Chromatic Symmetric Functions & LLT polynomials

Franco Saliola LACIM, Université du Québec à Montréal

• $\mathbb{N} = \{0, 1, 2, \ldots\}$

```
• \mathbb{N} = \{0, 1, 2, \ldots\}
```

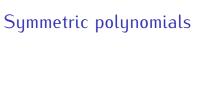
• x will denote a family of variables: $x = (x_1, x_2, \dots, x_n)$

- $\mathbb{N} = \{0, 1, 2, \ldots\}$
- x will denote a *family* of variables: $x = (x_1, x_2, \dots, x_n)$

• For
$$a=(a_1,a_2,\dots,a_n)\in \mathbb{N}^n$$
,
$$x^a=x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \qquad (x_i^0=1)$$

- $\mathbb{N} = \{0, 1, 2, \ldots\}$
- x will denote a *family* of variables: $x = (x_1, x_2, \dots, x_n)$
- For $a=(a_1,a_2,\dots,a_n)\in\mathbb{N}^n$, $x^a=x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} \qquad \qquad (x_i^0=1)$
- A polynomial f(x) in the variables $x=(x_1,\ldots,x_n)$ is written as

$$f(x) = \sum_{\alpha \in \mathbb{N}^n} c_\alpha x^\alpha = \sum_{\substack{(a_1, a_2, \dots, a_n) \in \mathbb{N}^n \\ \text{coefficient}}} c_{(a_1, a_2, \dots, a_n)} x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$



• Let S_n denote the group of permutations of $[n] = \{1, 2, \dots, n\}$.

- Let S_n denote the group of permutations of $[n] = \{1, 2, \dots, n\}$.
- A polynomial $f(x_1, \ldots, x_n)$ is *symmetric* if

$$f(x_{\sigma(1)},x_{\sigma(2)},\ldots x_{\sigma(n)})=f(x_1,x_2,\ldots,x_n)$$
 for all $\sigma\in S_n$.

- Let S_n denote the group of permutations of $[n] = \{1, 2, \dots, n\}$.
- A polynomial $f(x_1, \ldots, x_n)$ is *symmetric* if

$$f(x_{\sigma(1)},x_{\sigma(2)},\ldots x_{\sigma(n)})=f(x_1,x_2,\ldots,x_n)$$
 for all $\sigma\in S_n$.

Example. Which of the following symmetric polynomials?

$$x_1^2 + x_2x_3$$
 $x_1x_2 + x_2x_3 + x_1x_3$ $x_1^2 + x_1x_2 + x_2^2$

- Let S_n denote the group of permutations of $[n] = \{1, 2, \dots, n\}$.
- A polynomial $f(x_1, \ldots, x_n)$ is *symmetric* if

$$f(x_{\sigma(1)},x_{\sigma(2)},\ldots x_{\sigma(n)})=f(x_1,x_2,\ldots,x_n)$$
 for all $\sigma\in S_n$.

Example. Which of the following symmetric polynomials?

$$x_1^2 + x_2x_3$$
 $x_1x_2 + x_2x_3 + x_1x_3$ $x_1^2 + x_1x_2 + x_2^2$

Algebra of symmetric polynomials:

$$\mathbb{C}[x_1,\ldots,x_n]^{S_n}=\big\{f\in\mathbb{C}[x_1,\ldots,x_n]:f\text{ is symmetric}\big\}.$$

If $17 x_{20}^2 x_{22}^5$ is a term in a symmetric polynomial, then so is $17 x_1^2 x_2^5$ and $17 x_2^2 x_1^5$, and ...

If $17\,x_{20}^2\,x_{22}^5$ is a term in a symmetric polynomial, then so is $17\,x_1^2x_2^5$ and $17\,x_2^2\,x_1^5$, and . . .

• So, to construct a symmetric polynomial, symmetrize a monomial:

If $17 x_{20}^2 x_{22}^5$ is a term in a symmetric polynomial, then so is $17 x_1^2 x_2^5$ and $17 x_2^2 x_1^5$, and ...

• So, to construct a symmetric polynomial, symmetrize a monomial:

$$x_1^2 x_2^5 \xrightarrow{\text{symmetrize}} x_1^2 x_2^5 + x_2^2 x_1^5 + x_1^2 x_3^5 + x_2^2 x_3^5 + x_3^2 x_1^5 + x_3^2 x_2^5$$

If
$$17 x_{20}^2 x_{22}^5$$
 is a term in a symmetric polynomial, then so is $17 x_1^2 x_2^5$ and $17 x_2^2 x_1^5$, and ...

