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Introduction

• Machine learning works (with enough data)!

• Mechanistic models based on physics work (with enough knowledge and
compute)!

• In most open prediction problems, we have SOME data and SOME prior
knowledge.

• The next generation of high-performing prediction models will hybridize
physics-based and data-driven modeling techniques

• How can we help lay the groundwork for this future?
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Our problem

True system (ODE):
ẋ = f †(x , y)

ẏ =
1

ε
g †(x , y)

(1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

• Goal: Given noisy observations of x , learn predictive model for future x dynamics.

• Methodological constraints:
• Partial, noisy observations (e.g. observe x , but not y)
• No knowledge of y , g†, ε, nor dim(y)
• Observations may be irregularly spaced and noisy
• Ability to leverage partial knowledge of f †
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ẋ = f †(x , y)
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Leveraging partial knowledge of the dynamics

For any f0 (regardless of its fidelity), there exists an m†(x , y) such that (1) can be
re-written as

ẋ = f0(x) + m†(x , y) (2a)

ẏ =
1

ε
g †(x , y). (2b)

There exists a closure M†t that captures the full effect of the y -system on x :

ẋ(t) = f0
(
x(t)

)
+M†t

({
x(s)

}t
s=0

; y(0)

)
. (3)

We say the closure term M†t has memory.
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Memoryless closure

When ε→ 0 and the y dynamics, with x fixed, are sufficiently mixing, then we expect
that there exists a closure term M† that only depends on x

lim
ε→0
M†t

({
x(s)

}t
s=0

; y(0)

)
=:M†

(
x(t)

)
.

For ε→ 0, eq. (3) reduces to

ẋ(t) = f0(x) +M†(x). (4)

(4) is also obtained when no unobserved variable y is present.

M† can be learned with any function approximation technique.
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Toy multi-scale examples: memory vs averaging

Coupling Strength

No Memory

Coupled multi-scale linear oscillator

·x = Ax + hy

·y = 1
ε

Ay

• 


•  normalized to 
unit circle

A = [ 0 1
−1 0]

x0 ∼ 𝒩(0,I)

ε

h

Memory

Scale Separation
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Example 3: Lorenz ’63 with unknown Markovian errors

Hybrid modeling is worthwhile, even when the available physics model appears BAD on
its own!!! (Pathak et al. 2018)
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Recall: memory vs averaging

Coupling Strength

No Memory

Coupled multi-scale linear oscillator

·x = Ax + hy

·y = 1
ε

Ay

• 


•  normalized to 
unit circle

A = [ 0 1
−1 0]

x0 ∼ 𝒩(0,I)

ε

h

Memory

Scale Separation

10 / 28



Modeling non-Markovian dynamics in continuous-time

• Delay-differential equations:

ẋ = f0(x) + f

({
x(t − τ)

}
τ
; θ

)
• 7 Learnt model can be challenging/expensive to solve numerically
• X Allows for direct supervised training

• Latent dynamics (re-augment state space):

ẋ = f0(x) + m(x , r ; θ)

ṙ = g(x , r ; θ)

• X Learnt model is straightforward to solve numerically
• 7 Training is more challenging (Chicken & Egg problem of inferring missing

states AND their dynamics)
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Learning latent dynamics in continuous-time

ẋ = f0(x) + m(x , r ; θ)

ṙ = g(x , r ; θ)

⇐⇒ u̇ = f (u; θ), u = [x , r ]T

Hu = x

Assume noisy observations z = Hu + η.
Let u(t; v , θ) solve u̇ = f (u; θ), u(0) = v .

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

argmin
θ,u0

∫ T

0
‖z(t)− Hu(t; u0, θ)‖2dt.

• 7 Poorly-posed with larger T for chaotic systems with sensitivity to u0.
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Learning latent dynamics in continuous-time

ẋ = f0(x) + m(x , r ; θ)

ṙ = g(x , r ; θ)

⇐⇒ u̇ = f (u; θ), u = [x , r ]T

Hu = x

Assume noisy observations z = Hu + η.
Let u(t; v , θ) solve u̇ = f (u; θ), u(0) = v .

Let m̂(t, τ, θDYN, θDA) be an estimate of u(t) | {z(t − s)}τs=0, θDYN, u(t − τ) = 0.

DA-based inference: Initial conditions can be estimated jointly with parameters

argmin
θDYN, θDA

K∑
k=1

∫ T

0
‖z(k)(t)− Hu

(
t; m̂(tk , τ, , θDYN, θDA), θDYN

)
‖2dt.

• Here, we perform joint estimation with auto-differentiable 3DVAR
• Chen et al. 2021 perform joint estimation with auto-differentiable Ensemble

Kalman Filter
• Carassi et al. 2021 apply alternating descent (EnKF for m̂, supervised SGD for θ)
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Example 2: Lorenz ’63 with partial, noisy observations

20

0

20 True State 0
NN-Predicted Latent State
True State (noisy) 0
NN-Assimilated Latent State

138 140 142 144 146 148
4

2

0

2 NN-Assimilated Latent State
NN-Predicted Latent State

Figure: Accurate short-term forecasts
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First coordinate KDE (all-time)
True system
NN system

Figure: Accurate long-time statistics
(empirically stable for T = 105)

• Experimental Setting: H = [1, 0, 0] (observe first-component only), T = 1000,
∆t = 0.01, σ = 1 (observation noise).

