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Ordinary Differential Equations as Dynamical Systems

Scalar Linear Example

dx

E:)\x, x(0)=xp € R

® This is an Initial Value Problem. Initial value is xy € R.

e Solution of IVP is function x(7) that satisfies ODE for 7 > 0 and
initial value.
Question: How does solution depend on value of xy?

® )\ € R is a parameter. Does not change in time, but we can
consider different values.
Question: How does behaviour of solution change with A\?

s
&34



Ordinary Differential Equations as Dynamical Systems

Scalar Linear Example

A

x(t) = e'xo, t=0o0rteR

This solves IVP, but is not the answer to our questions
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Ordinary Differential Equations as Dynamical Systems

Scalar Linear Example

A

x(t) = e'xo, t=0o0rteR

This solves IVP, but is not the answer to our questions
Answers:
e If A < 0then lim; 4 o0 x(f) = 0 and lim,—,_ |x(¢)| = +00
If A > 0 then lim, ;o |x(¢)| = +o00 and lim,, o x(r) =0
® sign(x(z)) = sign(xp) for all # € R. Solutions do not cross x = 0
® If xo = 0 then x(r) = 0 for all 7 € R is a solution. Its called a
steady state.
e Steady state at x = 0 is stable if A < 0 (other solutions approach F&#
it), and unstable if A > 0. =4
2



Ordinary Differential Equations as Dynamical Systems

Scalar Nonlinear Example: The Logistic Equation

% =fxA) =XM(1-x), x(0)=x€cR

® There is again an exact formula for solution of IVP. We don’t
need it.
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Ordinary Differential Equations as Dynamical Systems

Scalar Nonlinear Example: The Logistic Equation

YN =X(1-, x(0)=meER

® There is again an exact formula for solution of IVP. We don’t
need it.

. :
Consider: Plot f(x, A) against x. Then

sign (%) = sign(f(x, A)) which allows

N us to sketch dynamics on R.
>0 J—

® Steady states at x =0 and x = 1.

4 e [f A > 0then x = 0 is unstable and
x = 1 is stable with lim, o, x(¢) = 1
whenever xy > 0 and A > 0.

e [f A < O0then x = 1 is unstable and
<O x = 0 is stable with lim;_, o, x() = 0
t whenever xyp < 1 and A < 0. TR
o /4
- e Stable steady states are locally but not
olobally attracting 3

e
T
o]




Dynamical Systems in Higher Dimensions
Lorenz Equations in R3 Plot solutions components against

iy i
i » W W W |

Initial condition: (xo, yo,z0) € R?

That’s a mess above!
Solution: u(t) = (x(t),y(¢),z(t)) € R?

s
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Dynamical Systems in Higher Dimensions
Lorenz Equations in R3 Plot solutions components against

time ¢

2 o=

ar ~ Y j; ﬂ

ﬂzrx—y—xz - \l“

i YD

= xw—b TAAMAALR A it

dt s | Lw«ww ‘\
Parameters: o = 10, b = 8/3, r = 28. L e

Initial condition: (xo, yo,z0) € R?
Solution: u(t) = (x(t),y(¢),z(t)) € R?

That’s a mess above!

Plot solution (x(¢), y(),z(¢)) as a
curve in R? parametrised by ¢. J

~ The beautiful Lorenz attractor now @

appears



Phase Space

~® Why is curve

(x(t)7y(t)7z(t)) c R3 SO
elegant?

ior
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Phase Space

~® Why is curve

(x(t)7y(t)7z(t)) c R3 SO
elegant?

® Because
* (x0,Y0,20) € R? also
o E ® Initial condition specifies a
T—— < ’ unique solution of ODE.
oy T ® Uniqueness ensures that

solutions do not cross.

Oox
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Phase Space

® Why is curve
(x(1), ¥(1),2(r)) € R s0
elegant?

® Because

* (x0,Y0,20) € R? also

20 ® Initial condition specifies a
unique solution of ODE.

® Uniqueness ensures that
solutions do not cross.

