Cyclic Matters

David Saltman
 Center for Communications Research

$$
\text { June } 2022
$$

I. Prime Degree $p-p$ always odd

1. Characteristic p

F field characteristic $p, L / F$ cycle Galois degree $p \Rightarrow L=F(x), x^{p}-x=a \in F$ AND $\sigma(x)=x+1$

FACT: Still true for commutative rings R with $p R=(0)$.

Also, G a p-group,$S / R-G$ Galois $\Rightarrow S \simeq R[G]$ (Normal basis).
2. Mixed Characteristic:

Commutative rings R will be (for a while)
$\mathbb{Z}[p]$ algebra, $\rho^{p}=1$ primitive, $\eta=\rho-1$.
Define $x^{p}+g(x) \in \mathbb{Z}[\rho]$ by

$$
(1+x \eta)^{p}=1+\left(x^{p}+g(x)\right) \eta^{p}
$$

Theorem:

1. Modulo $\eta, x^{p}+g(x) \equiv x^{p}-x$.
2. If $S=R[T] /\left(T^{p}+g(T)-a\right) R[T], a \in R$

AND $1+a \eta^{p} \in R^{*}$ THEN
S / R is $G=\langle\sigma\rangle$ Galois,

$$
\sigma(x)=\rho x+1
$$

(and converse - Galois $\Rightarrow 1+a \eta^{p} \in R^{*}$)
3. If $R \rightarrow \bar{R}, \eta \bar{R}=0,(p \bar{R}=0)$ and \bar{S} / \bar{R} is C_{p} Galois $\Rightarrow \bar{S}$ lifts to S / R which is C_{p} Galois

IF $1+\eta R \subseteq R^{*}$
(e.g., R local but in many more cases)

"Corollary:" Can remove $\rho \in R$ assumption via corestriction (not super easy).

3. Degree p Azumaya algebras

In my thesis (1976!)

I showed that if $p R=0$
$\operatorname{Br}(R)[p]$ generated by "differential crossed products" which are algebras generated by x, y subject to $x y-y x=1, x^{p}, y^{p}$ central.

Call this algebra $[a, b]$ if $x^{p}=a, x^{p}=b$.

Note: Azumaya even if $a b=0$! (i.e., All a, b).

Surprising observation (+ many years)
In $[a, b], x y$ satisfies $(x y)^{p}-(x y)$ central and is Galois!

ALMOST CYCLIC Algebras

Split Case:

$$
\left(\begin{array}{ccccccc}
\star & \diamond & & & & & b \\
\bullet & \star & \diamond & & & & \\
& \bullet & & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & & & \diamond & \\
& & & & \bullet & \star & \diamond \\
a & & & & \bullet & \star
\end{array}\right)
$$

Diagonal $=R[x y]$. Super diagonal element + " a " is x. Subdiagonal element plus b is y.

Note: $x y$ might be singular but rank $\geq p-1$ since $x y$ separable $\Rightarrow 0$ at most 1 eigenvalue $\Rightarrow x, y$ rank $\geq p-1$. So mod any maximal ideal can assume all super diagonal entries of x and subdiagonal entries y are $\neq 0$ though $a=0$, $b=0$ possible
$\Rightarrow R[x y], x, y$ generates full matrix ring.

WHAT IS NOT IMPORTANT: "differential" "crossed product" "characteristic p "

WHAT IS IMPORTANT: $R[x y] / R$ cyclic Galois, rank $x y \geq p-1$

Characteristic 0 example:
R a $\mathbb{Z}[\rho]$ algebra
A / R generated by x, y such that $x^{p}=a \in R$, $y^{p}=b \in R$ AND

$$
x y-\rho y x=1 .
$$

Call $A=[a, b]_{\rho}$.

This Azumaya $\Leftrightarrow 1+a b \eta^{p} \in R^{*}$
because $R[x y] / R$ Galois

$$
\sigma(x y)=\rho(x y)+1 \quad(x y)^{p}+g(x y)=a b
$$

Theorem: $R \rightarrow \bar{R}, \eta \bar{R}=0,(1+\eta R) \subseteq R^{*} \Rightarrow$ $\operatorname{Br}(R) \rightarrow \operatorname{Br}(\bar{R})$ subjective on elements of order p.

