
An instance of inference: treatment e↵ect estimation

Some general goals

I Predict the health state of an individual after treatment.

I Develop a strategy for steering the treatment over time.

I Understand the mechanisms underlying illness and recovery.

Variables

I Holistic: health state, treatment, individual, environment.

I x : quantifiers of the health state.

I z : factors characterizing the patient and the current
conditions, including current or past values of x . Some may
be known or measurable, some latent.

I a: features of the treatment under consideration.

Observations o from past and the current patient: values of x , z
and a, or of quantities related to them.



General tasks

I Build a model for the e↵ect of action a on the outcome x ,
qualified by factors z :

a, z ! x : regression, classification

⇢(x |a, z): conditional probability estimation

x i ⇠ ⇢(: |a, z): simulation

I Uncover hidden parameters: factor discovery, clustering,
dimensional reduction: x , a ! z

I Figure out the current state and model parameters: filtering,
data assimilation, diagnosis: o1,...,n ! zn,↵(n), x

I Steer the treatment: optimal control, reinforcement learning:
z , x ! a



Tensions and challenges 1

Interpretability

Do we care more about predicting or understanding? Model
simplicity versus accuracy and detail.

Model versus data-driven inference: a full palette between field
knowledge-based models and black boxes.



Tensions and challenges 2

Identifiability

A model detailed enough to be deemed realistic by a practitioner
may include parameters that the data cannot robustly pin down.

Big data.

Lacking the right tools for analysis, excessive information may,
somewhat paradoxically, deteriorate the quality of a prediction.

Some partial solutions

Regularizers: for robustness, to enforce regularity, to promote
interpretability and to mitigate overfitting. Examples: penalizers
–such as ridge regression– and priors on the parameters.

Cross-validation: training and testing populations.



Tensions and challenges 3

Observational studies vs. randomized experiments

Individualization of prediction vs. aggregation of data

Variability of data type

Reliability of data, robustness to outliers

Fairness



Demystifying Machine Learning

It’s just… 

• Interpolation 

• Curve fitting 

• Regression 

• etc. 
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1. If data covers the input-output space sparsely, but somewhat uniformly


1.  Regularize / limit complexity

2. If data covers subset of domain, be careful about extrapolation


1. e.g. be sure the learnt function is very boring away from data!
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2. Need to discover or account for hidden/latent variables!

f † : X ↦ Y Uinputs ⊂ X

2. Noisy inputs


1. For non-linear functions, input noise does not “cancel out”


1.   even for mean-zero noise 
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3. Non-stationarity


1. Shifting data-distribution


2. Shifting map f †
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On choices

Dad always thought laughter was the best medicine, which I
guess is why several of us died of tuberculosis.
—Jack Handy



What is reinforcement learning (RL)?

I Subfield of ML focused on decision making under uncertainty

I Goal is to e�ciently generate and use information to inform
decision making to maximize some long term measure of utility

I Encompasses ideas from a wide range of disciplines

I Experimental design

I Statistical e�ciency theory

I Causal inference

I Optimization
I . . .
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RL in the news

I Many recent high-profile examples of RL

I Games

I Robotics

I Protein structure prediction
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RL in the wild1

I Precision medicine

I Adaptive clinical trials

I Dynamic treatment regimes and just-in-time adaptive
interventions (mHealth)

I System-level (triage, adaptive team-based care, recall, etc.)

I Public health (messaging, resource allocation, etc.)

I Retail

I Advertising, recommender systems, pricing, etc.

I Assortment selection

I Fraud detection

I Site selection

1Heavily biased by my own experience.
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Reinforcement learning (RL) model of decision making

Observe state

Select action

Observe reward

I Learn from experience ) action selection balance info and reward

I Examples
I Randomized clinical trial: explore than exploit

I Batched learning: alternating phases of learning and optimization

I Fully online: jointly learn and optimization
4 / 17



Formalizing a batch one-stage decision problem

I Observe {(X i ,Ai ,Yi)}n

i=1 iid from P

I X 2 X ✓ Rp covariates (decision context)

I A 2 A action (treatment, intervention, decision, etc.)

