Machine-learning of model error in dynamical systems

Matthew E. Levine ${ }^{1} \quad$ Andrew M. Stuart ${ }^{1}$
${ }^{1}$ Department of Computing and Mathematical Sciences California Institute of Technology

Workshop on Dynamics and Data Assimilation, Physiology and Bioinformatics Banff International Research Station

June 1, 2022

Introduction

- Machine learning works (with enough data)!

Caltech

Introduction

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!

Caltech

Introduction

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!
- In most open prediction problems, we have SOME data and SOME prior knowledge.

Caltech

Introduction

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!
- In most open prediction problems, we have SOME data and SOME prior knowledge.
- The next generation of high-performing prediction models will hybridize physics-based and data-driven modeling techniques
- How can we help lay the groundwork for this future?

Our problem

$$
\text { True system (ODE): } \quad \begin{array}{ll}
\dot{x} & =f^{\dagger}(x, y) \\
\dot{y} & =\frac{1}{\varepsilon} g^{\dagger}(x, y) \tag{1}
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

Our problem

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
& \dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y)
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y} & =\frac{1}{\varepsilon} g^{\dagger}(x, y)
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
- Partial, noisy observations (e.g. observe x, but not y)

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y} & =\frac{1}{\varepsilon} g^{\dagger}(x, y)
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of $y, g^{\dagger}, \varepsilon$, nor $\operatorname{dim}(y)$

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y} & =\frac{1}{\varepsilon} g^{\dagger}(x, y)
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of $y, g^{\dagger}, \varepsilon, \operatorname{nor} \operatorname{dim}(y)$
- Observations may be irregularly spaced and noisy

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y} & =\frac{1}{\varepsilon} g^{\dagger}(x, y) \tag{1}
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of $y, g^{\dagger}, \varepsilon$, nor $\operatorname{dim}(y)$
- Observations may be irregularly spaced and noisy
- Ability to leverage partial knowledge of f^{\dagger}

Leveraging partial knowledge of the dynamics

For any f_{0} (regardless of its fidelity), there exists an $m^{\dagger}(x, y)$ such that (1) can be re-written as

$$
\begin{align*}
& \dot{x}=f_{0}(x)+m^{\dagger}(x, y) \tag{2a}\\
& \dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y) . \tag{2b}
\end{align*}
$$

Leveraging partial knowledge of the dynamics

For any f_{0} (regardless of its fidelity), there exists an $m^{\dagger}(x, y)$ such that (1) can be re-written as

$$
\begin{align*}
& \dot{x}=f_{0}(x)+m^{\dagger}(x, y) \tag{2a}\\
& \dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y) . \tag{2b}
\end{align*}
$$

There exists a closure $\mathcal{M}_{t}^{\dagger}$ that captures the full effect of the y-system on x :

$$
\begin{equation*}
\dot{x}(t)=f_{0}(x(t))+\mathcal{M}_{t}^{\dagger}\left(\{x(s)\}_{s=0}^{t} ; y(0)\right) . \tag{3}
\end{equation*}
$$

We say the closure term $\mathcal{M}_{t}^{\dagger}$ has memory.

Memoryless closure

When $\varepsilon \rightarrow 0$ and the y dynamics, with x fixed, are sufficiently mixing, then we expect that there exists a closure term $\overline{\mathcal{M}}^{\dagger}$ that only depends on x

$$
\lim _{\varepsilon \rightarrow 0} \mathcal{M}_{t}^{\dagger}\left(\{x(s)\}_{s=0}^{t} ; y(0)\right)=: \overline{\mathcal{M}^{\dagger}}(x(t))
$$

Memoryless closure

When $\varepsilon \rightarrow 0$ and the y dynamics, with x fixed, are sufficiently mixing, then we expect that there exists a closure term $\overline{\mathcal{M}^{\dagger}}$ that only depends on x

$$
\lim _{\varepsilon \rightarrow 0} \mathcal{M}_{t}^{\dagger}\left(\{x(s)\}_{s=0}^{t} ; y(0)\right)=: \overline{\mathcal{M}^{\dagger}}(x(t))
$$

For $\varepsilon \rightarrow 0$, eq. (3) reduces to

$$
\begin{equation*}
\dot{x}(t)=f_{0}(x)+\overline{\mathcal{M}^{\dagger}}(x) \tag{4}
\end{equation*}
$$

(4) is also obtained when no unobserved variable y is present.
$\overline{\mathcal{M}^{\dagger}}$ can be learned with any function approximation technique.