• So, to construct a symmetric polynomial, symmetrize a monomial:

$$x_1^2 x_2^5 \xrightarrow{\text{symmetrize}} x_1^2 x_2^5 + x_2^2 x_1^5 + x_1^2 x_3^5 + x_2^2 x_3^5 + x_3^2 x_1^5 + x_3^2 x_2^5$$

$$x_1^2 x_2^5 x_3^2 \xrightarrow{\text{symmetrize}} x_1^2 x_2^5 x_3^2 + x_2^2 x_1^5 x_3^2 + x_1^2 x_3^5 x_2^2$$

• Monomial symmetric functions:

$$m_{(\lambda_1,\ldots,\lambda_l)}(x_1,\ldots,x_n) = \sum x_{i_1}^{\lambda_1} x_{i_2}^{\lambda_2} \cdots x_{i_l}^{\lambda_l},$$

the sum over all distinct monomials with exponents $\lambda_1 \geqslant \ldots \geqslant \lambda_l$.

• Monomial symmetric functions:

$$m_{(\lambda_1,\ldots,\lambda_l)}(x_1,\ldots,x_n) = \sum x_{i_1}^{\lambda_1} x_{i_2}^{\lambda_2} \cdots x_{i_l}^{\lambda_l},$$

the sum over all distinct monomials with exponents $\lambda_1 \geqslant \ldots \geqslant \lambda_l$.

• partition of length l: sequence $(\lambda_1,\ldots,\lambda_l)$ of positive integers satisfying $\lambda_1\geqslant\ldots\geqslant\lambda_l$ • Monomial symmetric functions:

$$m_{(\lambda_1,\ldots,\lambda_l)}(x_1,\ldots,x_n) = \sum x_{i_1}^{\lambda_1} x_{i_2}^{\lambda_2} \cdots x_{i_l}^{\lambda_l},$$

the sum over all distinct monomials with exponents $\lambda_1 \geqslant \ldots \geqslant \lambda_l$.

- partition of length l: sequence $(\lambda_1,\ldots,\lambda_l)$ of positive integers satisfying $\lambda_1\geqslant\ldots\geqslant\lambda_l$
- Theorem. Every symmetric polynomial in $\mathbb{C}[x_1,\ldots,x_n]^{S_n}$ can be written uniquely as

$$f(x_1, \dots, x_n) = \sum_{\substack{\text{all partitions } \lambda \\ \text{of length } \leqslant n}} c_{\lambda} m_{\lambda}(x_1, \dots, x_n)$$

Recurring theme: symmetric polynomials from S_n -actions

Given

- ullet a set of combinatorial objects ${\cal O}$
- a map $\varepsilon:\mathcal{O}\to\mathbb{N}^n$, written $\varepsilon(T)=\big(\varepsilon_1(T),\ldots,\varepsilon_n(T)\big)$
- an action of S_n on $\mathcal O$ compatible with ε

the following polynomial is symmetric:

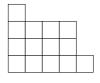
$$f(x_1, \dots, x_n) = \sum_{T \in \mathcal{O}} x_1^{\varepsilon_1(T)} x_2^{\varepsilon_2(T)} \cdots x_n^{\varepsilon_n(T)}$$

Tableaux

• Let λ be a partition of n; for example, $\lambda = (5,4,4,1)$.

Tableaux

- Let λ be a partition of n; for example, $\lambda = (5,4,4,1)$.
- The *(Young) diagram* of λ looks like this:



 λ_1 elements in first row λ_2 elements in second row etc.

Tableaux

- Let λ be a partition of n; for example, $\lambda=(5,4,4,1).$
- The *(Young) diagram* of λ looks like this:



 λ_1 elements in first row λ_2 elements in second row etc.

