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The problem

Data:

x i : state

z i : factors

ai : action

g i : reference group

Goal:

Estimate ρ (x |z∗, a∗, g∗)

or simulate x j∗ ∼ ρ (: |z∗, a∗, g∗).

Examples:

Diagnosis, forecast, treatment effect estimation



Conditional density simulation through the optimal
transport barycenter problem

Include the action a among the factors z , forget temporarily the
reference group g .

Remove from x the variability attributable to z through a map
y = T (x ; z) such that µ(y) = T#ρ(x |z) is independent of z .
Among such maps T , select the minimizer of a cost function C (T )
associated with data distortion.
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x i ∼ ρ
(
: |z i

)
→ y i = T

(
x i ; z i

)
→ x i∗ = T−1

(
y i ; z∗

)
∼ ρ (: |z∗)



An example: hourly temperature in Ithaca, NY
Set 1: Static covariates: time of day, day of year, year.
Set 2: Static + local temperature 24 hours before.
Set 3: Static + temperature at 3 locations 36 hours before.

Figure: Observations, estimated median and 95% confidence interval.



Capturing idiosyncratic factors through sub-sampling
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Trajectories

y∗ = T (x∗; z∗, a∗)) .

In time, under a prescribed action a(t):

x∗(t) = T−1 (y∗; z(t), a(t)) ∼ ρ (: |z(t), a(t), g∗)

In action:

x∗(t) = T−1 (y∗; z∗, a) ∼ ρ (: |z∗, a, g∗)

Sensitivity, attribution:

x∗(t) = T−1 (y∗; z , a∗) ∼ ρ (: |z , a∗, g∗)



Factor discovery

Find additional latent factors zl explaining, jointly with the known
factors zk , as much variability in x as possible:
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zl = arg min var [µ(y) = T#ρ(x |z)] , z = {zk , zl}

but var [ρ] = minC (T ) + var [µ], so

max
zl

min
T (x ,z)

C (T )



To conclude

The barycenter problem provides a natural framework for inference
and control, suitable for analysis at various levels of
granularity/individualization.

Left out of this talk: how to formulate and solve the data-driven
barycenter problem. That’s where much of the math fun is!
Some ingredients: weak formulation of the push-forward condition,
maps built from continuous flows, minimax problems.

Also left our of this talk: biomedical applications. Work in
progress!

Much more to do.

Thanks!


