) p2 = e11 − 2e2

= φ(t−1)e1
(e11)− 2φ(t−1)e1

(e2)

= φ(t−1)e1
(e1e1)− 2φ(t−1)e1

(λ2(e1))

= φ(t−1)e1
(e1)

2 − 2λ2(φ(t−1)e1
(e1)

)
= (t− 1)2e11 − 2λ2((t− 1)e1

)
λ2(uv) = λ1(u)2λ2(v) + λ2(u)λ1(v)2

− 2λ2(u)λ2(v)
= (t− 1)2e11 − 2

(
(t− 1)2e2 + λ2(t− 1)e11 − 2λ2(t− 1)e2

)
= (t− 1)2e11 − 2

(
(t− 1)2e2 − (t− 1)e11 + 2(t− 1)e2

)
λ2(t− 1) = (1)(−1

2 ) + (t)(−1) + (0)(1)

= 1− t
= (t− 1)2e11 − 2

(
(t2 − 1)e2 − (t− 1)e11

)
= (t2 − 1)e11 − 2(t2 − 1)e2

= (t2 − 1)(e11 − 2e2)

= (t2 − 1)p2.
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λ-anneaux Voici la définition complète de λ-anneaux. translate to English...

Les axiomes sont des « décatégorifi-
cations » de certaines isomorphismes
dans la catégorie des espaces vectoriels.
Par exemple,

λk(x⊕ y) =
n

∑
i=0

λi(x)λn−i(y)

est un écho de l’isomorphisme

Λk(X⊕Y
)
=

n⊕
i=0

Λi(X)⊗Λn−i(Y);
et l’axiome

λ2(xy) = λ1(x)2λ2(y) + λ2(x)λ1(y)2

− 2λ2(x)λ2(y)

est un écho de l’isomorphisme[
Λ2(X⊗Y

)]
⊕ 2
[
Λ2(X)⊗Λ2(Y)

]
∼=
[
Λ1(X)⊗Λ1(X)⊗Λ2(X)

]
⊕
[
Λ2(Y)⊗Λ1(Y)⊗Λ1(Y)

]
.

Definition 50. Un λ-anneau est un anneau unitaire commutatif R muni
d’une famille d’opérateurs λk : R −→ R, un pour chaque k ∈ N, qui
vérifient les axiomes suivants pour tous x, y ∈ R:

1. λ0(x) = 1
2. λ1(x) = x
3. λn(1) = 0 pour n > 2
4. λn(x + y) = ∑n

i=0 λi(x)λn−i(y)
5. λn(xy) = Pn

(
λ1(x), λ2(x), . . . , λn(x); λ1(y), λ2(y), . . . , λn(y)

)
6. λn(λm(x)) = Pn,m

(
λ1(x), λ2(x), . . . , λnm(x)

)
où Pn et Pn,m sont les polynômes définis par

∑
n>0

Pn
(
e1(x), . . . , en(x); e1(y), . . . , en(y)

)
tn = ∏

i>1
∏
j>1

(
1 + xiyjt

)
∑
n>0

Pn,m
(
e1(x), e2(x), . . . , enm(x)

)
tn = ∏

i1<i2<···<im

(
1 + xi1 xi2 · · · xim t

)
Example 51. Voici certains des polynômes Pn et Pn,m:

P1(x1; y1) = x1y1

P2(x1, x2; y1, y2) = x2
1y2 + x2y2

1 − 2x2y2

Example 52 (λ-anneaux). • L’anneau des entiers Z est λ-anneau, où

λk(n) =
(

n
k

)
.

• L’anneau de polynômes symétriques à n variables et à coefficients dans Z

est un λ-anneau, où

λk( f ) = ek[ f ] et λk(m) =

(
m
k

)
pour tout polynôme symétrique f et tout m ∈ Z. Le fait que λk(e1) = ek dans l’anneau de

fonctions symétriques est un écho du
fait que le GLn(C)-caractère de Λk(Cn)
est ek(x1, . . . , xn).

• L’anneau de fonctions symétriques ΛZ est un λ-anneau, où

λk( f ) = ek[ f ] et λk(n) =
(

n
k

)
.

pour tout f ∈ ΛZ et tout n ∈ Z.

Proposition 53. Λ est engendré comme λ-anneau par e1; en outre, il est le
λ-anneau libre engendré par un seul générateur. Ainsi, pour définir un
morphisme de λ-anneaux φ : Λ −→ R, il suffit de préciser l’image de e1, car

φ(ek) = φ(λk(e1)) = λk(φ(e1)).
add to:
– use the λ-ring structure to compute images of say e2 and
e3;
– add information how to do plethysm computations in
SageMath – section on “What to read next”
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