• A semistandard (Young) tableau of shape λ is a filling of the cells of the Young diagram of λ by positive integers with entries weakly increasing in rows and strictly increasing in columns:

6			
5	7		
4	4	5	7
2	2	4	5

$$s_{\lambda}(x_1, \dots, x_n) = \sum_{T \in \mathsf{SSYT}(\lambda, [n])} x_1^{\varepsilon_1(T)} \cdots x_n^{\varepsilon_n(T)}$$

- SSYT $(\lambda,[n])=$ semistandard tableaux of shape λ and with entries in $[n]=\{1,2,\ldots,n\}$
- $\varepsilon_i(T)$ is the number of copies of i in T

$$s_{\lambda}(x_1, \dots, x_n) = \sum_{T \in \mathsf{SSYT}(\lambda, [n])} x_1^{\varepsilon_1(T)} \cdots x_n^{\varepsilon_n(T)}$$

- $\mathsf{SSYT}(\lambda, [n]) = \mathsf{semistandard}$ tableaux of shape λ and with entries in $[n] = \{1, 2, \dots, n\}$
- $\varepsilon_i(T)$ is the number of copies of i in T
- Example. $\mathsf{SSYT}\Big(\bigsqcup, \{1,2,3\} \Big)$ consists of

$$s_{\lambda}(x_1, \dots, x_n) = \sum_{T \in \mathsf{SSYT}(\lambda, [n])} x_1^{\varepsilon_1(T)} \cdots x_n^{\varepsilon_n(T)}$$

- SSYT $(\lambda,[n])=$ semistandard tableaux of shape λ and with entries in $[n]=\{1,2,\ldots,n\}$
- $\varepsilon_i(T)$ is the number of copies of i in T
- Example. SSYT $(\longrightarrow, \{1,2,3\})$ consists of

2		3		2		3		2		3		3		3	
1	1	1	1	1	2	1	2	1	3	1	3	2	2	2	3

$$s_{\lambda}(x_1, \dots, x_n) = \sum_{T \in \mathsf{SSYT}(\lambda, [n])} x_1^{\varepsilon_1(T)} \cdots x_n^{\varepsilon_n(T)}$$

- SSYT $(\lambda,[n])=$ semistandard tableaux of shape λ and with entries in $[n]=\{1,2,\ldots,n\}$
- $\varepsilon_i(T)$ is the number of copies of i in T
- Example. $\mathsf{SSYT}\Big(\bigsqcup, \{1,2,3\} \Big)$ consists of

$$s_{(2,1)}(x_1, x_2, x_3)$$

$$= x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2$$

Elementary symmetric functions

$$s_{(1,1,1)}(x) = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4$$

$$\begin{bmatrix} \frac{3}{2} \\ \frac{1}{1} \end{bmatrix} \qquad \begin{bmatrix} \frac{4}{2} \\ \frac{1}{2} \end{bmatrix} \qquad \begin{bmatrix} \frac{4}{3} \\ \frac{3}{1} \end{bmatrix}$$

Elementary symmetric functions

• *k*-th elementary symmetric polynomial:

$$e_k(x_1, \dots, x_n) = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} \cdots x_{i_k} = s_{1^k}(x_1, \dots, x_n)$$

Elementary symmetric functions

• *k*-th elementary symmetric polynomial:

$$e_k(x_1, \dots, x_n) = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} \cdots x_{i_k} = s_{1^k}(x_1, \dots, x_n)$$

• algebraically independent: $e_{\lambda_1}e_{\lambda_2}\cdots e_{\lambda_l}$ are linearly independent and form a basis of $\mathbb{C}[x_1,\ldots,x_n]^{S_n}$

$$e_{(\lambda_1,\lambda_2,\dots,\lambda_l)} = e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_l}$$

Complete symmetric functions

$$s_{(3)}(x) = x_1^3 + x_1 x_2^2 + \dots + x_3 x_3 x_4 + \dots$$

Complete symmetric functions

$$s_{(3)}(x) = x_1^3 + x_1 x_2^2 + \dots + x_3 x_3 x_4 + \dots$$

ullet k-th complete symmetric polynomial: sum of all degree k monomials

$$h_k(x_1, \dots, x_n) = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} \cdots x_{i_k} = s_{(k)}(x_1, \dots, x_n)$$

Complete symmetric functions

$$s_{(3)}(x) = x_1^3 + x_1 x_2^2 + \dots + x_3 x_3 x_4 + \dots$$

ullet k-th complete symmetric polynomial: sum of all degree k monomials

$$h_k(x_1, \dots, x_n) = \sum_{i_1 \le i_2 \le \dots \le i_k} x_{i_1} \cdots x_{i_k} = s_{(k)}(x_1, \dots, x_n)$$

• algebraically independent: another basis of $\mathbb{C}[x_1,\ldots,x_n]^{S_n}$

$$h_{(\lambda_1,\lambda_2,\dots,\lambda_l)} = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_l}$$