Phase Space

Phase space is the space that the initial conditions belong to.

® Set up needs to ensure that solution of IVP for any
(x0,¥0,20) € R? is unique

® Crucial feature: dynamics depends only on position, not on time. ‘R‘

Systems with delay, noise, forcing are excluded (for now). 5



Evolution Operator

Let U be phase space (R” for now).
Evolution operator S(¢) maps initial condition uy € R” to solutions ¢
time units later,

Commutative Semigroup Property

O S(11)S(r2) = S(12)S(t1) = S(t) + rp) for all ¢, £, > 0 (associative
and commutative)

® S(0) = I (identity operator; so a commutative monoid)

Evolution operator allows us to define invariant sets A C U.

s
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Evolution Operator

Let U be phase space (R” for now).
Evolution operator S(¢) maps initial condition uy € R” to solutions ¢
time units later,

Commutative Semigroup Property

O S(11)S(r2) = S(12)S(t1) = S(t) + rp) for all ¢, £, > 0 (associative
and commutative)

® S(0) = I (identity operator; so a commutative monoid)

Evolution operator allows us to define invariant sets A C U.

Invariant Sets Under Dynamics

A is forward invariant if S(t)u € A forallu € A and all ¢ > 0.
A is backward invariant if S(—t)u € A forallu € A and all r < 0.
A is invariant if it is both forward and backward invariant.

s
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Invariant Sets and Stability

Invariant Sets include
e Steady states
® Periodic Orbits

® More exotic things, including
invariant tori and strange attractors
(inc. Lorenz attractor).

Stability of Steady States

For a steady state u* € R”" let v(¢) = u(¢) — u* and linearize to obtain

dv

Z=A
dt vt

where A € R"*" is the n x n Jacobian matrix of f evaluated at u*.

e Steady-state is stable if all eigenvalues A have negative real parts.

® Floquet theory generalises technique to periodic orbits. Y



Parameter Continuation and Bifurcations

Recall % = f(u, p) has parameter(s).

Implicit Function Theorem

If all eigenvalues of Jacobian matrix at steady-state u* have
Re(\) # 0 then as parameter 4 is varied

® y* varies continuously in phase space

® Number of eigenvalues with positive and negative real parts is
constant, so no change in stability.

.




Parameter Continuation and Bifurcations

Recall % = f(u, p) has parameter(s).

Implicit Function Theorem

If all eigenvalues of Jacobian matrix at steady-state u* have
Re(\) # 0 then as parameter 4 is varied

® y* varies continuously in phase space

® Number of eigenvalues with positive and negative real parts is
constant, so no change in stability.

4

Bifurcation is qualitative change in dynamics as parameter p is varied.

Bifurcations

Occur when

e Steady-state bifurcation: Real eigenvalue crosses 0. Number and
stability of steady states close to u* changes

® Hopf bifurcation: Complex conjugate pair of eigenvalues cross gy
the imaginary axis. A Periodic orbit is born from the steady state. |**~
v

There are plenty of more complicated bifurcations 8



Delay Differential Equations

Delays arise in Physics/Engineering

due to
® Transport
e Communication

® Processing Time

Delays in Physiology

Often blend all three

® Hormone/Antigen must be produced and transported to receptor
before signal received

® Maturation/incubation delays often significant

® [ts a modelling choice to incorporate a delay, rather than model
the entire process leading to that delay. e




Goodwin Operon Model

. . — = o o
® Protein Production —
® mRNA Transcription & o%';";gjy;f" st iow
Translation o [”'. of ranslation
® [GooDWIN 1963,1965] without J[ ) —_— '
delay oo & & & a
oF A ranstaton
® 7 constant: 1970s, 1980s o itiaion
ositive Feedbacl ., - Y “‘ el QO
® [GEDEON,ARH ET AL, JMB 2022]: ',O - &
dM - VM (E(l,) ) Cell membrane
MRNA: — (1) = Bye Hm0 FE(t — (D) — AuM (1),
720 B = ey B~ () = M)
. dl _ vi(M(1))
Intermediate: 1) = Bre 0 DN pir— 1(2)) — 3l (1),
10 R Ay M ) =)
dE _
Effector: 5 (t) = Bel(t) — YeE(1).
' 064
Threshold delays :  a; = / vi(E(s))ds, j=M,I &
1=7(1)