Toy multi-scale examples: memory vs averaging

Coupled multi-scale linear oscillator

$$
\begin{aligned}
& \dot{x}=A x+h y \\
& \dot{y}=\frac{1}{\varepsilon} A y
\end{aligned}
$$

. $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

- $x_{0} \sim \mathcal{N}(0, I)$ normalized to unit circle

Example 3: Lorenz '63 with unknown Markovian errors

Hybrid modeling is worthwhile, even when the available physics model appears BAD on its own!!! (Pathak et al. 2018)

Hybrid methods can rescue incorrect models

$$
\begin{gathered}
\text { The onoede } \\
f^{\dagger}
\end{gathered}:=f_{L 63}
$$

Approximate Model
$f_{\epsilon}(x):=f^{\dagger}(x)+\epsilon m^{\dagger}(x)$
$\Psi_{\epsilon}(x):=x+\int_{\Gamma}^{\Delta t} f_{\epsilon}(x(s)) d s$ $m^{\dagger} \sim G P$

Caltech

Hybrid methods are more parameter efficient

True Model

$$
f^{\dagger}:=f_{L 63}
$$

Approximate Model

$$
\begin{aligned}
f_{\epsilon}(x) & :=f^{\dagger}(x)+\epsilon m^{\dagger}(x) \\
\Psi_{\epsilon}(x) & :=x+\int_{0}^{\Delta t} f_{\epsilon}(x(s)) d s \\
& \epsilon=0.05
\end{aligned}
$$

Hybrid methods are less data hungry

Recall: memory vs averaging

Coupled multi-scale linear oscillator

$$
\begin{aligned}
\dot{x} & =A x+h y \\
\dot{y} & =\frac{1}{\varepsilon} A y
\end{aligned}
$$

. $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

- $x_{0} \sim \mathcal{N}(0, I)$ normalized to unit circle

Modeling non-Markovian dynamics in continuous-time

- Delay-differential equations:

$$
\dot{x}=f_{0}(x)+f\left(\{x(t-\tau)\}_{\tau} ; \theta\right)
$$

- X Learnt model can be challenging/expensive to solve numerically
- \checkmark Allows for direct supervised training
- Latent dynamics (re-augment state space):

$$
\begin{aligned}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \\
\dot{r} & =g(x, r ; \theta)
\end{aligned}
$$

- \checkmark Learnt model is straightforward to solve numerically
- x Training is more challenging (Chicken \& Egg problem of inferring missing states AND their dynamics)

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & \Longleftrightarrow u & =x
\end{array}
$$

Caltech

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & \Longleftrightarrow u & =x
\end{array}
$$

Assume noisy observations $z=H u+\eta$.

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & \Longleftrightarrow u & =x
\end{array}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & & H u
\end{array}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

$$
\underset{\theta, u_{0}}{\operatorname{argmin}} \int_{0}^{T}\left\|z(t)-H u\left(t ; u_{0}, \theta\right)\right\|^{2} d t .
$$

- X Poorly-posed with larger T for chaotic systems with sensitivity to u_{0}.

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & \Longleftrightarrow u & =x
\end{array}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.
Let $\hat{m}\left(t, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right)$ be an estimate of $u(t) \mid\{z(t-s)\}_{s=0}^{\tau}, \theta_{\mathrm{DYN}}, u(t-\tau)=0$.