Power sum symmetric functions

• *k*-th power sum symmetric polynomial:

$$p_k(x_1, \dots, x_n) = x_1^k + x_2^k + \dots + x_n^k$$

• algebraically independent: another basis of $\mathbb{C}[x_1,\ldots,x_n]^{S_n}$

$$p_{(\lambda_1,\lambda_2,\dots,\lambda_l)} = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_l}$$

Chromatic Symmetric Functions

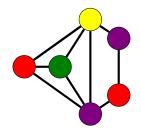
- A graph $\Gamma = (V, E)$ is a set of vertices V and a set of edges E.
- Example. $V=\{1,2,3\}$ and $E=\{\{1,2\},\{2,3\}\}$, encodes the graph

Chromatic Symmetric Functions

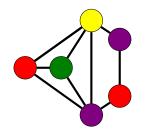
- A graph $\Gamma = (V, E)$ is a set of vertices V and a set of edges E.

- An *colouring* of Γ is a function $\kappa: V \to C$, with C a set of colours.
- A colouring κ is *proper* if adjacent vertices have different colours:

$$\{i,j\} \in E \implies \kappa(i) \neq \kappa(j).$$



combinatorial object
 (proper colouring)

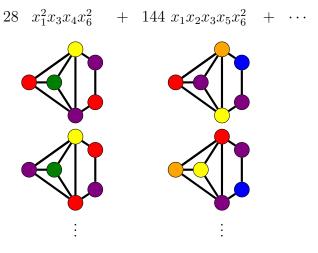


 $\longleftrightarrow x_1^2 x_3 x_4 x_6^2$

combinatorial object (proper colouring)

monomial

The *chromatic symmetric function* of Γ is a sum of monomials, one for each proper colouring of Γ :



• Let's compute $X_{\Gamma}(x_1,x_2,x_3)$, where

$$\Gamma = \bigcirc$$

• Let's compute $X_{\Gamma}(x_1,x_2,x_3)$, where

$$\Gamma = \bigcirc \bigcirc \bigcirc \bigcirc$$

• 3! ways to colour Γ with colours $\{1,2,3\}$, each giving $x_1x_2x_3$.

• Let's compute $X_{\Gamma}(x_1, x_2, x_3)$, where

$$\Gamma = \bigcirc \bigcirc \bigcirc \bigcirc$$

- 3! ways to colour Γ with colours $\{1,2,3\}$, each giving $x_1x_2x_3$.
- 2 ways to colour Γ with colours $\{i,j\}$, giving $x_i^2x_j$ and $x_ix_j^2$.

• Let's compute $X_{\Gamma}(x_1,x_2,x_3)$, where

$$\Gamma = \bigcirc$$

- 3! ways to colour Γ with colours $\{1,2,3\}$, each giving $x_1x_2x_3$.
- 2 ways to colour Γ with colours $\{i,j\}$, giving $x_i^2x_j$ and $x_ix_j^2$.
- 0 ways to colour Γ with only one colour no occurrences of x_i^3 .

• Let's compute $X_{\Gamma}(x_1, x_2, x_3)$, where

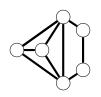
$$\Gamma = \bigcirc \bigcirc \bigcirc \bigcirc$$

- 3! ways to colour Γ with colours $\{1,2,3\}$, each giving $x_1x_2x_3$.
- 2 ways to colour Γ with colours $\{i,j\}$, giving $x_i^2x_j$ and $x_ix_j^2$.
- 0 ways to colour Γ with only one colour no occurrences of x_i^3 .

$$X_{\Gamma}(x_1, x_2, x_3)$$

$$= 6x_1x_2x_3 + x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_3^2 + x_2^2x_3 + x_2x_3^2$$

$$= 6m_{(1,1,1)} + m_{(2,1)}$$



• Express $X_{\Gamma}(x)$ in a different basis:

$$X_{\Gamma}(x) = 28 x_1^2 x_3 x_4 x_6^2 + 144 x_1 x_2 x_3 x_5 x_6^2 + \cdots$$

$$= 720 m_{111111} + 144 m_{21111} + 28 m_{2211}$$

$$= 168 s_{111111} + 60 s_{21111} + 28 s_{2211}$$

$$= 28 e_{42} + 32 e_{51} + 108 e_{6}$$

• Express $X_{\Gamma}(x)$ in a different basis:

$$X_{\Gamma}(x) = 28 x_1^2 x_3 x_4 x_6^2 + 144 x_1 x_2 x_3 x_5 x_6^2 + \cdots$$

$$= 720 m_{111111} + 144 m_{21111} + 28 m_{2211}$$

$$= 168 s_{111111} + 60 s_{21111} + 28 s_{2211}$$

$$= 28 e_{42} + 32 e_{51} + 108 e_6$$

Some numerology:

$$28+32+108=$$
 # acyclic orientations of Γ
$$28+32=$$
 # acyclic orientations of Γ with 2 sinks
$$108=$$
 # acyclic orientations of Γ with 1 sink

