
An instance of inference: treatment e↵ect estimation

Some general goals

I Predict the health state of an individual after treatment.

I Develop a strategy for steering the treatment over time.

I Understand the mechanisms underlying illness and recovery.

Variables

I Holistic: health state, treatment, individual, environment.

I x : quantifiers of the health state.

I z : factors characterizing the patient and the current
conditions, including current or past values of x . Some may
be known or measurable, some latent.

I a: features of the treatment under consideration.

Observations o from past and the current patient: values of x , z
and a, or of quantities related to them.

General tasks

I Build a model for the e↵ect of action a on the outcome x ,
qualified by factors z :

a, z ! x : regression, classification

⇢(x |a, z): conditional probability estimation

x i ⇠ ⇢(: |a, z): simulation

I Uncover hidden parameters: factor discovery, clustering,
dimensional reduction: x , a ! z

I Figure out the current state and model parameters: filtering,
data assimilation, diagnosis: o1,...,n ! zn,↵(n), x

I Steer the treatment: optimal control, reinforcement learning:
z , x ! a

Tensions and challenges 1

Interpretability

Do we care more about predicting or understanding? Model
simplicity versus accuracy and detail.

Model versus data-driven inference: a full palette between field
knowledge-based models and black boxes.

Tensions and challenges 2

Identifiability

A model detailed enough to be deemed realistic by a practitioner
may include parameters that the data cannot robustly pin down.

Big data.

Lacking the right tools for analysis, excessive information may,
somewhat paradoxically, deteriorate the quality of a prediction.

Some partial solutions

Regularizers: for robustness, to enforce regularity, to promote
interpretability and to mitigate overfitting. Examples: penalizers
–such as ridge regression– and priors on the parameters.

Cross-validation: training and testing populations.

Tensions and challenges 3

Observational studies vs. randomized experiments

Individualization of prediction vs. aggregation of data

Variability of data type

Reliability of data, robustness to outliers

Fairness

Demystifying Machine Learning

It’s just…

• Interpolation

• Curve fitting

• Regression

• etc.

Inferring a predictive function
machine learning

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

ℱ†
f †

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)

ℱ†

ℱθ

f †

fθ

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)
3. Define a distance (e.g.)L2

μ

1. ℒ(fθ) = ∥fθ − f †∥ = 'x∼μ[∥ fθ(x) − f †(x)∥2]

ℱ†

ℱθ

f †

fθ

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)
3. Define a distance (e.g.)L2

μ

1. ℒ(fθ) = ∥fθ − f †∥ = 'x∼μ[∥ fθ(x) − f †(x)∥2]
4. Approximate distance empirically with data (Monte Carlo,)xi ∼ μ i.i.d

1. ̂ℒ (fθ) = ∑
i

∥ fθ(xi) − yi)∥2

ℱ†

ℱθ

f †

fθ

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)
3. Define a distance (e.g.)L2

μ

1. ℒ(fθ) = ∥fθ − f †∥ = 'x∼μ[∥ fθ(x) − f †(x)∥2]
4. Approximate distance empirically with data (Monte Carlo,)xi ∼ μ i.i.d

1. ̂ℒ (fθ) = ∑
i

∥ fθ(xi) − yi)∥2

5. Define optimal functions

1. f † = argminf∈ℱ†ℒ(f)

ℱ†

ℱθ

f †

fθ

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)
3. Define a distance (e.g.)L2

μ

1. ℒ(fθ) = ∥fθ − f †∥ = 'x∼μ[∥ fθ(x) − f †(x)∥2]
4. Approximate distance empirically with data (Monte Carlo,)xi ∼ μ i.i.d

1. ̂ℒ (fθ) = ∑
i

∥ fθ(xi) − yi)∥2

5. Define optimal functions

1. f † = argminf∈ℱ†ℒ(f)

2. ̂f † = argminf∈ℱ†
̂ℒ (f)

ℱ†

ℱθ

f †

fθ

̂f †

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)
3. Define a distance (e.g.)L2

μ

1. ℒ(fθ) = ∥fθ − f †∥ = 'x∼μ[∥ fθ(x) − f †(x)∥2]
4. Approximate distance empirically with data (Monte Carlo,)xi ∼ μ i.i.d

1. ̂ℒ (fθ) = ∑
i

∥ fθ(xi) − yi)∥2

5. Define optimal functions

1. f † = argminf∈ℱ†ℒ(f)

