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Ordinary Differential Equations as Dynamical Systems

Scalar Linear Example
dx
dt

= λx, x(0) = x0 ∈ R

• This is an Initial Value Problem. Initial value is x0 ∈ R.
• Solution of IVP is function x(t) that satisfies ODE for t > 0 and

initial value.
Question: How does solution depend on value of x0?
• λ ∈ R is a parameter. Does not change in time, but we can

consider different values.
Question: How does behaviour of solution change with λ?

Solution

x(t) = eλtx0, t > 0 or t ∈ R

This solves IVP, but is not the answer to our questions
Answers:
• If λ < 0 then limt→+∞ x(t) = 0 and limt→−∞ |x(t)| = +∞

If λ > 0 then limt→+∞ |x(t)| = +∞ and limt→−∞ x(t) = 0
• sign(x(t)) = sign(x0) for all t ∈ R. Solutions do not cross x = 0
• If x0 = 0 then x(t) = 0 for all t ∈ R is a solution. Its called a

steady state.
• Steady state at x = 0 is stable if λ < 0 (other solutions approach

it), and unstable if λ > 0.
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Ordinary Differential Equations as Dynamical Systems

Scalar Nonlinear Example: The Logistic Equation
dx
dt

= f (x, λ) = λx(1− x), x(0) = x0 ∈ R

• There is again an exact formula for solution of IVP. We don’t
need it.

Consider:

I Introduction 

Nonlinear dynamics ↔ Dynamical Systems 

We are interested in systems that evolve over time, not statics. 

We will be interested in 2 types of dynamical systems: 

- Continuous dynamical systems defined by an ODE 

- Discrete dynamical systems defined by a map 

 

 

Examples of continuous dynamical systems: 

1) Exponential Growth and Decay 

Consider  �̇� = 𝜆𝑥,    𝑥 ∈ ℝ   with   �̇� =
𝑑𝑥

𝑑𝑡
  and 𝜆 is a constant. 

We are interested in the behaviour of the solution 𝑥(𝑡) on ℝ as 𝑡 → ±∞ 

 

�̇� − 𝜆𝑥 = 0     so   
𝑑𝑥

𝑥
= 𝜆𝑑𝑡    so  ln|𝑥| = 𝜆𝑡 + 𝑐    |𝑥| = 𝑒𝑐𝑒𝜆𝑡    so   𝑥(𝑡) = 𝑘𝑒𝜆𝑡       𝑥(0) = 𝑘  so   𝑥(𝑡) = 𝑥(0)𝑒𝜆𝑡 

 

 

2) Logistic Equation :  �̇� = 𝜆𝑥(1 − 𝑥)  

This is a Bernoulli Equation. 

Let 𝑓(𝜆, 𝑥) = 𝜆𝑥(1 − 𝑥).    

For 𝜆 < 0, suppose we have 𝑥1(0) < 𝑥2(0) ∈ (0,1), then 𝑥1(𝑇) = 𝑥2(0) 

for some 𝑇 > 0 and 𝑥2(𝑇) > 𝑥2(0) = 𝑥1(𝑇) 

Since 𝑓 does not change, 𝑥1(2𝑇) = 𝑥2(𝑇) and 𝑥1(𝑇 + 𝑡) = 𝑥2(𝑡)   ∀𝑡 ≥

0  for some 𝑇 > 0   

And 𝑥1(𝑡) < 𝑥2(𝑡)    ∀𝑡 > 0 if 𝑥1(0) < 𝑥2(0) 

 

 

In 1D dynamical systems, solutions 𝑥(𝑡) are monotonic functions of time. They either tend to a constant value called 

steady state or fixed point, or become unbounded (go to ±∞) 

• Plot f (x, λ) against x. Then
sign

( dx
dt

)
= sign(f (x, λ)) which allows

us to sketch dynamics on R.
• Steady states at x = 0 and x = 1.
• If λ > 0 then x = 0 is unstable and

x = 1 is stable with limt→∞ x(t) = 1
whenever x0 > 0 and λ > 0.

• If λ < 0 then x = 1 is unstable and
x = 0 is stable with limt→∞ x(t) = 0
whenever x0 < 1 and λ < 0.