By the way, what does "almost cyclic" mean?

Look at $[a, b] \rho$. Let $S=R[x y], 1+a b \eta \in R^{*}$ $(x y) x=x(y x)=x\left(\rho^{-1} x y-p^{-1}\right)=x \sigma^{-1}(x y)$.

SO if $P_{\sigma}=\{z \in A \mid z \theta=\sigma(\theta) z$ all $\theta \in S\}$ then $x \in P_{\sigma}$.

$$
y(x y)=(x y) y=\left(\rho^{-1} x y-\rho^{-1}\right) y=\sigma^{-1}(x y) y .
$$

$\underline{\mathbf{S O}} y^{p-1} \in P_{\sigma}$

Matrix argument from above shows
$P_{\sigma} P_{\sigma^{-1}}=R$ and $\left(P_{\sigma}\right)^{p}=R$
$\Rightarrow P_{\sigma}$ is in $\operatorname{Pic}(S)$.

Definition: Almost cyclic algebra of degree p.

S / R degree $p, G=\langle\sigma\rangle$ Galois
$I \in \operatorname{Pic}(S)$ with $\varphi: I^{p} \cong S$.
$A=\Delta(S / R, \sigma, I, \varphi)=$
$S \oplus I \oplus \cdots \oplus I^{p-1}$. Use φ to multiply.
I hard to work with but $[a, b]$ and $[a, b]_{\rho}$ are special.

Hidden in all above:
S / R is $G=\langle\sigma\rangle$ Galois, $|G|=p$
then $R[G]=R[T] /\left(T^{p}-1\right) R[T]$
and $\left(T^{p}-1\right)=\left(T-\rho^{p-1}\right) \ldots(T-\rho)(T-1)$
$R[G]$ is iterated fiber product but only care about

$$
R[G](1)=R[T] /(T-\rho)(T-1) R[T] .
$$

Theorem: TFAE

1. $S \cong R[G]$ (normal basis)

$$
\text { 2. } S(1) \cong R[G](1)
$$

$$
\text { 3. } S=R[T] /\left(T^{P}+g(T)-a\right) R[T] \text { some } a \text {. }
$$

In general,
if $P(1)$ is a rank one $R[G](1)$ projective, $P(1) /(T-$ 1) $P(1) \cong R$ and $P_{1}=P(1) /(T-\rho) P(1)$ satisfies $P_{1}^{p} \cong R$

AND $P(\rho)^{G} \cong R *_{p} R$
\Rightarrow build $S / R G$-Galois from $P(1)$ so $P(1)=$ $S(1)$

Description of $R *_{p} R$ as fiber diagram.

$$
\begin{array}{clc}
R *_{p} R & \longrightarrow & R \\
\left.\right|_{R} & & \downarrow^{2} \\
& & \text { pull back } \\
R & R / \eta^{p} R
\end{array}
$$

$P(p)^{G}$ always rank one projective over $R *_{p} R$ and $P(p)^{G} \cong R *_{p} R \Rightarrow P_{1}^{p} \cong R$
II. Degree p^{n} Cyclic Extensions

Basically if $R=\mathbb{Z}[\rho][x]\left(\frac{1}{1+\eta^{p} x}\right)$ and $S=R[T] /\left(T^{p}+\right.$ $g(T)-x)$ then S / R "generic" or "versal" mixed characteristic

Now for generalization $R=\mathbb{Z}[\rho]\left[x_{1}, \ldots, x_{n}\right]\left(\frac{1}{s}\right)$
where $s \in 1+\eta M, M=\left(x_{1}, \ldots, x_{n}\right)$.

Note:

$$
\begin{aligned}
R / \eta R & =F_{p}\left[x_{1}, \ldots, x_{n}\right] \\
R / M R & =\mathbb{Z}[\rho] .
\end{aligned}
$$

Suppose S / R is $C_{p^{r}}$ "versal" or "generic" in some sense.