Burns and Tannock Gy Cell Cycle Model

Cell cycle model: [BurNs & TaNNOCK 1970]:

Self Renewal

Qulescence/
Senescence
Entry
Cell
Resting K
Cycle Phase | 00 [Differentiation/
Death Rate

Cell Cycle Entry

Stem Cell DDE: [Mackey BLoob 1978]

Q'(r) = —(k + B(Q(1)Q(1) + AB(Q(r — 7))0(t — 7),

93‘

s+Qs’ A=2e77

B0) =15

® Describes cell division i e
® Non-monotone delayed feedback -



Hematopoiesis

Body produces more than 10! blood cells per day

e Thats 10'! Burns-Tannock cell cycles per day

® Numerous proteins needed for each cell cycle (Goodwin Model)

® A macro-model is needed that simplifies these processes

Granulopoiesis Model [Craic, ARH, MacKEY BMB 16]:

Stem Cells : ‘%: — (kn(G(1) + ks + B(Q(2)))
+Ao(1)B (Q(t — 70)) Q(t — 7o)

Reservoir : dd&: An()kn(G(t — 7)) Q(t — Tv) Vil G(2))

t Y VGt — v, (1))

— (e + ml(G(2)))NR(2)

dN
Circulating : o= one(G(2))Ng(2) — ywN(t)

Iof
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Maturation Threshold Condition and Velocity Ratio

Constant V:
dN,
4 = Kn(Gle—mv )OU—7v )AN(1)

— (% + en(G(1)))Nr

s
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Maturation Threshold Condition and Velocity Ratio

Variable V. Tempting to write

d# = Kn(G(t = (1)) Q(t = 7 (1))AN (1)
— (v + (G (1)) Nk
But wrong

s
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Maturation Threshold Condition and Velocity Ratio

Variable V. With velocity correction:

dN, R W (G([))
— = Kyn(G(t — v (1 t—7n(1)AN(t i
dt N( ( TN( )))Q( TN( )) N( )VNM(G(I_TMW(I))>
— (% + enl( G (1)))NR
source (BERNARD BMB 2016] ® add bags to conveyor belt at
% LI RN R I | . ..’ constant rate
@ Vo @ * For any constant belt speed
\"L"‘" they exit at same rate

I m I e ® Not true if belt speed varies

s
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Maturation Threshold Condition and Velocity Ratio

Variable V. With velocity correction:

dNR VNM(G([))
= Kn(G(t — (1 t—7n(1))AN(2 ‘
dl‘ N( ( TN( )))Q( TN( )) N( )VNM(G(I_TMW(I))>
— (v + nl(G(1)))NR
source (BERNARD BMB 2016] ® add bags to conveyor belt at
% [ u " = mm constant rate

EEN BN EEEE HEEEER n I.’
@ V) @ * For any constant belt speed
\"L"‘" they exit at same rate

I m I e ® Not true if belt speed varies

e Differentiate Threshold condition: f VNM(G(S))ds = ayy,,

Vi (G(1))
%TNM([> =1- m and E( - TNM( )) > O

e Same correction term derived in [CRAIG,ARH,MACKEY BMB 2016]
from age structured PDE, also as far back as [Smith MaTH BioSci
'93]. Generalized to random maturation age in [CassiDY,CRAIG,ARH @
MATH BIOSCIENG *19] =4
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Phase Space With Delays
Constant Delay DDE IVP

w(t) =f(t,u(t),u(t— 7)),  u0)=up €RY ult) eRt>1

For unique IVP solution for ¢ > fy
® it is not sufficient to specify u(ty)
¢ To evaluate RHS at # require u(fy — 7)

® Vs € [tp — T, o] require a value of u(s) to evaluate RHS of DDE
att =s+7 € 1y, t0 + 7).
For uniqueness of IVP solution need an initial function
u(t) =(t), Vteto—T,1)

V.