• Modeling Setting: dr = 2 (assumed missing dimension), 2-layer NN w/ GeLU
activation (width 50).
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Example 2: Can infer Data Assimilation Parameters

• We can infer θDA (K for 3DVAR, covariances for EnKF/UKF).
• This can tell us how observables correlate to latent variables (e.g. in clusters)
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Conclusions

1 Hybrid modeling is often worthwhile
• Improved predictions, even when physical model is quite bad or nearly perfect
• Less data hunger, more parameter efficient

2 Fusing Data Assimilation and machine-learning-based optimization techniques is
useful for coping with:
• Highly non-linear and chaotic systems
• Noisy and irregularly sampled data
• Partial observations of large systems
• Tuning data assimilation schemes

3 Other things I’ve learned:
• Solving ODEs on GPUs in parallel is way fast!
• Optimizing NNs isn’t as bad as you think (often loosely convex), but requires

expertise!
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Future Directions

• Opportunities to new problems where decent (or no) models are available, along
with data
• Inferring model errors to improve biological models (need real data)

• Inferring reductions of multi-scale models (simulated and/or real data)

• Challenges:
• Limited data =⇒ learn error terms that are 0 away from data and/or provide UQ (as

SDE)
• Interpretability =⇒ parsimony/sparsity (`1 regularization); ensure SMALL corrections
• Not just for dynamical systems!!!

y = Ax + Bx ⊗ x + fNN(x)
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Related Work: Learning dynamics from partial/noisy observations
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Example 3: Lorenz ’63 with unknown Markovian errors
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Learning theory for Markovian residuals (no memory)

Model: ẋ = f0(x) + m(x)
Trajectory-based loss:

IT (m) :=
1

T

∫ T

0
‖ẋ(t)− f0

(
x(t)

)
−m

(
x(t)

)
‖22dt.

A natural loss function

Choose a measure µ on Rdx , let m†(x) := ẋ − f0(x), and define the loss

Lµ(m,m†) :=

∫
Rdx

‖m†(x)−m(x)‖22dµ(x).

Assume m†, x(·) is ergodic with invariant density µ. Exchange time/space averages:

Lµ(m,m†) = lim
T→∞

IT (m).

i.e. Optimizing over a temporal trajectory implicitly optimizes spatially w.r.t.
invariant measure.
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Learning theory for Markovian residuals (no memory)

Model: ẋ = f0(x) + m(x)
Trajectory-based loss:

IT (m) :=
1

T

∫ T

0
‖ẋ − f0(x)−m(x(t))‖22dt.

Assume:

• Linear classes of m (e.g. random feature models, dictionary learning, etc.)

• f0 is Lipshitz

• x is ergodic with CLT-like mixing

Theorem 5.2 (Levine and Stuart, 2021)

• Excess risk and generalization error bounded by 1/
√
T in distribution.

• Excess risk and generalization error bounded by log logT/
√
T almost surely.
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Example 1: Lorenz ’96 Multi-Scale closure

Each (slow) variable Xk ∈ R is coupled to a subgroup of (fast) variables Yk ∈ RJ . We
have X ∈ RK and Y ∈ RK×J . For k = 1 . . .K and j = 1 . . . J, we write

Ẋk = fk(X ) + hx Ȳk (5a)

Ẏk,j =
1

ε
rj(Xk ,Yk) (5b)

Ȳk =
1

J

J∑
j=1

Yk,j (5c)

Memoryless closure (ε→ 0)

We apply an averaging hypothesis that assumes

Ẋk ≈ fk(X ) + m(Xk)

where m : R→ R is a random feature model applied component-wise.
22 / 28



Example 1: Lorenz ’96 Multi-Scale closure—scale separated

• At large scale separation (ε = 2−7), the model error m = fk − ẋ is highly
concentrated around its mean and oscillates rapidly.

• Thus, the averaging hypothesis holds and Markovian modeling is sensible.

Ẋk = fk(X ) + m(Xk)
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Example 1: Lorenz ’96 Multi-Scale closure—scale separated

At large scale separation (ε = 2−7), we can accurately reconstruct the system
dynamics and their statistics using a simple Markovian residual on X

Ẋk = fk(X ) + m(Xk)

Learning the entire system from scratch did not work (with the data we used)
24 / 28



Example 1: Lorenz ’96 Multi-Scale closure beyond scale separation

• Consider the model error m = fk − ẋ at different levels of scale separation.
• Less scale separation increases the variance of the residuals and slows their
oscillations.
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Example 1: Lorenz ’96 Multi-Scale closure beyond scale separation (ε = 2−1)

Markovian residual modeling

Non-Markovian residual modeling
(augmented latent dynamics).
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Time Lag
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True system
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Example 1: Lorenz ’96 Multi-Scale closure beyond scale separation (ε = 2−1)

• The true L96MS system has a clustered subgrouping of fast variables—our model
has re-discovered this structure, and the DA gain K has learnt to exploit these
correlations for improved filtering.
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