• Stable steady states are locally but not
globally attracting
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Dynamical Systems in Higher Dimensions

Lorenz Equations in R3

dx
dt

= σ(y− x)

dy
dt

= rx− y− xz

dz
dt

= xy− bz

Parameters: σ = 10, b = 8/3, r = 28.
Initial condition: (x0, y0, z0) ∈ R3

Solution: u(t) = (x(t), y(t), z(t)) ∈ R3

Plot solutions components against
time t

0 10 20 30 40 50 60 70 80 90 100

t

-20

-10

0
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20

30

40

x(
t)

That’s a mess above!

Plot solution (x(t), y(t), z(t)) as a
curve in R3 parametrised by t.

The beautiful Lorenz attractor now
appears
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Phase Space

• Why is curve
(x(t), y(t), z(t)) ∈ R3 so
elegant?

• Because
• (x0, y0, z0) ∈ R3 also
• Initial condition specifies a

unique solution of ODE.
• Uniqueness ensures that

solutions do not cross.

Phase Space
Phase space is the space that the initial conditions belong to.

• Set up needs to ensure that solution of IVP for any
(x0, y0, z0) ∈ R3 is unique
• Crucial feature: dynamics depends only on position, not on time.

Systems with delay, noise, forcing are excluded (for now).
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Evolution Operator

Let U be phase space (Rn for now).
Evolution operator S(t) maps initial condition u0 ∈ Rn to solutions t
time units later,

Commutative Semigroup Property
1 S(t1)S(t2) = S(t2)S(t1) = S(t1 + t2) for all t1, t2 > 0 (associative

and commutative)

2 S(0) = I (identity operator; so a commutative monoid)

Evolution operator allows us to define invariant sets A ⊂ U.

Invariant Sets Under Dynamics
A is forward invariant if S(t)u ∈ A for all u ∈ A and all t > 0.
A is backward invariant if S(−t)u ∈ A for all u ∈ A and all t 6 0.
A is invariant if it is both forward and backward invariant.
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Invariant Sets and Stability
Invariant Sets include
• Steady states
• Periodic Orbits
• More exotic things, including

invariant tori and strange attractors
(inc. Lorenz attractor).

Stability of Steady States
For a steady state u∗ ∈ Rn let v(t) = u(t)− u∗ and linearize to obtain

dv
dt

= Av,

where A ∈ Rn×n is the n× n Jacobian matrix of f evaluated at u∗.

• Steady-state is stable if all eigenvalues λ have negative real parts.
• Floquet theory generalises technique to periodic orbits.
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Parameter Continuation and Bifurcations
Recall du

dt = f (u, µ) has parameter(s).

Implicit Function Theorem
If all eigenvalues of Jacobian matrix at steady-state u∗ have
Re(λ) 6= 0 then as parameter µ is varied
• u∗ varies continuously in phase space
• Number of eigenvalues with positive and negative real parts is

constant, so no change in stability.

Bifurcation is qualitative change in dynamics as parameter µ is varied.

Bifurcations
Occur when
• Steady-state bifurcation: Real eigenvalue crosses 0. Number and

stability of steady states close to u∗ changes
• Hopf bifurcation: Complex conjugate pair of eigenvalues cross

the imaginary axis. A Periodic orbit is born from the steady state.

There are plenty of more complicated bifurcations
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Delay Differential Equations

Delays arise in Physics/Engineering
due to
• Transport
• Communication
• Processing Time

Delays in Physiology
Often blend all three
• Hormone/Antigen must be produced and transported to receptor

before signal received
• Maturation/incubation delays often significant
• Its a modelling choice to incorporate a delay, rather than model

the entire process leading to that delay.
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Goodwin Operon Model

• Protein Production
• mRNA Transcription &

Translation
• [GOODWIN 1963,1965] without

delay
• τ constant: 1970s, 1980s
• [GEDEON,ARH ET AL, JMB 2022]:

Enlarged view 

of the process 

of translation 

Translation 

Translation 

Initiation 

Transcription 

Initiation 

Positive Feedback 

Cell membrane 

Transcription 

Operon 

mRNA 

Active Repressor 

mRNA Polymerase 

Ribosome 

Lactose(Internal) 

Allolactose 

β-galactosidase  

Permease 

Inactive Repressor 

Transacetylase 

Lactose(External) 

Inactivation of 

the repressor 

molecule 

+

MRNA:
dM
dt

(t) = βMe−µτM(t) vM(E(t))
vM(E(t − τM(t)))

f (E(t − τM(t)))− γ̄MM(t),

Intermediate:
dI
dt

(t) = βIe−µτI(t) vI(M(t))
vI(M(t − τI(t)))

M(t − τI(t))− γ̄II(t),

Effector:
dE
dt

(t) = βEI(t)− γ̄EE(t).

