Machine-learning of model error in dynamical systems

 ${\sf Matthew} \ {\sf E}. \ {\sf Levine}^1 \quad {\sf Andrew} \ {\sf M}. \ {\sf Stuart}^1$

¹Department of Computing and Mathematical Sciences California Institute of Technology

Workshop on Dynamics and Data Assimilation, Physiology and Bioinformatics Banff International Research Station June 1, 2022

• Machine learning works (with enough data)!

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!
- In most open prediction problems, we have SOME data and SOME prior knowledge.

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!
- In most open prediction problems, we have SOME data and SOME prior knowledge.
- The next generation of high-performing prediction models will hybridize physics-based and data-driven modeling techniques
- How can we help lay the groundwork for this future?

True system (ODE): $\dot{x} = f^{\dagger}(x, y)$ $\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$ (1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

True system (ODE):
$$\dot{x} = f^{\dagger}(x, y)$$

 $\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$ (1)

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- **Goal:** Given noisy observations of *x*, learn predictive model for future *x* dynamics.

True system (ODE):
$$\dot{x} = f^{\dagger}(x, y)$$

 $\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$ (1)

.

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
 - Partial, noisy observations (e.g. observe x, but not y)

True system (ODE):
$$\dot{x} = f^{\dagger}(x, y)$$

 $\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$ (1)

± . .

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
 - Partial, noisy observations (e.g. observe x, but not y)
 - No knowledge of y, g^{\dagger}, ε , nor dim(y)

True system (ODE): $\dot{x} = f^{\dagger}(x, y)$ $\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$ (1)

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.

• Methodological constraints:

- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of y, g^{\dagger}, ε , nor dim(y)
- Observations may be irregularly spaced and noisy

True system (ODE): $\dot{x} = f^{\dagger}(x, y)$ $\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$ (1)

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.

• Methodological constraints:

- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of y, g^{\dagger}, ε , nor dim(y)
- Observations may be irregularly spaced and noisy
- Ability to leverage partial knowledge of f[†]

Leveraging partial knowledge of the dynamics

For any f_0 (regardless of its fidelity), there exists an $m^{\dagger}(x, y)$ such that (1) can be re-written as

$$\dot{x} = f_0(x) + m^{\dagger}(x, y)$$

$$\dot{x} = \frac{1}{\sigma^{\dagger}(x, y)}$$
(2a)
(2b)

$$\dot{y} = \frac{1}{\varepsilon} g^{\dagger}(x, y).$$
 (2b)

Leveraging partial knowledge of the dynamics

For any f_0 (regardless of its fidelity), there exists an $m^{\dagger}(x, y)$ such that (1) can be re-written as

$$\dot{x} = f_0(x) + m^{\dagger}(x, y) \tag{2a}$$

$$\dot{y} = \frac{1}{\varepsilon} g^{\dagger}(x, y).$$
 (2b)

There exists a closure \mathcal{M}_t^{\dagger} that captures the full effect of the *y*-system on *x*:

$$\dot{x}(t) = f_0(x(t)) + \mathcal{M}_t^{\dagger} \bigg(\{ x(s) \}_{s=0}^t; \ y(0) \bigg).$$
(3)

We say the closure term \mathcal{M}_t^{\dagger} has **memory**.

Memoryless closure

When $\varepsilon \to 0$ and the y dynamics, with x fixed, are sufficiently mixing, then we expect that there exists a closure term $\overline{\mathcal{M}^{\dagger}}$ that **only depends on** x

$$\lim_{\varepsilon \to 0} \mathcal{M}_t^{\dagger} \Big(\big\{ x(s) \big\}_{s=0}^t; \ y(0) \Big) =: \overline{\mathcal{M}}^{\dagger} \big(x(t) \big).$$

Memoryless closure

When $\varepsilon \to 0$ and the y dynamics, with x fixed, are sufficiently mixing, then we expect that there exists a closure term $\overline{\mathcal{M}^{\dagger}}$ that **only depends on** x

$$\lim_{\varepsilon \to 0} \mathcal{M}_t^{\dagger} \left(\left\{ x(s) \right\}_{s=0}^t; \ y(0) \right) =: \overline{\mathcal{M}^{\dagger}}(x(t)).$$

For $\varepsilon
ightarrow$ 0, eq. (3) reduces to

$$\dot{x}(t) = f_0(x) + \overline{\mathcal{M}^{\dagger}}(x). \tag{4}$$

(4) is also obtained when no unobserved variable y is present.

