Chromatic Symmetric Functions \& LLT polynomials

Franco Saliola

LACIM, Université du Québec à Montréal

Polynomials

- $\mathbb{N}=\{0,1,2, \ldots\}$
- x will denote a family of variables: $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$,

$$
x^{a}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \quad\left(x_{i}^{0}=1\right)
$$

- A polynomial $f(x)$ in the variables $x=\left(x_{1}, \ldots, x_{n}\right)$ is written as

$$
f(x)=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} x^{\alpha}=\sum_{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}}^{c_{\left(a_{1}, a_{2}, \ldots, a_{n}\right)} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}}
$$

Symmetric polynomials

- Let S_{n} denote the group of permutations of $[n]=\{1,2, \ldots, n\}$.
- A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is symmetric if

$$
f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots x_{\sigma(n)}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \text { for all } \sigma \in S_{n}
$$

- Example. Which of the following symmetric polynomials?

$$
x_{1}^{2}+x_{2} x_{3} \quad x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3} \quad x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}
$$

- Algebra of symmetric polynomials:

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: f \text { is symmetric }\right\} .
$$

- Observation: If $17 x_{20}^{2} x_{22}^{5}$ is a term in a symmetric polynomial, then so is $17 x_{1}^{2} x_{2}^{5}$ and $17 x_{2}^{2} x_{1}^{5}$, and \ldots
- So, to construct a symmetric polynomial, symmetrize a monomial:

$$
\begin{aligned}
& x_{1}^{2} x_{2}^{5} \stackrel{\text { symmetrize }}{\longmapsto} x_{1}^{2} x_{2}^{5}+x_{2}^{2} x_{1}^{5}+x_{1}^{2} x_{3}^{5}+x_{2}^{2} x_{3}^{5}+x_{3}^{2} x_{1}^{5}+x_{3}^{2} x_{2}^{5} \\
& x_{1}^{2} x_{2}^{5} x_{3}^{2} \stackrel{\text { symmetrize }}{\longmapsto} x_{1}^{2} x_{2}^{5} x_{3}^{2}+x_{2}^{2} x_{1}^{5} x_{3}^{2}+x_{1}^{2} x_{3}^{5} x_{2}^{2}
\end{aligned}
$$

- Monomial symmetric functions:

$$
m_{\left(\lambda_{1}, \ldots, \lambda_{l}\right)}\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i_{1}}^{\lambda_{1}} x_{i_{2}}^{\lambda_{2}} \cdots x_{i_{l}}^{\lambda_{l}}
$$

the sum over all distinct monomials with exponents $\lambda_{1} \geqslant \ldots \geqslant \lambda_{l}$.

- partition of length l :
sequence $\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ of positive integers satisfying $\lambda_{1} \geqslant \ldots \geqslant \lambda_{l}$
- Theorem. Every symmetric polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ can be written uniquely as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\text { all partitions } \lambda \\ \text { of length } \leqslant n}} c_{\lambda} m_{\lambda}\left(x_{1}, \ldots, x_{n}\right)
$$

Recurring theme: symmetric polynomials from S_{n}-actions

Given

- a set of combinatorial objects \mathcal{O}
- a map $\varepsilon: \mathcal{O} \rightarrow \mathbb{N}^{n}$, written $\varepsilon(T)=\left(\varepsilon_{1}(T), \ldots, \varepsilon_{n}(T)\right)$
- an action of S_{n} on \mathcal{O} compatible with ε
the following polynomial is symmetric:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in \mathcal{O}} x_{1}^{\varepsilon_{1}(T)} x_{2}^{\varepsilon_{2}(T)} \cdots x_{n}^{\varepsilon_{n}(T)}
$$

Tableaux

- Let λ be a partition of n; for example, $\lambda=(5,4,4,1)$.
- The (Young) diagram of λ looks like this:

λ_{1} elements in first row
λ_{2} elements in second row etc.
- A semistandard (Young) tableau of shape λ is a filling of the cells of the Young diagram of λ by positive integers with entries weakly increasing in rows and strictly increasing in columns:

6			
5	7		
4	4	5	
	7		
2	2	4	

Schur polynomial indexed by λ

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in \operatorname{SSYT}(\lambda,[n])} x_{1}^{\varepsilon_{1}(T)} \cdots x_{n}^{\varepsilon_{n}(T)}
$$

where

- $\operatorname{SSYT}(\lambda,[n])=$ semistandard tableaux of shape λ and with entries in $[n]=\{1,2, \ldots, n\}$
- $\varepsilon_{i}(T)$ is the number of copies of i in T
- Example. SSYT $(\square,\{1,2,3\})$ consists of