Threshold delays : aj =

∫ t

t−τj(t)
vj(E(s))ds, j = M, I.
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Burns and Tannock G0 Cell Cycle Model
Cell cycle model: [BURNS & TANNOCK 1970]:

γ
Apoptosis

Rate

G2

M

Cell
Cycle
τ

S

G1

Self Renewal
Quiescence/
Senescence

Entry

β(Q)

Cell Cycle Entry

Resting
Phase G0

κ
Differentiation/

Death Rate

Stem Cell DDE: [MACKEY BLOOD 1978]

Q′(t) = −(κ+ β(Q(t)))Q(t) + Aβ(Q(t − τ))Q(t − τ),

β(Q) = f
θs

θs + Qs , A = 2e−γτ

• Describes cell division
• Non-monotone delayed feedback
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Hematopoiesis

Body produces more than 1011 blood cells per day

• Thats 1011 Burns-Tannock cell cycles per day
• Numerous proteins needed for each cell cycle (Goodwin Model)
• A macro-model is needed that simplifies these processes

Granulopoiesis Model [CRAIG, ARH, MACKEY BMB 16]:

Stem Cells :
dQ
dt

= − (κN(G(t)) + κδ + β(Q(t)))

+AQ(t)β (Q(t − τQ)) Q(t − τQ)

Reservoir :
dNR

dt
= AN(t)κN(G(t − τN))Q(t − τN)

VNM(G(t))
VNM(G(t − τNM(t)))

−(γNR + ϕNR(G(t)))NR(t)

Circulating :
dN
dt

= ϕNR(G(t))NR(t)− γNN(t)
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Maturation Threshold Condition and Velocity Ratio
Constant V:

dNR

dt
= KN(G(t − τN ))Q(t − τN )AN(t)

−(γNR + ϕNR(G(t)))NR
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Maturation Threshold Condition and Velocity Ratio
Variable V . Tempting to write

dNR

dt
= KN(G(t − τN(t)))Q(t − τN(t))AN(t)

−(γNR + ϕNR(G(t)))NR

But wrong
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Maturation Threshold Condition and Velocity Ratio
Variable V . With velocity correction:

dNR

dt
= KN(G(t − τN(t)))Q(t − τN(t))AN(t)

VNM(G(t))
VNM(G(t − τNM(t)))

−(γNR + ϕNR(G(t)))NR

Moving the Boundaries of Granulopoiesis Modelling 2361

Fig. 1 a The conveyor belt
analogy Mahaffy et al. (1998).
Maturing cells are transported at
speed v(t). The production rate
of mature cells is v(t)n(t, aM ),
while new cell enters the
maturation compartment at a
rate β(x(t)) = v(t)n(t, 0). b
Simulations of Eqs. (9) (solid)
and (2) (dashed) with initial
history x(θ) = 1 for
θ ∈ [−τ0, 0],
β(x) = k0k

2/(k2 + x2),
τ(t) = τ0 + A sin(2π t/T ), γ =
0.2, k0 = 1.0, k = 1.0, τ0 =
10.0, A = 0.5, T = 21

V(t)

a
M

source

B

0 20 40 60 80 100

1.
0

1.
4

1.
8

2.
2

time

x(
t)

x(t) − correct
x(t) − incorrect

τ(t) =
∫ t

t−τ(t)
v(s)ds. (4)

From a maturation time viewpoint, Eq. (3) is a transport equation with a moving
boundary. Differentiating equation (4) with respect to time yields

1 − dτ(t)

dt
= v(t)

v(t − τ(t))
(5)

New mature cells are produced at a rate v(t)n(t, aM ), which is the flux of cell going
through the boundary a = aM . The analogy of the conveyor belt introduced inMahaffy
et al. (1998) is useful to represent the effect of a varying speed and the boundaries
(Fig. 1a). It is convenient to assume v(t) ≥ 0, to avoid cells from re-entering the
maturation compartment at a = aM or leaving the compartment at a = 0. In the same
way, the flux of cells entering maturation is v(t)n(t, 0). If we pose that the flux of cell
entering maturation is β(x(t), then we have the boundary condition

v(t)n(t, 0) = β(x(t)) (6)