Provided ¢ is Lipschitz and f = f (¢, u, v) is Lipschitz in its arguments
this is sufficient for local existence and uniqueness.

e Recall that phase space is space of initial functions 664

14



Breaking Points and Smoothing

() = f(t,u(t),u(t = 7)), 1=>10
u(t) = ¢(1), t€[to— 7, 10]

Breaking Point at 7

Usually  @(to) # f(t0, p(t0), ¢(to — 7))
soi(ty ) # u(tg ). This is a breaking point.

Dom—

A

Breaking Points at #y + k7

ii(r) = fi(t,u(t), u(t — 7)) 4 i(2) fult, u(t), u(t — 7))
+u(t — 1) fo (¢, u(t), u(t — 7)).

So it generically discontinuous at fy + 7 and similarly,
u*+1) (1) discontinuous at t = 1 + k7 for k > 0.

.

® Smoothing: u(t) € C**! fort > to + kr
® No such smoothing for neutral problems

s
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DDEs as Dynamical Systems

Phase space of DS is set of (initial) states of system:
{u, cu(0) =u(t+6), 0 € [—, 0]}

But fort € (19,20 +7) 36 € (—7,0) s.t. t + 6 = 1.
u,(0) is not differentiable at this 6.

Phase Space of continuous functions

{90 CpE C([_Ta 0]7Rd)}

Includes all polynomials, so phase space is infinite dimensional even
for scalar d = 1 problems

Retarded Functional Differential Equations
i(t) = F(t,u;), F:RxC—R?

[xa]
e [ack of differentiability is a serious hindrance to theory 0Oy

16



Linearization for Autonomous Constant Delay DDEs
Scalar Example

Suppose f(u, v) satisfies £(0,0) = 0 so u = 0 is a steady state then
u(t) = f(u(t),u(t — 7)) = £,(0,0)u(t) + £,(0,0)u(t — 7) + h.o.t
and linearization is
u(t) = £,(0,0)u(t) + £,(0,0)u(t — 7) = pu(t) + ou(t — 1)
Positing u(1) = e gives transcendental characteristic equation
A—p—oe ™ =0.
Let A = x + iy and take real and imaginary parts:

x—p—oe cos(yr) =y+oe “sin(yr) =0

Infinitely many roots, all lie on curve y = ++/02e=2™ — (x — p)?

.

® Laplace transforms show all solutions are exponentials
® Finitely many roots to right of any vertical line in C;

¢ All characteristic roots satisfy x < |u| + ||

e Stable manifolds is infinite dimensional

of
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Linerization for DDEs in R4

u(t) =fu(t),u(t—11),...,u(t— 1)) J
Let f(u,vy,...,vy) : RY x R™ — RY satisfy £(0,0,...,0) =0, so
u = 0 is a steady state.
Linearization is variational equation

() = Aou(r) + S, Aju(t — ), |
where Ag = f, and A; = fvj are d X d matrices evaluated at the

steady-state (essentially a Jacobian matrix for each ’delay’).
There is nontrivial solution u(r) = v € RY with A(\)y = 0 if

0 =det(A(N), A(N) =My —Ag— Y, Aje™7. |

Characteristic equation has infinitely many roots

Variational equation soln: u(f) = 3", azeM'y,
Finitely many \; with Re();) > ( for any 3 € R.

State-dependent DDEs are linearized by freezing the delays R

18



Bifurcations for Delay Differential Equations

Numerical tools: DDE-Biftool and DDE23 in Matlab for solution and

bifurcation computation

T T T T T T
fmm——m————
Oy _ _
<
7
Chaotic Solution -
— 1st Period Doubling 06 08 T~ —
I 2nd Period Doubling | - - SN
|— Hopf Bifurcation
|— Torus Bifurcation
— Fold Bifurcation 7 7
07} \ -7
0s \7 04 N
: 0.071 0.077,
I I I I | | | I | | | |
7 8 9 10 11 12 13, 14 15 16 17 18 19 20 0.04 0.06 0.08 0.1
0.9 u
-
e
0.7
— Unstable po
—-Stable
B Unstable=1 R
—#-Unstable=2 3
05 — — Unstable es 4
— — Stable es
05 0.7 0.9 19




Distributed Delays

Threshold delays are example of distributed delays. Such delays
hidden in many models this week. Lets consider infinite delay:

Model Distributed Delay DE

Y = (1t [ o1t = 9 ) =1 (1), [als - (o).