• Theorem (Stanley). If $X_{\Gamma} = \sum_{\lambda} c_{\lambda} e_{\lambda}$, then

$$\sum_{\ell(\lambda)=j} c_{\lambda} = \# \text{ acyclic orientations of } \Gamma \text{ with exactly } j \text{ sinks.}$$

• Theorem (Stanley). If $X_{\Gamma} = \sum_{\lambda} c_{\lambda} e_{\lambda}$, then

$$\sum_{\ell(\lambda)=j} c_{\lambda} = \#$$
 acyclic orientations of Γ with exactly j sinks.

• If
$$\Gamma = (2,1,1) - 2e_{(2,2)} + 5e_{(3,1)} + 4e_{(4)}$$
.

• Theorem (Stanley). If $X_{\Gamma} = \sum_{\lambda} c_{\lambda} e_{\lambda}$, then

$$\sum_{\ell(\lambda)=j} c_{\lambda} = \#$$
 acyclic orientations of Γ with exactly j sinks.

• If
$$\Gamma = (2,1,1) - 2e_{(2,2)} + 5e_{(3,1)} + 4e_{(4)}$$
.

• Open problem: Characterize the graphs for which X_{Γ} is e-positive.

• Theorem (Stanley). If $X_{\Gamma} = \sum_{\lambda} c_{\lambda} e_{\lambda}$, then

 $\sum_{\ell(\lambda)=j} c_{\lambda} = \#$ acyclic orientations of Γ with exactly j sinks.

• If
$$\Gamma = (2,1,1) - 2e_{(2,2)} + 5e_{(3,1)} + 4e_{(4)}$$
.

- Open problem: Characterize the graphs for which X_{Γ} is e-positive.
- Conjecture (Stanley–Stembridge). If Γ is the incomparability graph of a (3+1)-free poset, then X_{Γ} is e-positive.

• Let $\Gamma=(V,E)$ be a finite graph on the vertex set V=[n]. We will consider colourings κ of the vertices by positive integers.

- Let $\Gamma=(V,E)$ be a finite graph on the vertex set V=[n]. We will consider colourings κ of the vertices by positive integers.
- Define the *ascent statistic* of κ as

$$\mathrm{asc}_{\Gamma}(\kappa) = |\{(i,j) \in E : i < j \ \& \ \kappa(i) < \kappa(j)\}|$$

- Let $\Gamma=(V,E)$ be a finite graph on the vertex set V=[n]. We will consider colourings κ of the vertices by positive integers.
- Define the *ascent statistic* of κ as

$$\mathrm{asc}_{\Gamma}(\kappa) = |\{(i,j) \in E : i < j \ \& \ \kappa(i) < \kappa(j)\}|$$

• The chromatic quasisymmetric function of Γ is

$$X_{\Gamma}(x;t) = \sum_{\substack{\text{proper} \\ \text{colourings} \\ \kappa: [n] \to \mathbb{N}^{\times}}} t^{\mathrm{asc}_{\Gamma}(\kappa)} x_{\kappa(1)} x_{\kappa(2)} \cdots x_{\kappa(n)}.$$

• $\Gamma = 1$ 2 3

• $\Gamma = \begin{pmatrix} 1 \end{pmatrix} - \begin{pmatrix} 2 \end{pmatrix} - \begin{pmatrix} 3 \end{pmatrix}$

• There are two ways to colour Γ with colours $\{i < f\}$:

•
$$\Gamma = (1) - (2) - (3)$$

• There are two ways to colour Γ with colours $\{(i) < \{j\}\}$:

there is one ascent, giving $tx_ix_j^2$

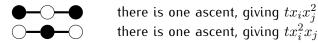
•
$$\Gamma = \begin{pmatrix} 1 \end{pmatrix} - \begin{pmatrix} 2 \end{pmatrix} - \begin{pmatrix} 3 \end{pmatrix}$$