2. ̂f † = argminf∈ℱ†
̂ℒ (f)

3. fθ* = argminfθ∈ℱθ
̂ℒ (fθ)

ℱ†

ℱθ

f †

fθ

̂f †

fθ*

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)
3. Define a distance (e.g.)L2

μ

1. ℒ(fθ) = ∥fθ − f †∥ = 'x∼μ[∥ fθ(x) − f †(x)∥2]
4. Approximate distance empirically with data (Monte Carlo,)xi ∼ μ i.i.d

1. ̂ℒ (fθ) = ∑
i

∥ fθ(xi) − yi)∥2

5. Define optimal functions

1. f † = argminf∈ℱ†ℒ(f)

2. ̂f † = argminf∈ℱ†
̂ℒ (f)

3. fθ* = argminfθ∈ℱθ
̂ℒ (fθ)

6. Minimize a possibly non-convex function (SGD, particle methods, etc.)

1. fθ ≈ argminfθ∈ℱθ
̂ℒ (fθ) ℱ†

ℱθ

f †

fθ

̂f †

fθ*
Train Loss

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)
3. Define a distance (e.g.)L2

μ

1. ℒ(fθ) = ∥fθ − f †∥ = 'x∼μ[∥ fθ(x) − f †(x)∥2]
4. Approximate distance empirically with data (Monte Carlo,)xi ∼ μ i.i.d

1. ̂ℒ (fθ) = ∑
i

∥ fθ(xi) − yi)∥2

5. Define optimal functions

1. f † = argminf∈ℱ†ℒ(f)

2. ̂f † = argminf∈ℱ†
̂ℒ (f)

3. fθ* = argminfθ∈ℱθ
̂ℒ (fθ)

6. Minimize a possibly non-convex function (SGD, particle methods, etc.)

1. fθ ≈ argminfθ∈ℱθ
̂ℒ (fθ)

7. Evaluate approximation fidelity with independent test set

ℱ†

ℱθ

f †

fθ

̂f †

fθ*
Train Loss

Inferring a predictive function
machine learning

1. Define the task: Look for mapping inputs to outputs f † : X ↦ Y x ∈ X y ∈ Y

2. Define model class that can approximate ℱθ f † ∈ ℱ†

1. Linear regression: f(x; A, b) = Ax + b

2. Neural network: f(x; A, b, C) = C tanh(Ax + b)
3. Define a distance (e.g.)L2

μ

1. ℒ(fθ) = ∥fθ − f †∥ = 'x∼μ[∥ fθ(x) − f †(x)∥2]
4. Approximate distance empirically with data (Monte Carlo,)xi ∼ μ i.i.d

1. ̂ℒ (fθ) = ∑
i

∥ fθ(xi) − yi)∥2

5. Define optimal functions

1. f † = argminf∈ℱ†ℒ(f)

2. ̂f † = argminf∈ℱ†
̂ℒ (f)

3. fθ* = argminfθ∈ℱθ
̂ℒ (fθ)

6. Minimize a possibly non-convex function (SGD, particle methods, etc.)

1. fθ ≈ argminfθ∈ℱθ
̂ℒ (fθ)

7. Evaluate approximation fidelity with independent test set

ℱ†

ℱθ

f †

fθ

̂f †

fθ*

̂f †
2

Train Loss
Test Loss

Standard “Problems w/ Solutions” in “AI”
machine learning

ℱ†

ℱθ

f †

fθ

̂f †

fθ*

̂f †
2

Train Loss
Test Loss

Standard “Problems w/ Solutions” in “AI”
machine learning

1. Generalization Gap

1. Tons of data!

ℱ†

ℱθ

f †

fθ

̂f †

Generalization gap (limited data)

fθ*

̂f †
2

Train Loss
Test Loss

Standard “Problems w/ Solutions” in “AI”
machine learning

1. Generalization Gap

1. Tons of data!

2. Approximation Gap

1. More parameters!

ℱ†

ℱθ

f †

fθ

̂f †

Generalization gap (limited data)

fθ*

̂f †
2

Train Loss
Test Loss

Approximation
gap (limited
expressivity)

Standard “Problems w/ Solutions” in “AI”
machine learning

1. Generalization Gap

1. Tons of data!

2. Approximation Gap

1. More parameters!

3. Optimization Gap

1. SGD (and variants) with lots of tunings/
hacks

2. More parameters!

1. Over-parametrization seems to
convexify loss surfaces ℱ†

ℱθ

f †

fθ

̂f †

Optimization gap

Generalization gap (limited data)

fθ*

̂f †
2

Train Loss
Test Loss

Approximation
gap (limited
expressivity)

Small Data Challenges
machine learning

Small Data Challenges
machine learning

1. If data covers the input-output space sparsely, but somewhat uniformly

1. Regularize / limit complexity

Small Data Challenges
machine learning

1. If data covers the input-output space sparsely, but somewhat uniformly

1. Regularize / limit complexity

2. If data covers subset of domain, be careful about extrapolation

1. e.g. be sure the learnt function is very boring away from data!