2		3		2		3		2		3		3		3	
1	1	1	1	1	2	1	2	1	3	1	3	2	2	2	3

$$
\begin{aligned}
& s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
\end{aligned}
$$

Elementary symmetric functions

$$
\begin{gathered}
s_{(1,1,1)}(x)=x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4} \\
\begin{array}{|c}
\frac{3}{2} \\
\hline 1 \\
\hline
\end{array} \sqrt[\boxed{4}]{\frac{4}{3}} \\
\hline \frac{3}{1} \\
\hline \frac{4}{3} \\
\hline
\end{gathered}
$$

- k-th elementary symmetric polynomial:

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}} \cdots x_{i_{k}}=s_{1^{k}}\left(x_{1}, \ldots, x_{n}\right)
$$

- algebraically independent: $e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{l}}$ are linearly independent and form a basis of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$

$$
e_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{l}}
$$

Complete symmetric functions

$$
\begin{aligned}
& s_{(3)}(x)=x_{1}^{3}+x_{1} x_{2}^{2}+\cdots+x_{3} x_{3} x_{4}+\cdots \\
& \begin{array}{l|l|l|}
\hline 1 & 1 & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline 1|2| 2 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|}
\hline 3 & 3 & 4 \\
\hline
\end{array}
\end{aligned}
$$

- k-th complete symmetric polynomial: sum of all degree k monomials

$$
h_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{k}} x_{i_{1}} \cdots x_{i_{k}}=s_{(k)}\left(x_{1}, \ldots, x_{n}\right)
$$

- algebraically independent: another basis of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$

$$
h_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots h_{\lambda_{l}}
$$

Power sum symmetric functions

- k-th power sum symmetric polynomial:

$$
p_{k}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}
$$

- algebraically independent: another basis of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$

$$
p_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots p_{\lambda_{l}}
$$

Chromatic Symmetric Functions

- A graph $\Gamma=(V, E)$ is a set of vertices V and a set of edges E.
- Example. $V=\{1,2,3\}$ and $E=\{\{1,2\},\{2,3\}\}$, encodes the graph

- An colouring of Γ is a function $\kappa: V \rightarrow C$, with C a set of colours.
- A colouring κ is proper if adjacent vertices have different colours:

$$
\{i, j\} \in E \Longrightarrow \kappa(i) \neq \kappa(j)
$$

$\longleftrightarrow \quad x_{1}^{2} x_{3} x_{4} x_{6}^{2}$
combinatorial object
monomial
(proper colouring)

$$
\begin{array}{rr}
\bigcirc \leftrightarrow x_{1} & \bigcirc \leftrightarrow x_{4} \\
\bigcirc \leftrightarrow x_{2} & \leftrightarrow x_{5} \\
\leftrightarrow x_{3} & \ddots
\end{array}
$$

The chromatic symmetric function of Γ is a sum of monomials, one for each proper colouring of Γ :

$$
28 x_{1}^{2} x_{3} x_{4} x_{6}^{2}+144 x_{1} x_{2} x_{3} x_{5} x_{6}^{2}+\cdots
$$

:

Another example

- Let's compute $X_{\Gamma}\left(x_{1}, x_{2}, x_{3}\right)$, where

$$
\Gamma=\bigcirc-\bigcirc-\bigcirc
$$

- 3 ! ways to colour Γ with colours $\{1,2,3\}$, each giving $x_{1} x_{2} x_{3}$.
- 2 ways to colour Γ with colours $\{i, j\}$, giving $x_{i}^{2} x_{j}$ and $x_{i} x_{j}^{2}$.
- 0 ways to colour Γ with only one colour - no occurrences of x_{i}^{3}.

$$
\begin{aligned}
& X_{\Gamma}\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad=6 x_{1} x_{2} x_{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
& \quad=6 m_{(1,1,1)}+m_{(2,1)}
\end{aligned}
$$

- Express $X_{\Gamma}(x)$ in a different basis:

$$
\begin{aligned}
X_{\Gamma}(x) & =28 x_{1}^{2} x_{3} x_{4} x_{6}^{2}+144 x_{1} x_{2} x_{3} x_{5} x_{6}^{2}+\cdots \\
& =720 m_{111111}+144 m_{21111}+28 m_{2211} \\
& =168 s_{111111}+60 s_{21111}+28 s_{2211} \\
& =28 e_{42}+32 e_{51}+108 e_{6}
\end{aligned}
$$