I Y 2 R utility (outcome, output, reward, etc.) higher is better

I Goal: select actions to maximize expected utility
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Policies

I k : X ! 2A is set of allowable actions, i.e., k(x) ✓ A \ ;

I Policy c : X ! A such that c(x) 2 k(x) for all x 2 X
I Under c decision maker will select action c(x) in context x
I Define V (c) , EcY to be expected utility if actions are selected

according the policy c

I Optimal policy satisfies V (copt) � V (c) for all c
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Approaches to estimation in batch one-stage setting

I Regression

I Define Q(x, a) , E(Y
��X = x,A = a)

I Construct estimator bQn of Q using observed data

I Estimated optimal policy bcn (x) = argmaxa2k (x) bQn (x, a)

I Policy search

I For any policy c construct estimator2 bVn (c) of V (c)
I Given class of policies ⇧ compute ecn = argmaxc2⇧ bVn (c)

2Common approaches include augmented inverse probability weighting, marginal
structural models, and G-computation. See Tsiatis et al. (2019) for review.
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Considerations and open problems in one-stage batch case

I Scale and complexity

I High-dimensional action spaces, e.g., assortment selection has
O(nk) actions where n is catalog size and k is selection size

I High-dimensional and complex feature spaces, e.g., txt
recommendation from functional, imaging, and/or genetic data

I Experimental design

I Assign actions to maximize e�ciency of bcn

I Ensure power for model diagnostics, secondary analyses, etc.

I Multiple outcomes and preference heterogeneity

I E�cacy vs. side e�ects

I Stated vs. revealed preferences
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Formalizing an online one-stage decision problem

I Consider contextual bandit setting

I Observe {(X i ,Ai ,Yi)}n

i=1

I Contexts X from fixed but unknown distn Px

I Utility Y given X = x,A = a, from fixed but unknown distn Py |x,a

I Actions Ai drawn from distn which is allowed to vary over time
and to depend on entire previous history X i ,Ai�1,Y i�1

I Goal: adaptively select actions to maximize cumulative reward3

3I’m using reward here as a generic quantity which may mean utility, information,
or some composite outcome.
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Batch vs. online one-stage problems

I Learn from accumulating information

I Generate information e�ciently

I Improve models ) more utility

I Much more flexibility

I Inference more complicated

I (Martingale) CLT may not apply directly

I Standard tests and confidence intervals invalid with modification
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Approaches to estimation in contextual bandit

I Perturbation-based methods

I n-greedy: estimate bcn as in batch setting, follow bcn with
probability (1 � n) and draw An from some ‘exploration
distribution’ otherwise

I Sample from posterior distribution of optimal posterior
(Thompson Sampling)

I Deterministic approaches

I Upper confidence bound selection: choose action with larger
upper confidence bound on mean reward

I Penalize reward with information gain (e.g., info-directed
sampling)

I Many variant and nuances
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Considerations and open problems in contextual bandits

I Same problems of scale and complexity as one-stage batch case

I Experimental design problem becomes much richer

I Interim updates to estimated optimal designs

I Sequential designs (enrichment, optimal, etc.)

I Study planning

I Sample size and power analyses

I Interim analyses, stopping criteria, etc.

I Indefinite deployment ) non-stationarity
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Markov decision processes (MDPs)

I Ubiquitous model for RL

I Observe
�
S1

i
,A1

i
, . . . ,ST

i
,AT

i
,ST+1 n

i=1 drawn i.i.d. from P

I T observation period, e.g., trial follow-up

I St 2 S ✓ Rp state at time t

I A 2 A

I Utility U
t = u(St ,At ,St+1), higher is better

I Assume homogeneous MDP ! focus on deterministic stationary
policies c : S ! A
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Notions of cumulative utility

I Discounted utility

VW (s; c) , Ec
(’

k�0
Wk

U
t+k

��St = s

)

I Average utility4

V (s; c) , lim
T!1

Ec
 

1
T

T’
k=1

U
t+k

��St = s

!

I Given some measure V (s; c) of the ‘goodness’ of c, optimal
policy satisfies V (s; copt) � V (s; c) for all c

4Under mild regularity conditions V doesn’t depend on the starting state.
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Estimation (of copt) in MDPs

I Model-based: system dynamics model + simulation optimization

I Model-free: construct estimating functions for optimal policy

I Typically derived from Bellman equations

I Only model part of dynamics, e.g., moments

I Bias-variance trade-o� in model-free vs. model-based
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Considerations and open problems in MDPs

I Scalability and complexity

I Experimental design is still more complicated

I Need to ensure su�cient exploration of state space

I Need to consider delayed e�ects

I Feature construction to ensure Markov (approx) holds

I Need principled methods for optimally combing model-based
and model-free methods
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We’re excited to chat about these problems!
eric.laber@duke.edu
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