• There are two ways to colour Γ with colours $\{(i) < \{j\}\}$:

there is one ascent, giving $tx_ix_j^2$ there is one ascent, giving $tx_i^2x_j$

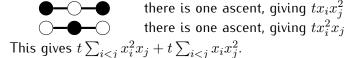
•
$$\Gamma = \begin{pmatrix} 1 \end{pmatrix} - \begin{pmatrix} 2 \end{pmatrix} - \begin{pmatrix} 3 \end{pmatrix}$$

• There are two ways to colour Γ with colours $\{i < f\}$:

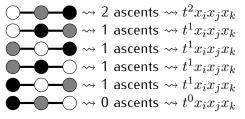


This gives $t \sum_{i < j} x_i^2 x_j + t \sum_{i < j} x_i x_j^2$.

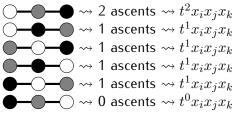
• There are two ways to colour Γ with colours $\{i < j\}$:



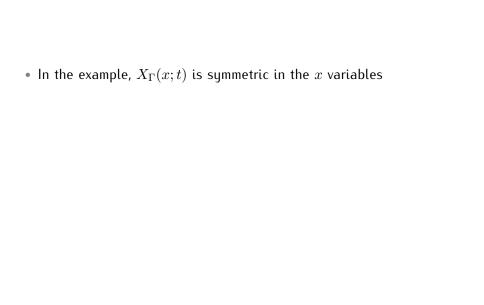
• There are 3! ways to colour Γ with colours $\{i < j < k\}$:



- There are two ways to colour Γ with colours $\{i < j\}$:
 - there is one ascent, giving $tx_ix_j^2$ there is one ascent, giving $tx_i^2x_j$ This gives $t\sum_{i< i} x_i^2x_j + t\sum_{i< i} x_ix_j^2$.
- There are 3! ways to colour Γ with colours $\{i < j < k\}$:



This gives $(t^2 + 4t + 1) \sum_{i < j < k} x_i x_j x_k$.



\bullet In the example, $X_{\Gamma}(x;t)$ is symmetric in the x variables
However, this is not always the case!

	In the	ovamnla	$V_{-}(m,t)$	١i٥	cummotric	in	tha	<i>~</i> ·	ari ablac
•	in the	exampte,	$\Lambda_{\Gamma}(x;t)$) lS	symmetric	ın	tne	$x \vee$	artables

However, this is not always the case!

• Shareshian & Wachs identified a class of graphs for which $X_{\Gamma}(x;t)$ is symmetric

- In the example, $X_{\Gamma}(x;t)$ is symmetric in the x variables
- However, this is not always the case!
- Shareshian & Wachs identified a class of graphs for which $X_{\Gamma}(x;t)$ is symmetric
- For this class of graphs, they conjecture $X_{\Gamma}(x;t)$ is e-positive

Tuples of skew-partitions

• If the diagram of λ contains the diagram of μ , then the skew-partition λ/μ consists of the cells of λ that are not in μ .

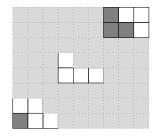
$$\begin{split} \lambda &= (4,2,2,1) \\ \mu &= (3,2,1) \\ \lambda/\mu \text{ contains } 3 \text{ cells} \end{split}$$

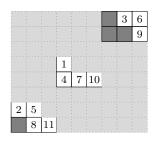
Tuples of skew-partitions

• If the diagram of λ contains the diagram of μ , then the skew-partition λ/μ consists of the cells of λ that are not in μ .

$$\begin{split} \lambda &= (4,2,2,1) \\ \mu &= (3,2,1) \\ \lambda/\mu \text{ contains } 3 \text{ cells} \end{split}$$

• Tuples of skew-tableaux, aligned according to diagonals:





Inversions in tuples of skew-tableaux

Given a tuple of skew-tableaux (T_1, \ldots, T_k) , a pair of cells $c \in T_i$ and $d \in T_j$ form an *inversion* if

• $T_i(c) > T_j(d)$, where $T_i(c)$ denotes the entry in cell c

and either:

- i < j and $\operatorname{diag}(c) = \operatorname{diag}(d)$, or
- i > j and $\operatorname{diag}(c) = \operatorname{diag}(d) + 1$.