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & & H u
\end{array}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.
Let $\hat{m}\left(t, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right)$ be an estimate of $u(t) \mid\{z(t-s)\}_{s=0}^{\tau}, \theta_{\mathrm{DYN}}, u(t-\tau)=0$.
DA-based inference: Initial conditions can be estimated jointly with parameters

$$
\underset{\theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T}\left\|z^{(k)}(t)-H u\left(t ; \hat{m}\left(t_{k}, \tau,, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right), \theta_{\mathrm{DYN}}\right)\right\|^{2} d t
$$

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & \Longleftrightarrow u & =x
\end{array}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.
Let $\hat{m}\left(t, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right)$ be an estimate of $u(t) \mid\{z(t-s)\}_{s=0}^{\tau}, \theta_{\mathrm{DYN}}, u(t-\tau)=0$.
DA-based inference: Initial conditions can be estimated jointly with parameters

$$
\underset{\theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T}\left\|z^{(k)}(t)-H u\left(t ; \hat{m}\left(t_{k}, \tau,, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right), \theta_{\mathrm{DYN}}\right)\right\|^{2} d t
$$

- Here, we perform joint estimation with auto-differentiable 3DVAR
- Chen et al. 2021 perform joint estimation with auto-differentiable Ensemble Kalman Filter
- Carassi et al. 2021 apply alternating descent (EnKF for \hat{m}, supervised SGD for θ)

Example 2: Lorenz '63 with partial, noisy observations

Figure: Accurate short-term forecasts

Figure: Accurate long-time statistics (empirically stable for $T=10^{5}$)

- Experimental Setting: $H=[1,0,0]$ (observe first-component only), $T=1000$, $\Delta t=0.01, \sigma=1$ (observation noise).
- Modeling Setting: $d_{r}=2$ (assumed missing dimension), 2-layer NN w/ GelUllech activation (width 50).

Example 2: Can infer Data Assimilation Parameters

- We can infer $\theta_{\text {DA }}$ (K for 3DVAR, covariances for EnKF/UKF).
- This can tell us how observables correlate to latent variables (e.g. in clusters)

Conclusions

(1) Hybrid modeling is often worthwhile

- Improved predictions, even when physical model is quite bad or nearly perfect
- Less data hunger, more parameter efficient

Caltech

Conclusions

(1) Hybrid modeling is often worthwhile

- Improved predictions, even when physical model is quite bad or nearly perfect
- Less data hunger, more parameter efficient
(2) Fusing Data Assimilation and machine-learning-based optimization techniques is useful for coping with:
- Highly non-linear and chaotic systems
- Noisy and irregularly sampled data
- Partial observations of large systems
- Tuning data assimilation schemes

Conclusions

(1) Hybrid modeling is often worthwhile

- Improved predictions, even when physical model is quite bad or nearly perfect
- Less data hunger, more parameter efficient
(2) Fusing Data Assimilation and machine-learning-based optimization techniques is useful for coping with:
- Highly non-linear and chaotic systems
- Noisy and irregularly sampled data
- Partial observations of large systems
- Tuning data assimilation schemes
(3) Other things I've learned:
- Solving ODEs on GPUs in parallel is way fast!
- Optimizing NNs isn't as bad as you think (often loosely convex), but requires expertise!

Future Directions

- Opportunities to new problems where decent (or no) models are available, along with data
- Inferring model errors to improve biological models (need real data)

Future Directions

- Opportunities to new problems where decent (or no) models are available, along with data
- Inferring model errors to improve biological models (need real data)
- Inferring reductions of multi-scale models (simulated and/or real data)

Caltech

Future Directions

- Opportunities to new problems where decent (or no) models are available, along with data
- Inferring model errors to improve biological models (need real data)
- Inferring reductions of multi-scale models (simulated and/or real data)

Caltech

Future Directions

- Opportunities to new problems where decent (or no) models are available, along with data
- Inferring model errors to improve biological models (need real data)
- Inferring reductions of multi-scale models (simulated and/or real data)
- Challenges:
- Limited data \Longrightarrow learn error terms that are 0 away from data and/or provide UQ (as SDE)