 $\overline{\mathcal{M}^{\dagger}}$ can be learned with any function approximation technique.

Toy multi-scale examples: memory vs averaging

Coupled multi-scale linear oscillator

Hybrid modeling is worthwhile, even when the available physics model appears BAD on its own!!! (Pathak et al. 2018)

Hybrid methods can rescue incorrect models

True Model

$$f^{\dagger} := f_{L63}$$

Approximate Model

$$f_{\epsilon}(x) := f^{\dagger}(x) + \epsilon m^{\dagger}(x)$$

$$\Psi_{\epsilon}(x) := x + \int_{2}^{\Delta t} f_{\epsilon}(x(s)) ds$$

$$m^{\dagger} \sim GP$$

$$= \frac{\pi}{2} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{\pi}$$

Hybrid methods are more parameter efficient

True Model $f^{\dagger} := f_{I63}$

Approximate Model

$$f_{\epsilon}(x) := f^{\dagger}(x) + \epsilon m^{\dagger}(x)$$

$$\Psi_{\epsilon}(x) := x + \int_{0}^{\Delta t} f_{\epsilon}(x(s)) ds$$

$$\epsilon = 0.05$$

tech

Hybrid methods are less data hungry

True Model $f^{\dagger} := f_{I63}$

Approximate Model

$$f_{\epsilon}(x) := f^{\dagger}(x) + \epsilon m^{\dagger}(x)$$

$$\Psi_{\epsilon}(x) := x + \int_{0}^{\Delta t} f_{\epsilon}(x(s)) ds$$

$$\epsilon = 0.05$$

Recall: memory vs averaging

Coupled multi-scale linear oscillator

Modeling non-Markovian dynamics in continuous-time

• Delay-differential equations:

$$\dot{x} = f_0(x) + f\left(\left\{x(t-\tau)\right\}_{\tau}; \ \theta\right)$$

- X Learnt model can be challenging/expensive to solve numerically
- ✓ Allows for direct supervised training
- Latent dynamics (re-augment state space):

$$\dot{x} = f_0(x) + m(x, r; \theta)$$
$$\dot{r} = g(x, r; \theta)$$

- \checkmark Learnt model is straightforward to solve numerically
- X Training is more challenging (Chicken & Egg problem of inferring missing states AND their dynamics)

$$\dot{x} = f_0(x) + m(x, r; \theta) \qquad \Longleftrightarrow \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T \dot{r} = g(x, r; \theta) \qquad \qquad Hu = x$$

$$\dot{x} = f_0(x) + m(x, r; \theta) \qquad \Longleftrightarrow \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T \dot{r} = g(x, r; \theta) \qquad \qquad Hu = x$$

Assume noisy observations $z = Hu + \eta$.

$$\dot{x} = f_0(x) + m(x, r; \theta) \qquad \Longleftrightarrow \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T \dot{r} = g(x, r; \theta) \qquad \qquad Hu = x$$

Assume noisy observations $z = Hu + \eta$. Let $u(t; v, \theta)$ solve $\dot{u} = f(u; \theta), u(0) = v$.

$$\dot{x} = f_0(x) + m(x, r; \theta) \qquad \Longleftrightarrow \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T \dot{r} = g(x, r; \theta) \qquad \qquad Hu = x$$

Assume noisy observations $z = Hu + \eta$. Let $u(t; v, \theta)$ solve $\dot{u} = f(u; \theta), u(0) = v$.

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

$$\underset{\theta,u_0}{\operatorname{argmin}}\int_0^T \|z(t) - Hu(t;u_0,\theta)\|^2 dt.$$

• X Poorly-posed with larger T for chaotic systems with sensitivity to u_0 .

$$\begin{split} \dot{x} &= f_0(x) + m(x,r; \ \theta) &\iff & \dot{u} = f(u; \ \theta), \quad u = [x,r]^T \\ \dot{r} &= g(x,r; \ \theta) & Hu = x \\ & \text{Assume noisy observations } z = Hu + \eta. \\ & \text{Let } u(t; v, \theta) \text{ solve } \dot{u} = f(u; \theta), \quad u(0) = v. \end{split}$$