Inversions in tuples of skew-tableaux

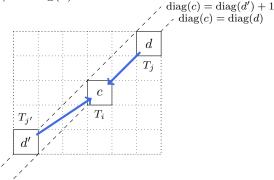
Given a tuple of skew-tableaux (T_1, \ldots, T_k) , a pair of cells $c \in T_i$ and $d \in T_i$ form an *inversion* if

• $T_i(c) > T_i(d)$, where $T_i(c)$ denotes the entry in cell c

and either:

• i < j and $\operatorname{diag}(c) = \operatorname{diag}(d)$, or

• i > j and $\operatorname{diag}(c) = \operatorname{diag}(d) + 1$.



 $\operatorname{diag}(c) = \operatorname{diag}(d)$

LLT Polynomials

• For a tuple of skew-partitions $\vec{\nu} = (\nu^1, \nu^2, \dots, \nu^k)$,

$$\begin{aligned} \text{LLT}_{\vec{\nu}}(x;t) &= \sum_{\substack{\vec{T} = (T_1, \dots, T_k) \\ T^i \in \mathsf{SSYT}(\nu^i)}} t^{\text{inv}(\vec{T})} x^{T_1} \cdots x^{T_k} \end{aligned}$$

LLT Polynomials

• For a tuple of skew-partitions $\vec{\nu} = (\nu^1, \nu^2, \dots, \nu^k)$,

$$\operatorname{LLT}_{\vec{\nu}}(x;t) = \sum_{\substack{\vec{T} = (T_1, \dots, T_k) \\ T^i \in \mathsf{SSYT}(\nu^i)}} t^{\operatorname{inv}(\vec{T})} x^{T_1} \cdots x^{T_k}$$

• $LLT_{\vec{\nu}}(x;t)$ are symmetric in the x variables.

LLT Polynomials

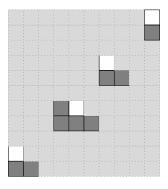
• For a tuple of skew-partitions $\vec{\nu} = (\nu^1, \nu^2, \dots, \nu^k)$,

$$\operatorname{LLT}_{\vec{\nu}}(x;t) = \sum_{\substack{\vec{T} = (T_1, \dots, T_k) \\ T^i \in \mathsf{SSYT}(\nu^i)}} t^{\operatorname{inv}(\vec{T})} x^{T_1} \cdots x^{T_k}$$

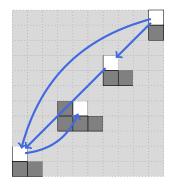
- $LLT_{\vec{\nu}}(x;t)$ are symmetric in the x variables.
- Example. $s_{(3)} + 2t s_{(2,1)} + t^2 s_{(1,1,1)}$

Unicellular LLT polynomials

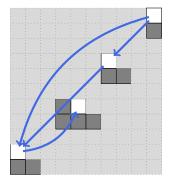
If every ν^i in $\vec{\nu}$ is a single cell, then $\mathrm{LLT}_{\vec{\nu}}(x;t)$ is *unicellular*.



- Define a graph $\Gamma_{\vec{\nu}}$ on the cells of $\vec{\nu}$ with an edge connecting $c\in \nu^i$ and $d\in \nu^j$ whenever
 - i < j and $\operatorname{diag}(c) = \operatorname{diag}(d)$; or
 - i > j and $\operatorname{diag}(c) = \operatorname{diag}(d) + 1$.



- Define a graph $\Gamma_{\vec{\nu}}$ on the cells of $\vec{\nu}$ with an edge connecting $c\in \nu^i$ and $d\in \nu^j$ whenever
 - i < j and $\operatorname{diag}(c) = \operatorname{diag}(d)$; or
 - i > j and $\operatorname{diag}(c) = \operatorname{diag}(d) + 1$.

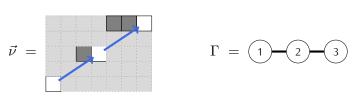


• $\mathrm{inv}(\vec{T})$ statistic equals the ascent statistic of the colouring

Proposition. If $\vec{\nu} = (\nu^1, \dots, \nu^k)$ is unicellular, then

$$LLT_{\vec{\nu}}(x;t) = \sum_{\substack{\text{all colourings} \\ \kappa: [k] \to \mathbb{N}^{\times}}} t^{\mathrm{asc}(\kappa)} x_{\kappa(1)} x_{\kappa(2)} \cdots x_{\kappa(k)}.$$

Example.