Using the characteristics, we have that n(t, aM ) = n(t − τ(t), 0), and it follows that

v(t)n(t, aM ) = v(t)n(t − τ(t), 0) = v(t)

v(t − τ(t))
β(x(t − τ(t))). (7)

Therefore the correct form for the varying time delay equation is

dx(t)

dt
= v(t)

v(t − τ(t))
β(x(t − τ(t))) − γ x(t), (8)

123

[BERNARD BMB 2016] • add bags to conveyor belt at
constant rate
• For any constant belt speed

they exit at same rate
• Not true if belt speed varies
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123

[BERNARD BMB 2016] • add bags to conveyor belt at
constant rate
• For any constant belt speed

they exit at same rate
• Not true if belt speed varies

• Differentiate Threshold condition:
∫ t

t−τNM(t)
VNM(G(s))ds = aNM ,

d
dtτNM(t) = 1− VNM(G(t))

VNM(G(t−τNM(t)))
and d

dt (t − τNM(t)) > 0

• Same correction term derived in [CRAIG,ARH,MACKEY BMB 2016]

from age structured PDE, also as far back as [SMITH MATH BIOSCI

’93]. Generalized to random maturation age in [CASSIDY,CRAIG,ARH

MATH BIOSCIENG ’19]
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Phase Space With Delays

Constant Delay DDE IVP

u̇(t) = f (t, u(t), u(t − τ)), u(0) = u0 ∈ Rd, u(t) ∈ Rd, t > t0

For unique IVP solution for t > t0
• it is not sufficient to specify u(t0)

• To evaluate RHS at t0 require u(t0 − τ)

• ∀s ∈ [t0 − τ, t0] require a value of u(s) to evaluate RHS of DDE
at t = s + τ ∈ [t0, t0 + τ ].

For uniqueness of IVP solution need an initial function
u(t) = ϕ(t), ∀t ∈ [t0 − τ, t0]

Provided ϕ is Lipschitz and f = f (t, u, v) is Lipschitz in its arguments
this is sufficient for local existence and uniqueness.
• Recall that phase space is space of initial functions

14



Breaking Points and Smoothing

u̇(t) = f (t, u(t), u(t − τ)), t > t0
u(t) = ϕ(t), t ∈ [t0 − τ, t0]

Breaking Point at t0

Usually ϕ̇(t0) 6= f (t0, ϕ(t0), ϕ(t0 − τ))
so u̇(t−0 ) 6= u̇(t+0 ). This is a breaking point.

Breaking Points at t0 + kτ

ü(t) = ft(t, u(t), u(t − τ)) + u̇(t) fu(t, u(t), u(t − τ))

+ u̇(t − τ) fv(t, u(t), u(t − τ)).
So ü generically discontinuous at t0 + τ and similarly,
u(k+1)(t) discontinuous at t = t0 + kτ for k > 0.

• Smoothing: u(t) ∈ Ck+1 for t > t0 + kτ
• No such smoothing for neutral problems

15



DDEs as Dynamical Systems

Phase space of DS is set of (initial) states of system:{
ut : ut(θ) = u(t + θ), θ ∈ [−τ, 0]

}
But for t ∈ (t0, t0 + τ) ∃ θ ∈ (−τ, 0) s.t. t + θ = t0.
ut(θ) is not differentiable at this θ.

Phase Space of continuous functions{
ϕ : ϕ ∈ C([−τ, 0],Rd)

}
Includes all polynomials, so phase space is infinite dimensional even
for scalar d = 1 problems

Retarded Functional Differential Equations
u̇(t) = F(t, ut), F : R× C→ Rd

• Lack of differentiability is a serious hindrance to theory

16



Linearization for Autonomous Constant Delay DDEs

Scalar Example
Suppose f (u, v) satisfies f (0, 0) = 0 so u = 0 is a steady state then

u̇(t) = f (u(t), u(t − τ)) = fu(0, 0)u(t) + fv(0, 0)u(t − τ) + h.o.t
and linearization is

u̇(t) = fu(0, 0)u(t) + fv(0, 0)u(t − τ) = µu(t) + σu(t − τ)

Positing u(t) = eλt gives transcendental characteristic equation

λ− µ− σe−τλ = 0.
Let λ = x + iy and take real and imaginary parts:

x− µ− σe−τx cos(yτ) = y + σe−τx sin(yτ) = 0

Infinitely many roots, all lie on curve y = ±
√
σ2e−2τx − (x− µ)2

• Laplace transforms show all solutions are exponentials
• Finitely many roots to right of any vertical line in C;
• All characteristic roots satisfy x < |µ|+ |σ|
• Stable manifolds is infinite dimensional