—Oo0

e PDF:
o0 o0
>0 [ewa=1 [ rga-r
0 0

e Dynamics of u(r) determined by a distribution of previous values.

s
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Distributed Delays

Threshold delays are example of distributed delays. Such delays
hidden in many models this week. Lets consider infinite delay:

Model Distributed Delay DE

Y = (1t [ o1t = 9 ) =1 (1), [als - (o).

—Oo0

e PDF:
o0 o0
>0 [ewa=1 [ rga-r
0 0

e Dynamics of u(r) determined by a distribution of previous values.

e Problem: Such problems not covered by off the shelf numerical
packages for simulation or bifurcation detection

e Should specify a particular PDF.

s
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The Gamma Distribution

PDF:  g'(r) = @ Pl
T=3 ‘ I'(p) 7
1 2 Mean delay: 7 = p/a.
°, Standard deviation: 0 = p/a’.
— 20
05 P= s 'n)=(m—-1)! neN.

— 'p)=p-1DI'(p—-1), peR/Z_.
/), X Erlang distribution is special case of
0 3 6 9 Gamma distribution with p € N
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The Gamma Distribution

PDF: /(1) = —L -l
1 2 Mean delay: 7 = p/a.
°, Standard deviation: 02 = p/a’.
— 20
or p= %0 'n)=(n—-1)! neN.
= T =pE-Ulp-1), peR/Z.
Erlang distribution is special case of

o 3 6 9 Gamma distribution with p € N

In limit p — oo with 7 = p/a constant, > — 050 gh(t) — d(t — 7).

% —f(t, u(t)7/fu(s)g(; — s)ds) — % =f(t,u(t),u(t — 7)) J

o0

282
T
O
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The Gamma Distribution

0.5

T=3

Differentiation Property

P
a tp—le—at

] ,

PDF: gh(r) =

Mean delay: 7 = p/a.

Standard deviation: 0 = p/a’.
'n)=m—-1)! neN.
'p)=p-1DI'(p—-1), peR/Z_.

Erlang distribution is special case of
Gamma distribution with p € N

i%@z{

a(

b ) - gh(0), p#1
— ag, (1), p=1

Gives closed system if p € Z ..



Linear Chain Trick

Distributed Delay DE
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Linear Chain Trick

Distributed Delay DE
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Linear Chain Trick

Distributed Delay DE

Ti(t) = /Ooou(t s5)g(s)ds, j=1,...,n

7 =n/aand 0> = n/a’.

e This is linear chain technique
[VOGEL PrROC. INT. SYMP. NONLINEAR VIB. *61],
[MACDONALD TIME LAGS IN BIOLOGICAL MODELS *78],... 22

s
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Linear Chain Trick

® Equivalent ODE is a transit compartment model. They have a
long history: z= 0 1 2 3 4 5 6

- P -+ PP P

[MCKENDRICK PROC ED MATH SoOC *25]
® Jana showed us a compartment model this morning.

® Distributed delays often obscured this way

of
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Linear Chain Trick

® Equivalent ODE is a transit compartment model. They have a
long history: z= 0 1 2 3 4 5 6

- P -+ PP P

[MCKENDRICK PROC ED MATH SoOC *25]
® Jana showed us a compartment model this morning.

® Distributed delays often obscured this way

® Linear Chain Trick allows us to formulate compartment model
either as distributed delay or ODE.