$$LLT_{\vec{v}}(x_1, x_2, x_3; t) = s_{(3)} + 2ts_{(2,1)} + t^2s_{(1,1,1)}$$

From LLT to chromatic quasisymmetric polynomials

Theorem. If $\vec{\nu} = (\nu^1, \dots, \nu^k)$ is unicellular, then

$$X_{\Gamma_{\vec{v}}}(x;t) = \frac{1}{(t-1)^k} LLT_{\vec{v}}[(t-1)x;t].$$

From LLT to chromatic quasisymmetric polynomials

Theorem. If $\vec{\nu} = (\nu^1, \dots, \nu^k)$ is unicellular, then

$$X_{\Gamma_{\vec{v}}}(x;t) = \frac{1}{(t-1)^k} LLT_{\vec{v}}[(t-1)x;t].$$

• If f is a symmetric function, then f[(t-1)x] denotes the *plethystic substitution* defined by

$$p_k[(t-1)x] = (t^k - 1)p_k(x).$$

From LLT to chromatic quasisymmetric polynomials

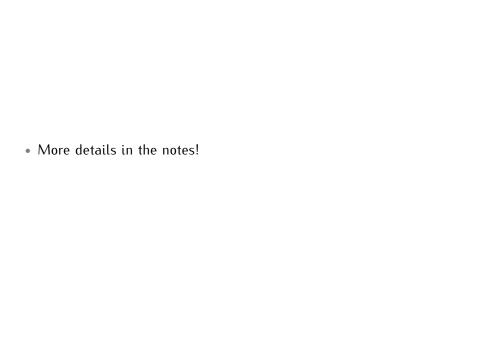
Theorem. If $\vec{\nu} = (\nu^1, \dots, \nu^k)$ is unicellular, then

$$X_{\Gamma_{\vec{\nu}}}(x;t) = \frac{1}{(t-1)^k} LLT_{\vec{\nu}}[(t-1)x;t].$$

• If f is a symmetric function, then f[(t-1)x] denotes the *plethystic substitution* defined by

$$p_k[(t-1)x] = (t^k - 1)p_k(x).$$

Attention: You have to switch bases first!



Representation theory

ullet A representation (over $\mathbb C$) of a group G is a morphism of groups

 $\rho: G \to \mathsf{GL}(V)$, where V is a \mathbb{C} -vector space.

Representation theory

• A representation (over $\mathbb C$) of a group G is a morphism of groups

$$\rho: G \to \mathsf{GL}(V)$$
, where V is a \mathbb{C} -vector space.

• By fixing a basis of V, we get a *matrix representation* of G:

$$\rho: G \to \mathsf{GL}_n(\mathbb{C}),$$

and we define the *character* of the representation as

$$\chi_{\rho}(g) = \operatorname{trace}(\rho(g))$$

Symmetric functions from representations of S_n

- Let V be a representation of S_n with character χ .
- ullet The *Frobenius characteristic* of V is the symmetric function

$$\operatorname{Frob}(V) = \frac{1}{n!} \sum_{\sigma \in S_n} \chi(\sigma) \, p_{\operatorname{cycletype}(\sigma)}$$

Symmetric functions from representations of S_n

- Let V be a representation of S_n with character χ .
- ullet The *Frobenius characteristic* of V is the symmetric function

Frob(V) =
$$\frac{1}{n!} \sum_{\sigma \in S_n} \chi(\sigma) p_{\text{cycletype}(\sigma)}$$

• A graded representation is a graded vector space $V=\bigoplus_{d\in\mathbb{N}}V_d$ equipped with an action of the group that maps each component V_d to itself. The graded Frobenius characteristic of $V=\bigoplus_d V_d$ is

$$\operatorname{Frob}(V)(t) = \sum_{d} \operatorname{Frob}(V_d) t^d \in \operatorname{Sym}[\![t]\!].$$

Theorem. Let $CF(S_n)$ be the algebra of characters of S_n .

- Frob : $\bigoplus_n \mathrm{CF}(S_n) \to \mathrm{Sym}$ is an algebra isomorphism.
- The Frobenius characteristic of an irreducible character is a Schur function s_{λ} ; and conversely.
- If χ and ψ are characters of S_n and S_m , respectively, then

$$\operatorname{Frob}(\chi)\operatorname{Frob}(\psi)=\operatorname{Frob}\left(\operatorname{Ind}_{S_n\times S_m}^{S_{n+m}}(\chi\psi)\right).$$

• If χ and ψ are characters of S_n , then

$$\langle \chi, \psi \rangle_{S_{-}} = \langle \operatorname{Frob}(\chi), \operatorname{Frob}(\psi) \rangle_{\operatorname{Sym}}.$$