Vital: in characteristic p gives all.

Next steps:

1. Build $T / S / R C_{p^{r+1}}$ Galois
2. Make generic

1 is hard, 2 is easy:
$R \subset R^{\prime}=R\left[x_{n+1}\right]\left(1 / 1+\eta x_{n+1}\right)$
form $S^{\prime}=R^{\prime}[T] /\left(T^{p}+g(T)-x_{n+1}\right)$
form $T \otimes S^{\prime}$ over R^{\prime}
is $C_{p^{r}} \oplus C_{p}$ Galois
$C_{p}^{\prime} \hookrightarrow$ diagonal $C_{p^{r}} \oplus C_{p}$ Form $\left(T \otimes S^{\prime}\right)^{C_{p}^{\prime}}$.
Moral: "Generic" $T=$ special T times generic degree p.

To accomplish 1 need an Albert criterion for rings: When does S / R extend? Recall $L / K C_{p^{r}}$ extends $\Leftrightarrow \Delta(L / K, \rho)=1 \in \operatorname{Br}(K)$

Think of S / R as G / C Galois

$$
\begin{aligned}
|G| & =p^{r+1} \\
|C| & =p \\
C & =\langle\tau\rangle
\end{aligned}
$$

cyclic. Form

$$
A=\Delta(S[C] / R[C], \sigma, \tau)
$$

Remember $\tau \in C$! A is actually
$S *[G]$ - twisted group ring where G acts on S

$$
\begin{aligned}
A(1) & =\frac{A}{(\tau-\rho)(\tau-1) A} \text { is really important piece } \\
& =\Delta(S[C](1) / R[C](1), \rho) \\
\rho & =\operatorname{image} \tau .
\end{aligned}
$$

Theorem: S / R extends to $C_{p^{r+1}}$ Galois $T / S / R \Leftrightarrow$ $A(1) \simeq \operatorname{End}_{R[C](1)}(P(1))$ where $P_{0}=P(1) /(\tau-$ $1) \cong S$ (over G / C) (easy to arrange) and $P(\rho)^{G} \cong$ $R * p$.

Note \rightarrow One Brauer group condition (like Albert). One Picard group condition.

Ideas in proof:

When $R=\mathbb{Z}[\rho]\left[x_{1}, \ldots x_{n}\right](1 / s)$ as above R is regular so $\operatorname{Br}(R) \hookrightarrow \operatorname{Br}(q(R))$ and deal with Brauer condition at field level (old Albert condition).

Also $\operatorname{Pic}(R)=\operatorname{Pic}(\mathbb{Z}[\rho])$ and $R^{*} \rightarrow(R / \eta)^{*}$ surjective and $\operatorname{Pic}(R / \eta)=(0)$

The above ideas allow one to lift cyclic extensions of degree p and p^{2}. We conjecture:

If $1+\eta R \subset R^{*}, \eta \in P, \bar{R}=R / P$ then every degree p^{r} cyclic \bar{S} / \bar{R} lifts to a cyclic S / R of the same degree.
III. Degree p^{r} Almost Cyclic Azumaya Algebras

Let S / R be G-Galois, G cyclic order n. Let $J \in$ $\operatorname{Pic}(S)$ have $N(J) \simeq R$. Then $\Delta(S / R, \sigma, \tau, \varphi)=$ T / I as follows
$S[t, \sigma] \supseteq S \oplus J t \oplus(J t)^{2} \cdots=T$
$(J t)^{m}=J \sigma(J) \ldots \sigma^{m}(J) t^{m}$
so $(J t)^{n} \cong N(J) S t^{n}$
$\varphi:(J t)^{n} \cong S G$-preserving. Set $I=\langle x-\varphi(x)\rangle$.

Then $[a, b]$ and $[a, b]_{\rho}$ are almost cyclic.

