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Polynomials

« N=1{0,1,2,...}
« x will denote a family of variables: = = (11, 29,...,1,)

e Fora= (al,ag,...,an) e N”,

2t =z af? (¥ =1)

« A polynomial f(x) in the variables x = (z1,...,x,) is written as
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Symmetric polynomials

« Let S, denote the group of permutations of [n] = {1,2,...,n}.
« A polynomial f(x1,...,zy) is symmetric if

F(@o(1)s To(2)s - - Tan)) = f(T1, 72, ..., Tn) forall o € S,,.
o Example. Which of the following symmetric polynomials?

2 2 2
T] + x2x3 T1x2 + T2T3 + T1X3 ]+ T1x2 + 75

Algebra of symmetric polynomials:

Clay, ... zn]"" = {f € Clxy,...,zp]: fis sgmmetrlc}.
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 Observation:
If 17 22, 25, is a term in a symmetric polynomial,
then so is 172725 and 17235 27, and . ..

* So, to construct a symmetric polynomial, symmetrize a monomial:

2 5 Symmetrize 2 5 2.5 2.5 2.5 2,5 2,5
T|Ty > T1Ty + Tox] + T1x3 + Tox3 + X377 + T35

2 5 2 Symmetrize o 5 o 2. 5 2 2 5 2
TiT9xy ——— T{Tyx3 + x53T7x3 + X7T325
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e Monomial symmetric functions:

: . b\ — A1, A2 Al
Mg, ) (1, Tn) = E L A

the sum over all distinct monomials with exponents A\; > ... > \;.

e partition of length [:
sequence (Ag,...,A;) of positive integers satisfying A\ > ... > )\

« Theorem. Every symmetric polynomial in C[z1,...,z,]%" can be
written uniquely as

flxy,... xp) = Z exm(z, ... xy)

all partitions A
of length < n



Recurring theme: symmetric polynomials from S,,-actions

Given

* a set of combinatorial objects O
« amape: O — N, written e(T) = (e1(T),...,en(T))

* an action of S, on O compatible with

the following polynomial is symmetric:

f(l‘la s 7$n> = Z .Iil(T) ,I§2(T) . ‘/Efzn(T)
TeO
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Tableaux

« Let A be a partition of n; for example, A = (5,4,4,1).

« The (Young) diagram of X looks like this:

A1 elements in first row

A2 elements in second row

‘ etc.

e A semistandard (Young) tableau of shape A is a filling of the cells
of the Young diagram of A\ by positive integers with entries
weakly increasing in rows and strictly increasing in columns:

W~
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Schur polynomial indexed by A
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e £;(T) is the number of copies of i in T’
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Schur polynomial indexed by A

3/\(11: sy 'T'n) = Z .’Eil(T) e :CZTL(T)
TESSYT(A,[n))
where
e SSYT(\, [n]) = semistandard tableaux of shape A

and with entries in [n] = {1,2,...,n}
e =;(T) is the number of copies of i in T’

« Example. SSYT(H], {1,2,3}) consists of

2 3 2 3 2 3 3

1] [a]a] []2] [1]2] [1]3] [1]3] [2]2]




Schur polynomial indexed by A

where

sx(z1, ...

f-T'n) =

D

TESSYT(\[n])

xil(T) ..

X

en(T)

n

e SSYT(A,[n]) = semistandard tableaux of shape A

and with entries in [n] = {1,2,...,n}

e =;(T) is the number of copies of i in T’

« Example. SSYT(H], {1,2,3}) consists of
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5(2,1)(931, T2, 73)

2 2 2 2 2 2
=22 + x{x3 + T125 + 2T12273 + T1T3 + T3x3 + T2x3



Elementary symmetric functions
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Elementary symmetric functions

5(1,1,1)(95) = T1T2%3 + T1T2T4 + T1T3T4 + T2T3%4

e k-th elementary symmetric polynomial:

er(x1,. .. ) = Z Tiy - Xy, = Sk (T1, ..., Tn)
11 <tg<--<ig

e algebraically independent: ey ey, - - ex
and form a basis of C[zy,...,z,]°"

, are linearly independent

CA A2, N) = EALCAg T BN



Complete symmetric functions

s@(z) = @i+ @23 +oooF zawzmg +oo

([1]1] (1][2]2]




Complete symmetric functions
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Complete symmetric functions

8(3)(56) = .I‘% + :L‘1$% +---+ T334 + -
(11]1] [1[2]2]

o k-th complete symmetric polynomial: sum of all degree k& monomials

hk(l‘l,...,xn): Z J,‘il---a?ik:S(k)(l‘l,...,l‘n)
11 < <<
o algebraically independent: another basis of C[z1, ... ,,]%"



Power sum symmetric functions

e k-th power sum symmetric polynomial:

pk($],$7l):$lf+$§++xfl

o algebraically independent: another basis of Clzy, ..., z,]""

\) = PxiPxg PN



Chromatic Symmetric Functions

* A graphT' = (V, E) is a set of vertices V and a set of edges E.

« Example. V' ={1,2,3} and E = {{1,2},{2,3}}, encodes the graph

O——O



Chromatic Symmetric Functions

* A graphT' = (V, E) is a set of vertices V and a set of edges E.