17



Linerization for DDEs in Rd

u̇(t) = f (u(t), u(t − τ1), . . . , u(t − τm))

Let f (u, v1, . . . , vm) : Rd × Rmd → Rd satisfy f (0, 0, . . . , 0) = 0, so
u = 0 is a steady state.
Linearization is variational equation

u̇(t) = A0u(t) +
∑m

j=1 Aju(t − τj),

where A0 = fu and Aj = fvj are d × d matrices evaluated at the
steady-state (essentially a Jacobian matrix for each ’delay’).
There is nontrivial solution u(t) = eλtv ∈ Rd with ∆(λ)v = 0 if

0 = det(∆(λ)), ∆(λ) = λId − A0 −
∑m

j=1 Aje−λτj .

• Characteristic equation has infinitely many roots
• Variational equation soln: u(t) =

∑
i αieλitvi

• Finitely many λi with Re(λi) > β for any β ∈ R.
• State-dependent DDEs are linearized by freezing the delays

18



Bifurcations for Delay Differential Equations
Numerical tools: DDE-Biftool and DDE23 in Matlab for solution and
bifurcation computation
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Distributed Delays

Threshold delays are example of distributed delays. Such delays
hidden in many models this week. Lets consider infinite delay:

Model Distributed Delay DE

du
dt

= f
(

t, u(t),
∫ t

−∞
u(s)g(t − s)ds

)
= f
(

t, u(t),
∫ ∞

0
u(t − σ)g(σ)dσ

)
.

• PDF:

g(t) > 0,
∫ ∞

0
g(t)dt = 1,

∫ ∞
0

tg(t)dt = τ.

• Dynamics of u(t) determined by a distribution of previous values.

• Problem: Such problems not covered by off the shelf numerical
packages for simulation or bifurcation detection

• Should specify a particular PDF.
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The Gamma Distribution

p =

τ = 3
PDF: gp

a(t) =
ap

Γ(p)
tp−1e−at,

Mean delay: τ = p/a.

Standard deviation: σ2 = p/a2.

Γ(n) = (n− 1)! n ∈ N.

Γ(p) = (p− 1)Γ(p− 1), p ∈ R/Z−.

Erlang distribution is special case of
Gamma distribution with p ∈ N

Differentiation Property

d
dt

gp
a(t) =

{
a(gp−1

a (t)− gp
a(t)), p 6= 1

− ag1
a(t), p = 1.

Gives closed system if p ∈ Z+.
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Linear Chain Trick
Distributed Delay DE

u̇(t) = f
(

t, u(t),
∫ ∞

0
u(t − σ)gn

a(σ)dσ
)

22



Linear Chain Trick
Distributed Delay DE

u̇(t) = f
(

t, u(t),
∫ ∞

0
u(t − σ)gn

a(σ)dσ
)

= f (t, u(t),Tn(t))

Where we let

Tj(t) =

∫ ∞
0

u(t − s)gj
a(s) ds, j = 1, . . . , n.
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Linear Chain Trick
Distributed Delay DE

u̇(t) = f
(

t, u(t),
∫ ∞

0
u(t − σ)gn

a(σ)dσ
)

= f (t, u(t),Tn(t))

Where we let

Tj(t) =

∫ ∞
0

u(t − s)gj
a(s) ds, j = 1, . . . , n.

Equivalent ODE System

u̇(t) = f (t, u(t),Tn(t))

dTj

dt
=

{
a(Tj−1(t)− Tj(t)), j = {2, 3, . . . , n},
a(u(t)− T1(t)), j = 1.

τ = n/a and σ2 = n/a2.

• This is linear chain technique
[VOGEL PROC. INT. SYMP. NONLINEAR VIB. ’61],
[MACDONALD TIME LAGS IN BIOLOGICAL MODELS ’78],... 22



Linear Chain Trick

• Equivalent ODE is a transit compartment model. They have a
long history:

[MCKENDRICK PROC ED MATH SOC ’25]

99

following series of compartments are classified at any instant the
numbers of individuals who have experienced, 0, 1, 2, 3 ... attacks
of this complaint. The history of each individual consists of a
series of unit steps, originating in the compartment which def cribes
his initial condition. The arrows in the diagram indicate the
chance of passage from one compartment to the next—that is to
say the chance of experiencing a further attack during the infini-
tesimal period of time dt.

a:= 0 1 2 3 4 5 6

-1» - -» - » - • - » - • -

Fig. 1

• 1 * 1 - > - •>

Fig. 2

• » - >

Fig. 3
In fig. 1 these arrows are of equal size, and by this we under-

stand that the successive chances were of constant value ; in fig. 2
the arrows increase in size, denoting an increase of susceptibility
with each attack ; in fig. 3 they decrease, which denotes that the
individual is becoming decreasingly liable, or in medical parlance
he is developing an immunity.