The very general definition above too hard to work with. So let R be a domain, S / R cyclic Galois group G with $|G|=n F=q(R) K=$ $S \otimes_{R} F$ Set:
$B=\Delta(K / F, \sigma, a)$.
Assume $x, y \in B, x^{n}=a, y^{n}=b$

$$
x s=\sigma(s) x \quad s y=y \sigma(s) .
$$

Assume

$$
\alpha=x y \in S
$$

and

$$
S a+S \alpha+S \operatorname{adj}(\alpha)+S b=S
$$

where

$$
\operatorname{adj}(\alpha)=N(\alpha) / \alpha .
$$

Let $A=\Delta(S / R, a, \alpha, b)$ be the subalgebra of B generated by S, x, y.

Theorem: $A=\Delta(S / R, a, \alpha, b)$ is Azumaya if and only if $S a+S \alpha+S \operatorname{adj}(\alpha)+S b=S$.

Set

$$
J_{\sigma}=S x+S y^{n-1} \subseteq\{z \in A \mid z s=\sigma(s) z\}
$$

and
$J_{\sigma^{-1}}=S x^{n-1}+S y \subseteq\{z \in A \mid s z=z \sigma(s)\}$.

Then

$$
J_{\sigma} J_{\sigma^{-1}}=S a+S b+S \alpha+S \operatorname{adj}(\alpha)(!)
$$

This shows $J_{\sigma} \in \operatorname{Pic}(S)$ when $S a+S \alpha+S \operatorname{adj}(\alpha)+$ $S b=S$.

How construct?
S / R is " a-split" $\Leftrightarrow S / a S$ split over $R / a R$.

Lemma: Suppose S / R is $G=\langle\sigma\rangle$ Galois and a-split. Then $\exists \alpha \in S$ and an almost cyclic $A=$ $\Delta(S / R, a, \alpha, b)$. If R is regular the Brauer class of A only depends on S / R and a.

What we actually use:

If $a \in R$ and $\alpha \in S$ is such that $a \mid n(\alpha)$ and $S a+S \alpha+S \operatorname{adj}(\alpha)=S$ we say a, α are suitable in S.

Note that $S a+S \alpha+S \operatorname{adj}(\alpha)=S$ means α has rank $\geq n-1$ modulo $a S$.

We use suitable a, α to solve 2 problems. First is to make concrete the p-divisiblilty of $\operatorname{Br}(R)$ when $p R=(0)$.

Theorem: Suppose $p R=0, R / a R$ domain and S / R cyclic Galois degree p^{r}. Let $A=$ $\Delta(S / R, a, \alpha, b)$ be such at a, α are suitable in S. Then \exists degree $p^{r+1} T / R$ and $\alpha^{\prime} \in T$ with a, α^{\prime} suitable in T and a $B=\Delta\left(T / R, a, \alpha^{\prime}, b^{\prime}\right)$ with $p[B]=[A]$ in $\operatorname{Br}(R)$.

Corollary: Apply this to $[a, b]$ over $F_{p}[a, b]$ to get general result!

Let R be a $\mathbb{Z}[\rho]$ algebra (commutative) and $\bar{R}=R / \eta R$.

Let $\bar{A}=\Delta(\bar{S} / \bar{R}, a, \alpha, b)$ with a, α suitable in S so $(\bar{S} / a \bar{S}) /(\bar{R} / a \bar{R})=\tilde{S} / \tilde{R}$ split.

Take pullback:

$\hat{R}=R /(\eta R \cap a R)$ and \widehat{S} defined by pullback. Lift \widehat{S} to S / R to get a-split S.

Assume \bar{R} regular so Brauer class only depends on a. Apply to $F_{p}[a, b]$.

The following is a currently a conjecture, but the above ideas yield the result for Brauer classes of order p and p^{2}.

Theorem: Let R be a $\mathbb{Z}[\rho]$ algebra. and $\bar{R}=$ $R / \eta R$. Assume $(1+\eta R) \subseteq R^{*}$. Then $\operatorname{Br}(R) \rightarrow$ $\operatorname{Br}(R / \eta)$ surjective on p-primary parts.