Future Directions

- Opportunities to new problems where decent (or no) models are available, along with data
- Inferring model errors to improve biological models (need real data)
- Inferring reductions of multi-scale models (simulated and/or real data)
- Challenges:
- Limited data \Longrightarrow learn error terms that are 0 away from data and/or provide UQ (as SDE)
- Interpretability \Longrightarrow parsimony/sparsity (ℓ_{1} regularization); ensure SMALL corrections
- Not just for dynamical systems!!!

$$
y=A x+B x \otimes x+f_{\mathrm{NN}}(x)
$$

Related Work: Hybrid modeling

- Kaheman, Kadierdan, Eurika Kaiser, Benjamin Strom, J. Nathan Kutz, and Steven L. Brunton. "Learning Discrepancy Models From Experimental Data." ArXiv:1909.08574 [Cs, Eess, Stat], September 18, 2019. http://arxiv.org/abs/1909.08574.
- Rico-Martines, R., I. G. Kevrekidis, M. C. Kube, and J. L. Hudson. "Discrete- vs. Continuous-Time Nonlinear Signal Processing: Attractors, Transitions and Parallel Implementation Issues." In 1993 American Control Conference, 1475-79. San Francisco, CA, USA: IEEE, 1993. https://doi.org/10.23919/ACC.1993.4793116.
- Pathak, Jaideep, Alexander Wikner, Rebeckah Fussell, Sarthak Chandra, Brian R. Hunt, Michelle Girvan, and Edward Ott. "Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction with a Knowledge-Based Model." Chaos: An Interdisciplinary Journal of Nonlinear Science 28, no. 4 (April 1, 2018): 041101. https://doi.org/10.1063/1.5028373.
- Harlim, J., Jiang, S. W., Liang, S. \& Yang, H. Machine learning for prediction with missing dynamics. Journal of Computational Physics 428, 109922 (2021).

Related Work: Learning dynamics from partial/noisy observations

- Chen, Y., Sanz-Alonso, D. \& Willett, R. Auto-differentiable Ensemble Kalman Filters. arXiv:2107.07687 [cs, stat] (2021).
- Ouala, S. et al. Learning latent dynamics for partially observed chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 103121 (2020).
- Brajard, J., Carrassi, A., Bocquet, M. \& Bertino, L. Combining data assimilation and machine learning to infer unresolved scale parametrization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, 20200086 (2021).

Timestep informs choice of continuous vs discrete model

True Model
$f^{\dagger}:=f_{L 63}$

Approximate Model

$$
\begin{aligned}
f_{\epsilon}(x) & :=f^{\dagger}(x)+\epsilon m^{\dagger}(x) \\
\Psi_{\epsilon}(x) & :=x+\int_{0}^{\Delta t} f_{\epsilon}(x(s)) d s \\
& \epsilon=0.05
\end{aligned}
$$

Learning theory for Markovian residuals (no memory)

Model:

$$
\dot{x}=f_{0}(x)+m(x)
$$

Trajectory-based loss:

$$
\mathcal{I}_{T}(m):=\frac{1}{T} \int_{0}^{T}\left\|\dot{x}(t)-f_{0}(x(t))-m(x(t))\right\|_{2}^{2} d t
$$

Caltech

Learning theory for Markovian residuals (no memory)

Model:

$$
\dot{x}=f_{0}(x)+m(x)
$$

Trajectory-based loss:

$$
\mathcal{I}_{T}(m):=\frac{1}{T} \int_{0}^{T}\left\|\dot{x}(t)-f_{0}(x(t))-m(x(t))\right\|_{2}^{2} d t
$$

A natural loss function

Choose a measure μ on $\mathbb{R}^{d_{x}}$, let $m^{\dagger}(x):=\dot{x}-f_{0}(x)$, and define the loss

$$
\mathcal{L}_{\mu}\left(m, m^{\dagger}\right):=\int_{\mathbb{R}^{d_{x}}}\left\|m^{\dagger}(x)-m(x)\right\|_{2}^{2} d \mu(x) .
$$

Assume $m^{\dagger}, x(\cdot)$ is ergodic with invariant density μ. Exchange time/space averages:

$$
\mathcal{L}_{\mu}\left(m, m^{\dagger}\right)=\lim _{T \rightarrow \infty} \mathcal{I}_{T}(m)
$$

i.e. Optimizing over a temporal trajectory implicitly optimizes spatially w.r.t. invariant measure.