Let $\hat{m}(t,\tau,\theta_{\text{DYN}},\theta_{\text{DA}})$ be an estimate of $u(t) \mid \{z(t-s)\}_{s=0}^{\tau}, \ \theta_{\text{DYN}}, \ u(t-\tau) = 0.$

$$\begin{split} \dot{x} &= f_0(x) + m(x,r; \ \theta) &\iff & \dot{u} = f(u; \ \theta), \quad u = [x,r]^T \\ \dot{r} &= g(x,r; \ \theta) & Hu = x \\ & \text{Assume noisy observations } z &= Hu + \eta. \\ & \text{Let } u(t; v, \theta) \text{ solve } \dot{u} = f(u; \theta), \quad u(0) = v. \end{split}$$

Let $\hat{m}(t, \tau, \theta_{\text{DYN}}, \theta_{\text{DA}})$ be an estimate of $u(t) \mid \{z(t-s)\}_{s=0}^{\tau}, \theta_{\text{DYN}}, u(t-\tau) = 0$. **DA-based inference:** Initial conditions can be estimated jointly with parameters

$$\operatorname{argmin}_{\theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}} \sum_{k=1}^{K} \int_{0}^{T} \|z^{(k)}(t) - Hu(t; \hat{m}(t_{k}, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}), \theta_{\mathrm{DYN}})\|^{2} dt.$$

$$\begin{split} \dot{x} &= f_0(x) + m(x,r; \ \theta) &\iff & \dot{u} = f(u; \ \theta), \quad u = [x,r]^T \\ \dot{r} &= g(x,r; \ \theta) & Hu = x \\ & \text{Assume noisy observations } z = Hu + \eta. \\ & \text{Let } u(t; v, \theta) \text{ solve } \dot{u} = f(u; \theta), \quad u(0) = v. \end{split}$$

Let $\hat{m}(t, \tau, \theta_{\text{DYN}}, \theta_{\text{DA}})$ be an estimate of $u(t) \mid \{z(t-s)\}_{s=0}^{\tau}, \theta_{\text{DYN}}, u(t-\tau) = 0$. **DA-based inference:** Initial conditions can be estimated jointly with parameters

$$\underset{\theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T} \| z^{(k)}(t) - Hu(t; \hat{m}(t_{k}, \tau, , \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}), \theta_{\mathrm{DYN}}) \|^{2} dt.$$

- Here, we perform joint estimation with auto-differentiable 3DVAR
- Chen *et al.* 2021 perform joint estimation with auto-differentiable Ensemble
 Kalman Filter
 Caltech
- Carassi et al. 2021 apply alternating descent (EnKF for \hat{m} , supervised SGD for θ)

Example 2: Lorenz '63 with partial, noisy observations

- Experimental Setting: H = [1, 0, 0] (observe first-component only), T = 1000, $\Delta t = 0.01$, $\sigma = 1$ (observation noise).
- Modeling Setting: d_r = 2 (assumed missing dimension), 2-layer NN w/ GebU activation (width 50).

Example 2: Can infer Data Assimilation Parameters

- We can infer θ_{DA} (K for 3DVAR, covariances for EnKF/UKF).
- This can tell us how observables correlate to latent variables (e.g. in clusters)

Conclusions

1 Hybrid modeling is often worthwhile

- Improved predictions, even when physical model is quite bad or nearly perfect
- Less data hunger, more parameter efficient

Conclusions

- 1 Hybrid modeling is often worthwhile
 - Improved predictions, even when physical model is quite bad or nearly perfect
 - Less data hunger, more parameter efficient
- 2 Fusing Data Assimilation and machine-learning-based optimization techniques is useful for coping with:
 - Highly non-linear and chaotic systems
 - Noisy and irregularly sampled data
 - Partial observations of large systems
 - Tuning data assimilation schemes

Conclusions

- 1 Hybrid modeling is often worthwhile
 - Improved predictions, even when physical model is quite bad or nearly perfect
 - Less data hunger, more parameter efficient
- 2 Fusing Data Assimilation and machine-learning-based optimization techniques is useful for coping with:
 - Highly non-linear and chaotic systems
 - Noisy and irregularly sampled data
 - Partial observations of large systems
 - Tuning data assimilation schemes
- **3** Other things I've learned:
 - Solving ODEs on GPUs in parallel is way fast!
 - Optimizing NNs isn't as bad as you think (often loosely convex), but requires expertise!