Example. V = {1,2,3} and E = {{1,2},{2,3}}, encodes the graph

O——O

e An colouring of T" is a function x : V' — C, with C' a set of colours.

» A colouring & is proper if adjacent vertices have different colours:

{i.j} € B = £(i) # £(j)-



combinatorial object
(proper colouring)



— ZC% T3y CC%

combinatorial object monomial
(proper colouring)
@-= @-u
Qe @

O(—)(ﬂg .(—)Zﬁ



The chromatic symmetric function of I' is a sum of
monomials, one for each proper colouring of I':

28 2?2 x3x4x6 144 :clxgxgxg,xg +

1
!
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Another example

Let's compute Xp(z1,xo,z3), where
r - O0—0—0
¢ 3! ways to colour I" with colours {1, 2,3}, each giving zjz223.

2

« 2 ways to colour T with colours {3, j}, giving 2?z; and T2y

« 0 ways to colour T with only one colour — no occurrences of z7.
Xr (21,22, 73)

2 2., .2 2, .2 2

= 6x1x0T3 + Tix2 + X125 + 13 + X123 + Tox3 + Tox3

= 6m,1,1) + M2,






» Express Xpr(x) in a different basis:

Xr(z) =28 ff%$3$4$g + 144 $1m2x3m5x§ 4+ e
=T720m111111 + 144 moq111 + 28 mao11
= 168 5111111 + 60 821111 + 28 89911
= 28e49 + 32¢e51 + 108 eg



» Express Xpr(x) in a different basis:

Xr(x) =28 x%mguxg + 144 :legwgmg,x% 4
= 720ma11111 + 144 may111 + 28 mao1y
= 168 s111111 + 60 s21111 + 28 $2211
= 28e49 + 32¢e51 + 108 eg

* Some numerology:

28 + 32 4 108 = # acyclic orientations of I'
28 + 32 = # acyclic orientations of I' with 2 sinks
108 = # acyclic orientations of I with 1 sink
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e-expansions and acyclic orientations

« Theorem (Stanley). If X1 =) " cxey, then
A

Z ¢y = # acyclic orientations of I' with exactly j sinks.
t((N)=j

o fI'= T\ | /. then Xp =e@g1 1) — 2e(2.2) + e(3,1) + 4e).

« Open problem: Characterize the graphs for which X is e-positive.

» Conjecture (Stanley—Stembridge). If I" is the incomparability
graph of a (3 + 1)-free poset, then X is e-positive.
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Chromatic quasisymmetric functions

« LetI' = (V, E) be a finite graph on the vertex set V' = [n]. We
will consider colourings « of the vertices by positive integers.

 Define the ascent statistic of k as
ascr(k) = H(4,j) e E:i<j &r(i) < k(j)}
e The chromatic quasisymmetric function of T is

Xp(wst) = Y T Oaymee) - e
proper
colourings
K:[n]—N*






 There are two ways to colour I' with colours {@ < “}



 There are two ways to colour I' with colours {@ < “}
o——0 there is one ascent, giving txl-x?



 There are two ways to colour I' with colours {@ < “}

o——0 there is one ascent, giving txl-x?
O—e— there is one ascent, giving tziz;



 There are two ways to colour I' with colours {@ < “}

o——0 there is one ascent, giving txl-x?
O—e— there is one ascent, giving tziz;
This gives t 3, . zir; 13 le“?



e There are two ways to colour I with colours {@ < o}

o——0 there is one ascent, giving txix?
O—e— there is one ascent, giving tziz;
This gives t 3, . ziwj+t >icy xzxg

 There are 3! ways to colour I' with colours {@ < . < G}

O—@—@ ~ 2 ascents ~ t2z;z iz,
O—@—@ ~ 1 ascents ~ tlazzjzy,
@—O—@ ~ 1 ascents ~ tlazz iz,
@—@— ~ 1 ascents ~ tla;zjzy,
@— —® ~ 1 ascents ~ tlazjzy
@—@— ~ 0 ascents ~ t%z;z;xy,



e There are two ways to colour I with colours {@ < o}

o——0 there is one ascent, giving txix?
O—e— there is one ascent, giving tziz;
This gives t 3, . ziwj+t >icy xzxg

 There are 3! ways to colour I' with colours {@ < . < G}

O—@—@ ~ 2 ascents ~ t2z;z iz,
O—@—@ ~ 1 ascents ~ tlazzjzy,
@—O—@ ~ 1 ascents ~ tlazz iz,
@—@— ~ 1 ascents ~ tla;zjzy,
@— —® ~ 1 ascents ~ tlazjzy
@—@— ~ 0 ascents ~ t%z;z;xy,
This gives (#2 4+ 4t +1)>"

i<j<k TiljTk-
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In the example, X1 (z;t) is symmetric in the = variables
However, this is not always the case!

Shareshian & Wachs identified a class of graphs for which
Xr(x;t) is symmetric

For this class of graphs, they conjecture Xp(z;t) is e-positive
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Tuples of skew-partitions

« If the diagram of A contains the diagram of p, then the
skew-partition A/ consists of the cells of A that are not in p.