® These models are finite dimensional, but become discrete delays
in limit of infinitely many compartments

® Compartment model requires n integer : distributed DDE does
not.
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Linear Chain Trick

® Equivalent ODE is a transit compartment model. They have a
long history: z= 0 1 2 3 4 5 6

- P -+ PP P

[MCKENDRICK PROC ED MATH SoOC *25]
® Jana showed us a compartment model this morning.

® Distributed delays often obscured this way

® Linear Chain Trick allows us to formulate compartment model
either as distributed delay or ODE.

® These models are finite dimensional, but become discrete delays
in limit of infinitely many compartments

® Compartment model requires n integer : distributed DDE does
not.

e Given estimates of 7 € R, and 0> € R,
No reason to suppose n = 72 /0> € 7.

of
3



Will’s model (he says not)
Ultradian Model

% = fa(hn) + 1I6(1) — f2(G) = f5(I})G

dhj  Jalhi-i(e) = hi(1), j=1{2.3,....n},
de | allp(1) = (1)), i=1

withn =3 anda = 1/ty

.




Will’s model (he says not)
Ultradian Model

% = fa(hn) + 1I6(1) — f2(G) = f5(I})G

dhj  Jalhi-i(e) = hi(1), j=1{2.3,....n},
de | allp(1) = (1)), i=1

withn =3 anda = 1/ty

4

Linear Chain Trick Equivalence

® Delay 7 =n/a = 3ty

® Standard deviation: 0> = n/a’> = 313
® These are there in the model in whichever formulation, just
obscured in ODE formulation.

® Q?: Why n =3 Will?

\
of
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Will’s model (he says not)
Ultradian Model

% = fa(hn) + 1I6(1) — f2(G) = f5(I})G

dhj  Jalhi-i(e) = hi(1), j=1{2.3,....n},
de | ally(0) = m(@)), J=1l.

withn =3 anda = 1/ty

4

Linear Chain Trick Equivalence

® Equivalent Distributed DDE:

dG

5 =Silhn) +16() — £2(G) ~ ()G

m@—Aiwﬁmwﬁ,

® In this direction its equivalent to solving the linear ODEs

Iof
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Transit Compartment Models: Hidden Delays

An ODE Neutrophil Model generalised from [QUARTINO ET AL, PHARM
REs 2014] (who had a = k;;)

P = P(kp(1 = Epng)(G/Go)" — kir(G/Go)”)
(G/Go)” (kP — aT)
a(G/GO)(jl T;), j=2,...,n
a(G/Go)P T, — keireN

G — kin - (ke + kANCN)G7
® If G = Gy, constant, rewrite model as a distributed DDE using
linear chain technique, with mean delay 7 = n/a.
® Original paper has wrong delay and wrong production rate.

a
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Transit Compartment Models: Hidden Delays

An ODE Neutrophil Model generalised from [QUARTINO ET AL, PHARM
REs 2014] (who had a = k;;)

P = P(kp(1 — EDrug)(G/GO)7 - ktr(G/GO)ﬁ)

a(G/Go)? (kP — aT)
a(G/GO)(jl T)a j:27'~'an

= a(G/GO) kclrLN

G = kin - (ke + kANCN)G7

® If G = Gy, constant, rewrite model as a distributed DDE using
linear chain technique, with mean delay 7 = n/a.

® Original paper has wrong delay and wrong production rate.

® For general G(f), compartment transit rate is a(G(r)/Go)®,
state-dependent and linear chain trick does not apply.

® [CAMARA,...,ARH, JPKPD 2018] rescale time and apply linear
chain trick to get distributed DDE even for state-dependent delay

[CASSIDY,CRAIG,ARH, MaTH BIosct & ENG 2019] apply generalised %%
linear chain technique to avoid inelegant time rescaling.

25
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Conclusions
® Delays allow to simplify physiological modelling

® Delay Differential Equations Define Infinite Dimensional
Dynamical Systems. These are tractable numerically and
theoretically

® Even scalar DDEs can display very interesting dynamics

e Equations which depend on a distribution of past state values, or
where the value of the delay is discrete but depends on state of | %
the system are interesting and tractable. ‘
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