- Some numerology:
$28+32+108=\#$ acyclic orientations of Γ $28+32=\#$ acyclic orientations of Γ with 2 sinks $108=\#$ acyclic orientations of Γ with 1 sink

e-expansions and acyclic orientations

- Theorem (Stanley). If $X_{\Gamma}=\sum_{\lambda} c_{\lambda} e_{\lambda}$, then

$$
\sum_{\ell(\lambda)=j} c_{\lambda}=\# \text { acyclic orientations of } \Gamma \text { with exactly } j \text { sinks. }
$$

- Open problem: Characterize the graphs for which X_{Γ} is e-positive.
- Conjecture (Stanley-Stembridge). If Γ is the incomparability graph of a $(3+1)$-free poset, then X_{Γ} is e-positive.

Chromatic quasisymmetric functions

- Let $\Gamma=(V, E)$ be a finite graph on the vertex set $V=[n]$. We will consider colourings κ of the vertices by positive integers.
- Define the ascent statistic of κ as

$$
\operatorname{asc}_{\Gamma}(\kappa)=|\{(i, j) \in E: i<j \mathcal{\&} \kappa(i)<\kappa(j)\}|
$$

- The chromatic quasisymmetric function of Γ is

$$
X_{\Gamma}(x ; t)=\sum_{\substack{\text { proper } \\ \text { colourings } \\ \kappa:[n] \rightarrow \mathbb{N}^{\times}}} t^{\operatorname{asc}_{\Gamma}(\kappa)} x_{\kappa(1)} x_{\kappa(2)} \cdots x_{\kappa(n)} .
$$

- $\Gamma=(1-2-3$
- There are two ways to colour Γ with colours $\{$ (\gg i $\}$:

there is one ascent, giving $t x_{i} x_{j}^{2}$
there is one ascent, giving $t x_{i}^{2} x_{j}$
This gives $t \sum_{i<j} x_{i}^{2} x_{j}+t \sum_{i<j} x_{i} x_{j}^{2}$.
- There are 3 ! ways to colour Γ with colours $\{$ (i) $<\mathrm{i}\}$:

This gives $\left(t^{2}+4 t+1\right) \sum_{i<j<k} x_{i} x_{j} x_{k}$.

- In the example, $X_{\Gamma}(x ; t)$ is symmetric in the x variables
- However, this is not always the case!
- Shareshian \& Wachs identified a class of graphs for which $X_{\Gamma}(x ; t)$ is symmetric
- For this class of graphs, they conjecture $X_{\Gamma}(x ; t)$ is e-positive

Tuples of skew-partitions

- If the diagram of λ contains the diagram of μ, then the skew-partition λ / μ consists of the cells of λ that are not in μ.

$$
\begin{aligned}
& \lambda=(4,2,2,1) \\
& \mu=(3,2,1) \\
& \lambda / \mu \text { contains } 3 \text { cells }
\end{aligned}
$$

- Tuples of skew-tableaux, aligned according to diagonals:

Inversions in tuples of skew-tableaux

Given a tuple of skew-tableaux $\left(T_{1}, \ldots, T_{k}\right)$, a pair of cells $c \in T_{i}$ and $d \in T_{j}$ form an inversion if

- $T_{i}(c)>T_{j}(d)$, where $T_{i}(c)$ denotes the entry in cell c and either:
- $i<j$ and $\operatorname{diag}(c)=\operatorname{diag}(d)$, or
- $i>j$ and $\operatorname{diag}(c)=\operatorname{diag}(d)+1$.

$$
\operatorname{diag}(c)=\operatorname{diag}\left(d^{\prime}\right)+1
$$

$$
, \operatorname{diag}(c)=\operatorname{diag}(d)
$$

LLT Polynomials

- For a tuple of skew-partitions $\vec{\nu}=\left(\nu^{1}, \nu^{2}, \ldots, \nu^{k}\right)$,

$$
\operatorname{LLT}_{\vec{\nu}}(x ; t)=\sum_{\substack{\vec{T}=\left(T_{1}, \ldots, T_{k}\right) \\ T^{i} \in \operatorname{SSYT}\left(\nu^{i}\right)}} t^{\operatorname{inv}(\vec{T})} x^{T_{1}} \cdots x^{T_{k}}
$$

- $\operatorname{LLT}_{\vec{\nu}}(x ; t)$ are symmetric in the x variables.
- Example. $s_{(3)}+2 t s_{(2,1)}+t^{2} s_{(1,1,1)}$

Unicellular LLT polynomials

If every ν^{i} in $\vec{\nu}$ is a single cell, then $\operatorname{LLT}_{\vec{\nu}}(x ; t)$ is unicellular.