Small Data Challenges
machine learning

1. If data covers the input-output space sparsely, but somewhat uniformly

1. Regularize / limit complexity

2. If data covers subset of domain, be careful about extrapolation

1. e.g. be sure the learnt function is very boring away from data!

Don’t be afraid of expressive models—just learn how to regularize!

Other challenges
machine learning

Other challenges
machine learning

1. Latent variables

1. Hypothesize , but our input space

2. Need to discover or account for hidden/latent variables!

f † : X ↦ Y Uinputs ⊂ X

Other challenges
machine learning

1. Latent variables

1. Hypothesize , but our input space

2. Need to discover or account for hidden/latent variables!

f † : X ↦ Y Uinputs ⊂ X

2. Noisy inputs

1. For non-linear functions, input noise does not “cancel out”

1. even for mean-zero noise

2. Need to incorporate de-noising during learning

f(x) ≉ 'η[f(x + η)] η

Other challenges
machine learning

1. Latent variables

1. Hypothesize , but our input space

2. Need to discover or account for hidden/latent variables!

f † : X ↦ Y Uinputs ⊂ X

2. Noisy inputs

1. For non-linear functions, input noise does not “cancel out”

1. even for mean-zero noise

2. Need to incorporate de-noising during learning

f(x) ≉ 'η[f(x + η)] η

3. Non-stationarity

1. Shifting data-distribution

2. Shifting map f †

RL Introductory Discussion

Eric B. Laber

Duke University

Ban�, June 2022

Acknowledgments

Thanks to

I Esteban and Matt

I Duke/UNC AI and Precision Medicine Lab

I National Science Foundation

I National Institutes of Health

Joint work with

I Alex Cloud⇤

I Michael Kosorok

On choices

Dad always thought laughter was the best medicine, which I
guess is why several of us died of tuberculosis.
—Jack Handy

What is reinforcement learning (RL)?

I Subfield of ML focused on decision making under uncertainty

I Goal is to e�ciently generate and use information to inform
decision making to maximize some long term measure of utility

I Encompasses ideas from a wide range of disciplines

I Experimental design

I Statistical e�ciency theory

I Causal inference

I Optimization
I . . .

1 / 17

RL in the news

I Many recent high-profile examples of RL

I Games

I Robotics

I Protein structure prediction

2 / 17

RL in the wild1

I Precision medicine

I Adaptive clinical trials

I Dynamic treatment regimes and just-in-time adaptive
interventions (mHealth)

I System-level (triage, adaptive team-based care, recall, etc.)

I Public health (messaging, resource allocation, etc.)

I Retail

I Advertising, recommender systems, pricing, etc.

I Assortment selection

I Fraud detection

I Site selection

1Heavily biased by my own experience.
3 / 17

Reinforcement learning (RL) model of decision making

Observe state

Select action

Observe reward

I Learn from experience) action selection balance info and reward

I Examples
I Randomized clinical trial: explore than exploit

I Batched learning: alternating phases of learning and optimization

I Fully online: jointly learn and optimization
4 / 17

Formalizing a batch one-stage decision problem

I Observe {(X i ,Ai ,Yi)}n

i=1 iid from P

I X 2 X ✓ Rp covariates (decision context)

I A 2 A action (treatment, intervention, decision, etc.)

I Y 2 R utility (outcome, output, reward, etc.) higher is better

I Goal: select actions to maximize expected utility

5 / 17

Policies

I k : X ! 2A is set of allowable actions, i.e., k(x) ✓ A \ ;

I Policy c : X ! A such that c(x) 2 k(x) for all x 2 X
I Under c decision maker will select action c(x) in context x
I Define V (c) , EcY to be expected utility if actions are selected

according the policy c

I Optimal policy satisfies V (copt) � V (c) for all c

6 / 17

Approaches to estimation in batch one-stage setting

I Regression

I Define Q(x, a) , E(Y
��X = x,A = a)

I Construct estimator bQn of Q using observed data

I Estimated optimal policy bcn (x) = argmaxa2k (x) bQn (x, a)

I Policy search

I For any policy c construct estimator2 bVn (c) of V (c)
I Given class of policies ⇧ compute ecn = argmaxc2⇧ bVn (c)

2Common approaches include augmented inverse probability weighting, marginal
structural models, and G-computation. See Tsiatis et al. (2019) for review.