- **Opportunities** to new problems where decent (or no) models are available, along with data
 - Inferring model errors to improve biological models (need real data)

- **Opportunities** to new problems where decent (or no) models are available, along with data
 - Inferring model errors to improve biological models (need real data)
 - Inferring reductions of multi-scale models (simulated and/or real data)

- **Opportunities** to new problems where decent (or no) models are available, along with data
 - Inferring model errors to improve biological models (need real data)
 - Inferring reductions of multi-scale models (simulated and/or real data)

- **Opportunities** to new problems where decent (or no) models are available, along with data
 - Inferring model errors to improve biological models (need real data)
 - Inferring reductions of multi-scale models (simulated and/or real data)
- Challenges:
 - Limited data \Longrightarrow learn error terms that are 0 away from data and/or provide UQ (as SDE)

- **Opportunities** to new problems where decent (or no) models are available, along with data
 - Inferring model errors to improve biological models (need real data)
 - Inferring reductions of multi-scale models (simulated and/or real data)
- Challenges:
 - Limited data \implies learn error terms that are 0 away from data and/or provide UQ (as SDE)
 - Interpretability \implies parsimony/sparsity (ℓ_1 regularization); ensure SMALL corrections
 - Not just for dynamical systems!!!

$$y = Ax + Bx \otimes x + f_{\rm NN}(x)$$

Related Work: Hybrid modeling

- Kaheman, Kadierdan, Eurika Kaiser, Benjamin Strom, J. Nathan Kutz, and Steven L. Brunton. "Learning Discrepancy Models From Experimental Data." ArXiv:1909.08574 [Cs, Eess, Stat], September 18, 2019. http://arxiv.org/abs/1909.08574.
- Rico-Martines, R., I. G. Kevrekidis, M. C. Kube, and J. L. Hudson. "Discrete- vs. Continuous-Time Nonlinear Signal Processing: Attractors, Transitions and Parallel Implementation Issues." In 1993 American Control Conference, 1475–79. San Francisco, CA, USA: IEEE, 1993. https://doi.org/10.23919/ACC.1993.4793116.
- Pathak, Jaideep, Alexander Wikner, Rebeckah Fussell, Sarthak Chandra, Brian R. Hunt, Michelle Girvan, and Edward Ott. "Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction with a Knowledge-Based Model." Chaos: An Interdisciplinary Journal of Nonlinear Science 28, no. 4 (April 1, 2018): 041101. https://doi.org/10.1063/1.5028373.
- Harlim, J., Jiang, S. W., Liang, S. & Yang, H. Machine learning for prediction with missing dynamics. Journal of Computational Physics 428, 109922 (2021).
 Caltech

Related Work: Learning dynamics from partial/noisy observations

- Chen, Y., Sanz-Alonso, D. & Willett, R. Auto-differentiable Ensemble Kalman Filters. arXiv:2107.07687 [cs, stat] (2021).
- Ouala, S. et al. Learning latent dynamics for partially observed chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 103121 (2020).
- Brajard, J., Carrassi, A., Bocquet, M. & Bertino, L. Combining data assimilation and machine learning to infer unresolved scale parametrization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, 20200086 (2021).

Timestep informs choice of continuous vs discrete model

True Model

 $f^{\dagger} := f_{L63}$

Approximate Model

$$f_{\epsilon}(x) := f^{\dagger}(x) + \epsilon m^{\dagger}(x)$$

$$\Psi_{\epsilon}(x) := x + \int_{0}^{\Delta t} f_{\epsilon}(x(s)) ds$$

$$\epsilon = 0.05$$

tech

Learning theory for Markovian residuals (no memory)

Model: $\dot{x} = f_0(x) + m(x)$

Trajectory-based loss:

$${\mathcal I}_T(m) := rac{1}{T} \int_0^T \|\dot{x}(t) - f_0(x(t)) - m(x(t))\|_2^2 dt.$$

Learning theory for Markovian residuals (no memory)

Model:
$$\dot{x} = f_0(x) + m(x)$$

Trajectory-based loss:

$${\mathcal I}_T(m) := rac{1}{T} \int_0^T \|\dot{x}(t) - f_0(x(t)) - m(x(t))\|_2^2 dt.$$