- Define a graph $\Gamma_{\vec{\nu}}$ on the cells of $\vec{\nu}$ with an edge connecting $c \in \nu^{i}$ and $d \in \nu^{j}$ whenever
- $i<j$ and $\operatorname{diag}(c)=\operatorname{diag}(d)$; or
- $i>j$ and $\operatorname{diag}(c)=\operatorname{diag}(d)+1$.

- $\operatorname{inv}(\vec{T})$ statistic equals the ascent statistic of the colouring

Proposition. If $\vec{\nu}=\left(\nu^{1}, \ldots, \nu^{k}\right)$ is unicellular, then

$$
\operatorname{LLT}_{\vec{\nu}}(x ; t)=\sum_{\substack{\text { all colourings } \\ \kappa:[k] \rightarrow \mathbb{N}^{\times}}} t^{\operatorname{asc}(\kappa)} x_{\kappa(1)} x_{\kappa(2)} \cdots x_{\kappa(k)}
$$

Example.

$\operatorname{LLT}_{\vec{\nu}}\left(x_{1}, x_{2}, x_{3} ; t\right)=s_{(3)}+2 t s_{(2,1)}+t^{2} s_{(1,1,1)}$

From LLT to chromatic quasisymmetric polynomials

Theorem. If $\vec{\nu}=\left(\nu^{1}, \ldots, \nu^{k}\right)$ is unicellular, then

$$
X_{\Gamma_{\vec{\nu}}}(x ; t)=\frac{1}{(t-1)^{k}} \operatorname{LLT}_{\vec{\nu}}[(t-1) x ; t]
$$

- If f is a symmetric function, then $f[(t-1) x]$ denotes the plethystic substitution defined by

$$
p_{k}[(t-1) x]=\left(t^{k}-1\right) p_{k}(x) .
$$

- Attention: You have to switch bases first!

Representation theory

- A representation (over \mathbb{C}) of a group G is a morphism of groups

$$
\rho: G \rightarrow \mathrm{GL}(V), \quad \text { where } V \text { is a } \mathbb{C} \text {-vector space. }
$$

- By fixing a basis of V, we get a matrix representation of G :

$$
\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})
$$

and we define the character of the representation as

$$
\chi_{\rho}(g)=\operatorname{trace}(\rho(g))
$$

Symmetric functions from representations of S_{n}

- Let V be a representation of S_{n} with character χ.
- The Frobenius characteristic of V is the symmetric function

$$
\operatorname{Frob}(V)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi(\sigma) p_{\text {cycletype }(\sigma)}
$$

- A graded representation is a graded vector space $V=\bigoplus_{d \in \mathbb{N}} V_{d}$ equipped with an action of the group that maps each component V_{d} to itself. The graded Frobenius characteristic of $V=\bigoplus_{d} V_{d}$ is

$$
\operatorname{Frob}(V)(t)=\sum_{d} \operatorname{Frob}\left(V_{d}\right) t^{d} \in \operatorname{Sym} \llbracket t \rrbracket .
$$

Theorem. Let $\mathrm{CF}\left(S_{n}\right)$ be the algebra of characters of S_{n}.

- Frob : $\bigoplus_{n} \mathrm{CF}\left(S_{n}\right) \rightarrow$ Sym is an algebra isomorphism.
- The Frobenius characteristic of an irreducible character is a Schur function s_{λ}; and conversely.
- If χ and ψ are characters of S_{n} and S_{m}, respectively, then

$$
\operatorname{Frob}(\chi) \operatorname{Frob}(\psi)=\operatorname{Frob}\left(\operatorname{Ind}_{S_{n} \times S_{m}}^{S_{n+m}}(\chi \psi)\right) .
$$

- If χ and ψ are characters of S_{n}, then

$$
\langle\chi, \psi\rangle_{S_{n}}=\langle\operatorname{Frob}(\chi), \operatorname{Frob}(\psi)\rangle_{\mathrm{Sym}} .
$$