7 / 17

Considerations and open problems in one-stage batch case

I Scale and complexity

I High-dimensional action spaces, e.g., assortment selection has
O(nk) actions where n is catalog size and k is selection size

I High-dimensional and complex feature spaces, e.g., txt
recommendation from functional, imaging, and/or genetic data

I Experimental design

I Assign actions to maximize e�ciency of bcn

I Ensure power for model diagnostics, secondary analyses, etc.

I Multiple outcomes and preference heterogeneity

I E�cacy vs. side e�ects

I Stated vs. revealed preferences

8 / 17

Formalizing an online one-stage decision problem

I Consider contextual bandit setting

I Observe {(X i ,Ai ,Yi)}n

i=1

I Contexts X from fixed but unknown distn Px

I Utility Y given X = x,A = a, from fixed but unknown distn Py |x,a

I Actions Ai drawn from distn which is allowed to vary over time
and to depend on entire previous history X i ,Ai�1,Y i�1

I Goal: adaptively select actions to maximize cumulative reward3

3I’m using reward here as a generic quantity which may mean utility, information,
or some composite outcome.

9 / 17

Batch vs. online one-stage problems

I Learn from accumulating information

I Generate information e�ciently

I Improve models) more utility

I Much more flexibility

I Inference more complicated

I (Martingale) CLT may not apply directly

I Standard tests and confidence intervals invalid with modification

10 / 17

Approaches to estimation in contextual bandit

I Perturbation-based methods

I n-greedy: estimate bcn as in batch setting, follow bcn with
probability (1 � n) and draw An from some ‘exploration
distribution’ otherwise

I Sample from posterior distribution of optimal posterior
(Thompson Sampling)

I Deterministic approaches

I Upper confidence bound selection: choose action with larger
upper confidence bound on mean reward

I Penalize reward with information gain (e.g., info-directed
sampling)

I Many variant and nuances

11 / 17

Considerations and open problems in contextual bandits

I Same problems of scale and complexity as one-stage batch case

I Experimental design problem becomes much richer

I Interim updates to estimated optimal designs

I Sequential designs (enrichment, optimal, etc.)

I Study planning

I Sample size and power analyses

I Interim analyses, stopping criteria, etc.

I Indefinite deployment) non-stationarity

12 / 17

Markov decision processes (MDPs)

I Ubiquitous model for RL

I Observe
�
S1

i
,A1

i
, . . . ,ST

i
,AT

i
,ST+1 n

i=1 drawn i.i.d. from P

I T observation period, e.g., trial follow-up

I St 2 S ✓ Rp state at time t

I A 2 A

I Utility U
t = u(St ,At ,St+1), higher is better

I Assume homogeneous MDP ! focus on deterministic stationary
policies c : S ! A

13 / 17

Notions of cumulative utility

I Discounted utility

VW (s; c) , Ec
(’

k�0
Wk

U
t+k

��St = s

)

I Average utility4

V (s; c) , lim
T!1

Ec

1
T

T’
k=1

U
t+k

��St = s

!

I Given some measure V (s; c) of the ‘goodness’ of c, optimal
policy satisfies V (s; copt) � V (s; c) for all c

4Under mild regularity conditions V doesn’t depend on the starting state.
14 / 17

Estimation (of copt) in MDPs

I Model-based: system dynamics model + simulation optimization

I Model-free: construct estimating functions for optimal policy

I Typically derived from Bellman equations

I Only model part of dynamics, e.g., moments

I Bias-variance trade-o� in model-free vs. model-based

15 / 17

Considerations and open problems in MDPs

I Scalability and complexity

I Experimental design is still more complicated

I Need to ensure su�cient exploration of state space

I Need to consider delayed e�ects

I Feature construction to ensure Markov (approx) holds

I Need principled methods for optimally combing model-based
and model-free methods

16 / 17

We’re excited to chat about these problems!
eric.laber@duke.edu

17 / 17