A natural loss function

Choose a measure μ on \mathbb{R}^{d_x} , let $m^{\dagger}(x) := \dot{x} - f_0(x)$, and define the loss

$$\mathcal{L}_\mu(m,m^\dagger) := \int_{\mathbb{R}^{d_\chi}} \|m^\dagger(x) - m(x)\|_2^2 d\mu(x).$$

Assume m^{\dagger} , $x(\cdot)$ is ergodic with invariant density μ . Exchange time/space averages:

$$\mathcal{L}_{\mu}(m,m^{\dagger}) = \lim_{T o \infty} \mathcal{I}_{T}(m).$$

i.e. Optimizing over a temporal trajectory implicitly optimizes spatially w.r.t. invariant measure.

ch

Learning theory for Markovian residuals (no memory)

$$\dot{x} = f_0(x) + m(x)$$

Trajectory-based loss:

$${\mathcal I}_{\mathcal T}(m) := rac{1}{{\mathcal T}} \int_0^{{\mathcal T}} \|\dot{x} - f_0(x) - m(x(t))\|_2^2 dt.$$

Assume:

Model:

- Linear classes of *m* (e.g. random feature models, dictionary learning, etc.)
- *f*₀ is Lipshitz
- x is ergodic with CLT-like mixing

Theorem 5.2 (Levine and Stuart, 2021)

- Excess risk and generalization error bounded by $1/\sqrt{\mathcal{T}}$ in distribution.
- Excess risk and generalization error bounded by log log T/\sqrt{T} almost surely.

ch

Example 1: Lorenz '96 Multi-Scale closure

Each (slow) variable $X_k \in \mathbb{R}$ is coupled to a subgroup of (fast) variables $Y_k \in \mathbb{R}^J$. We have $X \in \mathbb{R}^K$ and $Y \in \mathbb{R}^{K \times J}$. For $k = 1 \dots K$ and $j = 1 \dots J$, we write

$$\dot{X}_k = f_k(X) + h_x \bar{Y}_k$$
 (5a)
 $\dot{Y}_{k,j} = \frac{1}{\varepsilon} r_j(X_k, Y_k)$ (5b)

$$\bar{Y}_k = \frac{1}{J} \sum_{j=1}^J Y_{k,j}$$
(5c)

Memoryless closure ($\varepsilon \rightarrow 0$)

We apply an averaging hypothesis that assumes

$$\dot{X}_k \approx f_k(X) + m(X_k)$$

where $m : \mathbb{R} \to \mathbb{R}$ is a random feature model applied component-wise.

ch

Example 1: Lorenz '96 Multi-Scale closure—scale separated

- At large scale separation ($\varepsilon = 2^{-7}$), the model error $m = f_k \dot{x}$ is highly concentrated around its mean and oscillates rapidly.
- Thus, the averaging hypothesis holds and Markovian modeling is sensible.

$$\dot{X}_k = f_k(X) + m(X_k)$$

Example 1: Lorenz '96 Multi-Scale closure—scale separated

At large scale separation ($\varepsilon = 2^{-7}$), we can accurately reconstruct the system dynamics and their statistics using a simple Markovian residual on X

1.0 --- fat 0.10 1.4 0.8 Line 1.2 1.0 Probability $f^{\dagger} \approx f_0 + m$ 0.6 ACF 0.4 Validity 1 0.2 0.0 --- $f^{\dagger} = f_0$ 0.02 -0.2 0.2 $= \Psi_0 + m$ 0.00 0.0 -0.4-1010 2.5 10.0 1 0.0 5.0 7.5 x = fo

 $\dot{X}_k = f_k(X) + m(X_k)$

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation

- Consider the model error $m = f_k \dot{x}$ at different levels of scale separation.
- Less scale separation increases the variance of the residuals and slows their oscillations.

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation

- Consider the model error $m = f_k \dot{x}$ at different levels of scale separation.
- Less scale separation increases the variance of the residuals and slows their oscillations.

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation ($\varepsilon = 2^{-1}$)

Markovian residual modeling

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation ($\varepsilon = 2^{-1}$)

Non-Markovian residual modeling (augmented latent dynamics).

Example 1: Lorenz '96 Multi-Scale closure beyond scale separation ($\varepsilon = 2^{-1}$)

• The true L96MS system has a clustered subgrouping of fast variables—our model has re-discovered this structure, and the DA gain K has learnt to exploit these correlations for improved filtering.