A=(4,2,2,1)
B= (3’ 2, 1)
A/p contains 3 cells

e Tuples of skew-tableaux, aligned according to diagonals:

316 |
9]




Inversions in tuples of skew-tableaux

Given a tuple of skew-tableaux (77, ..., Tj),
a pair of cells c € T; and d € T} form an inversion if

e Ti(c) > Tj(d), where Tj(c) denotes the entry in cell ¢

and either:

e i < j and diag(c) = diag(d), or
e i > j and diag(c) = diag(d) + 1.



Inversions in tuples of skew-tableaux

Given a tuple of skew-tableaux (77, ..., Tj),
a pair of cells c € T; and d € T} form an inversion if

e Ti(c) > Tj(d), where Tj(c) denotes the entry in cell ¢

and either:

e i < j and diag(c) = diag(d), or

e i > j and diag(c) = diag(d) + 1.

- diag(c) = diag(d’) +1
.. diag(c) = diag(d)




LLT Polynomials

« For a tuple of skew-partitions 7 = (v',12,... V"),
LLT (z;t) = > DT Tk
T=(T1,...,Tx)

TeSSYT(v?)



LLT Polynomials

« For a tuple of skew-partitions 7 = (v',12,... V"),
LLTy(z;t) = ) Anv(D) T T
T=(Ty,....,T)
T¢eSSYT(v?)

o LLT5(x;t) are symmetric in the = variables.



LLT Polynomials

« For a tuple of skew-partitions 7 = (v',12,... V"),
LLT (z;t) = > DT Tk
f?(Tla---ka)
TeSSYT(v?)

o LLT5(x;t) are symmetric in the = variables.

» Example. s3) + 2t s2,1) + t2 S(1,1,1)



Unicellular LLT polynomials

If every v* in 7 is a single cell, then LLTy(z;t) is unicellular.



e Define a graph I'; on the cells of ¥ with an edge connecting
c € v and d € 17 whenever
e i < j and diag(c) = diag(d); or
e i > j and diag(c) = diag(d) + 1.




e Define a graph I'; on the cells of ¥ with an edge connecting
c € v and d € 17 whenever
e i < j and diag(c) = diag(d); or
e i > j and diag(c) = diag(d) + 1.

« inv(T) statistic equals the ascent statistic of the colouring



Proposition. If # = (v',...,v¥) is unicellular, then

LLTz(xz;t) = Z tasc(’i)l‘ﬂ(l)x’ﬁ@) C Tk -
all colourings
K:[k]—>N*

Example.

LLT (21, 22, 35t) = $(3) + 2ts(2.1) + £8(1,1,1)



From LLT to chromatic quasisymmetric polynomials

Theorem. If 7 = (v',...,v") is unicellular, then

Xr, (@5t) = —— LLT,[(t — D)a; 1.
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From LLT to chromatic quasisymmetric polynomials

Theorem. If 7 = (v',...,v") is unicellular, then

Xr, (@5t) = —— LLT,[(t — D)a; 1.

1
(t—1F

o If f is a symmetric function, then f[(t — 1)z] denotes the
plethystic substitution defined by

pel(t = Dz] = (" = 1)pe(a).



From LLT to chromatic quasisymmetric polynomials

Theorem. If 7 = (v',...,v") is unicellular, then

Xy (w3t) = ———= 7 LLTH{(t — 1) t].

1
(t—1F

o If f is a symmetric function, then f[(t — 1)z] denotes the
plethystic substitution defined by

pel(t = Dz] = (" = 1)pe(a).

o Attention: You have to switch bases first!



* More details in the notes!



Representation theory

* A representation (over C) of a group G is a morphism of groups

p:G— GL(V), where V is a C-vector space.



Representation theory

* A representation (over C) of a group G is a morphism of groups
p:G— GL(V), where V is a C-vector space.
» By fixing a basis of V, we get a matrix representation of G:
p: G — GL,(C),
and we define the character of the representation as

Xp(9) = trace(p(g))



Symmetric functions from representations of .5,

e Let V' be a representation of S,, with character .

e The Frobenius characteristic of V' is the symmetric function
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Symmetric functions from representations of .5,

e Let V' be a representation of S,, with character .

e The Frobenius characteristic of V' is the symmetric function

1
FI‘Ob(V) = ] E X(U) Peycletype(o)
T 0ES,

* A graded representation is a graded vector space V' = @ oy Va
equipped with an action of the group that maps each component
Vy to itself. The graded Frobenius characteristic of V.=, Vy is

Frob(V)(t) =Y Frob(Vy)t! € Syml[t].
d



Theorem. Let CF(S,,) be the algebra of characters of S,,.

 Frob : @@, CF(S,,) — Sym is an algebra isomorphism.

e The Frobenius characteristic of an irreducible character is a
Schur function sy; and conversely.

« If x and v are characters of S,, and S;,, respectively, then
Frob(y)Frob() = Frob (Indgz;gm(x¢)) .

 If x and v are characters of S, then

(X ¢>Sn = (Frob(x), Frob(¢)>sym.