Guided by the diagram, and using the nomenclature vx = the
number of individuals who have experienced x attacks (or shortly
"of grade x ") ; fhxdt = the probability that an individual of grade
x will pass to grade x + 1 in the time dt, and noting that the
variation of the number in any grade is the difference between
the number of incomers into that grade, and the number who go
out from that grade, we have

In this case and in what follows, for the sake of conciseness, the
solutions will be given for instantaneous point sources; other
initial conditions may be obtained by (summation.

• Jana showed us a compartment model this morning.
• Distributed delays often obscured this way

• Linear Chain Trick allows us to formulate compartment model
either as distributed delay or ODE.
• These models are finite dimensional, but become discrete delays

in limit of infinitely many compartments
• Compartment model requires n integer : distributed DDE does

not.
• Given estimates of τ ∈ R+ and σ2 ∈ R+,

No reason to suppose n = τ 2/σ2 ∈ Z+.
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Will’s model (he says not)

Ultradian Model
dG
dt

= f4(hn) + IG(t)− f2(G)− f3(Ii)G

dhj

dt
=

{
a(hj−1(t)− hj(t)), j = {2, 3, . . . , n},
a(Ip(t)− h1(t)), j = 1.

with n = 3 and a = 1/td

Linear Chain Trick Equivalence
• Equivalent Distributed DDE:

dG
dt

= f4(hn) + IG(t)− f2(G)− f3(Ii)G

hn(t) =

∫ ∞
0

Ip(t − s)gn
a(s) ds,

• In this direction its equivalent to solving the linear ODEs
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d

• These are there in the model in whichever formulation, just
obscured in ODE formulation.
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Transit Compartment Models: Hidden Delays
An ODE Neutrophil Model generalised from [QUARTINO ET AL, PHARM

RES 2014] (who had a = ktr)

Ṗ = P(kP(1− EDrug)(G/G0)γ − ktr(G/G0)β)

Ṫ1 = a(G/G0)β(ktrP− aT1)

Ṫj = a(G/G0)β(Tj−1 − Tj), j = 2, . . . , n

Ṅ = a(G/G0)βTn − kcircN

Ġ = kin − (ke + kANCN)G,
• If G = G0, constant, rewrite model as a distributed DDE using

linear chain technique, with mean delay τ = n/a.
• Original paper has wrong delay and wrong production rate.

• For general G(t), compartment transit rate is a(G(t)/G0)β ,
state-dependent and linear chain trick does not apply.
• [CAMARA,...,ARH, JPKPD 2018] rescale time and apply linear

chain trick to get distributed DDE even for state-dependent delay
[CASSIDY,CRAIG,ARH, MATH BIOSCI & ENG 2019] apply generalised
linear chain technique to avoid inelegant time rescaling.
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Summary
References
[STUART,ARH CUP 1996], [ARH,STUART KLUWER 2002],

[ARH,DEMASI ET AL DCDS-A 2012], [WALL,GUICHARD,ARH THEOR ECOL 2012],
[CRAIG,ARH,MACKEY BULL MATH BIOL 2016],
[CRAIG,ARH,MACKEY BLOOD 2016], [CAMARA,CRAIG,...,ARH JPKPD 2018],

[CAMARA,ARH SIADS 2019], [CASSIDY,CRAIG,ARH MATH BIOSCI & ENG 2019],

[GEDEON,ARH ET AL JMB 2022], [DURUISSEAUX,ARH JCD 2022]

Conclusions
• Delays allow to simplify physiological modelling
• Delay Differential Equations Define Infinite Dimensional

Dynamical Systems. These are tractable numerically and
theoretically
• Even scalar DDEs can display very interesting dynamics
• Equations which depend on a distribution of past state values, or

where the value of the delay is discrete but depends on state of
the system are interesting and tractable.
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