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Approaches for Prediction

o Physiology-Based Mechanistic Modeling
o Machine Learning Modeling
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Approaches for Prediction

o Physiology-Based Mechanistic Modeling
o Machine Learning Modeling

This is very extensive field. We will focus on
@ one treatment — chimeric antigen receptor (CAR) T-cell therapy

o one disease — diffuse large B-cell lymphoma (DLBCL)

o one modeling approach — mechanistic modeling
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CAR T-cell Therapy?

How CAR T-cell therapy is used to treat cancer
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https://my.clevelandclinic.org/health/treatments/17726-car-t-cell-therapy

Diffuse Large B-cell Lymphoma

o An aggressive and the most common type of Non-Hodgkin lymphoma
(NHL)

o 81,560 estimated new cases and 20,270 deaths in 2021 due to NHL
DLBLC accounts for 30-35% of the newly diagnosed cases

©

©

The number of new cases is projected to increase in the next 5 years

CAR T-cell therapy is FDA-approved as the third-line of treatment
option (for leukemia, lymphoma, myeloma)

©
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Why do we want to predict the therapy outcome?

o Even though it has shown improvement, CAR T-cell therapy does not
work for everyone

o It may cause severe adverse events: toxicity

o It is a costly treatment

When can we predict?
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Modeling CAR T-cell in Glioma Setting?

cancer cell logistic growth
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Model Parameters:
p: Cancer cell net growth rate (day™!)

States: K: carrying capacity (cell)
X: cancer cell count k1. CAR T-cell killing rate (day ™! cell™!)
Y: CAR T-cell count k2: Net rate of proliferation and exhaustion of T-cells

when stimulated by cancer cells (day ™! cell ™)
0: CAR T-cell net death rate (persistence) (day %)

2 “Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay
data”.
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Modeling CAR T-cell in Glioma Setting

By re-scaling time and state variables,

K1 1
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we obtain an equivalent dimensionless system
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with the following dimensionless parameters
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Modeling CAR T-cell in Glioma Setting

Possible Dynamics of the CARRGO Model:
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@ Successful CAR T-cell treatment: A=0,B >0
@ CAR T-cell treatment failure: A=0,B<0
@ Pseudo-failure or pseudo-response: A > 0,8 > 0

CU Anschutz CAR T-cell Therapy in DLBCL Patients 9 /16



Modeling CAR T-cell in Glioma Setting
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Pilot Study

Dataset:

o TMTV measurements — cancer cell count
1 measurement used as the initial condition

o ALC measurements — CAR T-cell count
at most 10 measurements collected until after 15 days of CAR
T-cell infusion
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Model Estimation

Model Simulation vs Measurements
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Prediction

Model Simulation vs Measurements
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Conclusion

Mechanistic modeling could
o provide insight into cancer cell-CAR T-cell dynamics
o handle the data sparsity limitations

o provide more information than binary outcome prediction, e.g., timing
of relapse

CU Anschutz Conclusion and Future Directions 14 / 16



Future Directions

o More accurate estimation of the TMTV (cancer cell count) at the
time of infusion

o Investigating use of other biomarkers for more accurate and direct
estimation of cancer and CAR T-cell counts

o lIdentifying CAR T-cell proliferation and exhaustion time windows
accurately

o Investigating optimal dosing strategies to enhance the treatment
outcome
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