Learning theory for Markovian residuals (no memory)

Model:

$$
\dot{x}=f_{0}(x)+m(x)
$$

Trajectory-based loss:

$$
\mathcal{I}_{T}(m):=\frac{1}{T} \int_{0}^{T}\left\|\dot{x}-f_{0}(x)-m(x(t))\right\|_{2}^{2} d t
$$

Assume:

- Linear classes of m (e.g. random feature models, dictionary learning, etc.)
- f_{0} is Lipshitz
- x is ergodic with CLT-like mixing

Theorem 5.2 (Levine and Stuart, 2021)

- Excess risk and generalization error bounded by $1 / \sqrt{T}$ in distribution.
- Excess risk and generalization error bounded by $\log \log T / \sqrt{T}$ almost surely.

Example 1: Lorenz '96 Multi-Scale closure

Each (slow) variable $X_{k} \in \mathbb{R}$ is coupled to a subgroup of (fast) variables $Y_{k} \in \mathbb{R}^{J}$. We have $X \in \mathbb{R}^{K}$ and $Y \in \mathbb{R}^{K \times J}$. For $k=1 \ldots K$ and $j=1 \ldots J$, we write

$$
\begin{align*}
\dot{X}_{k} & =f_{k}(X)+h_{x} \bar{Y}_{k} \tag{5a}\\
\dot{Y}_{k, j} & =\frac{1}{\varepsilon} r_{j}\left(X_{k}, Y_{k}\right) \tag{5b}\\
\bar{Y}_{k} & =\frac{1}{J} \sum_{j=1}^{J} Y_{k, j} \tag{5c}
\end{align*}
$$

Memoryless closure $(\varepsilon \rightarrow 0)$
We apply an averaging hypothesis that assumes

$$
\dot{X}_{k} \approx f_{k}(X)+m\left(X_{k}\right)
$$

where $m: \mathbb{R} \rightarrow \mathbb{R}$ is a random feature model applied component-wise.

Example 1: Lorenz '96 Multi-Scale closure-scale separated

- At large scale separation $\left(\varepsilon=2^{-7}\right)$, the model error $m=f_{k}-\dot{x}$ is highly concentrated around its mean and oscillates rapidly.
- Thus, the averaging hypothesis holds and Markovian modeling is sensible.

$$
\dot{X}_{k}=f_{k}(X)+m\left(X_{k}\right)
$$

Example 1: Lorenz '96 Multi-Scale closure-scale separated

At large scale separation $\left(\varepsilon=2^{-7}\right)$, we can accurately reconstruct the system dynamics and their statistics using a simple Markovian residual on X

$$
\dot{X}_{k}=f_{k}(X)+m\left(X_{k}\right)
$$

Caltech

Learning the entire system from scratch did not work (with the data we used)

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation

- Consider the model error $m=f_{k}-\dot{x}$ at different levels of scale separation.
- Less scale separation increases the variance of the residuals and slows their oscillations.

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation

- Consider the model error $m=f_{k}-\dot{x}$ at different levels of scale separation.
- Less scale separation increases the variance of the residuals and slows their oscillations.

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation ($\varepsilon=2^{-1}$)

Markovian residual modeling

Caltech

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation ($\varepsilon=2^{-1}$)

Markovian residual modeling

Non-Markovian residual modeling (augmented latent dynamics).

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation $\left(\varepsilon=2^{-1}\right)$

- The true L96MS system has a clustered subgrouping of fast variables-our model has re-discovered this structure, and the DA gain K has learnt to exploit these correlations for improved filtering.

Caltech

