Cyclic Matters

David Saltman Center for Communications Research

June 2022

I. Prime Degree p - p always odd

1. Characteristic *p*

F field characteristic p, L/F cycle Galois degree $p \Rightarrow L = F(x), x^p - x = a \in F \text{ AND } \sigma(x) = x+1$

FACT: Still true for commutative rings R with pR = (0).

Also, G a p-group ,S/R-G Galois $\Rightarrow S \simeq R[G]$ (Normal basis).

2. Mixed Characteristic:

Commutative rings R will be (for a while)

 $\mathbb{Z}[p]$ algebra, $\rho^p = 1$ primitive, $\eta = \rho - 1$.

Define $x^p + g(x) \in \mathbb{Z}[\rho]$ by

$$(1 + x\eta)^p = 1 + (x^p + g(x))\eta^p$$

Theorem:

1. Modulo η , $x^p + g(x) \equiv x^p - x$.

2. If
$$S = R[T]/(T^p + g(T) - a)R[T]$$
, $a \in R$
AND $1 + a\eta^p \in R^*$ THEN

$$S/R$$
 is $G=\langle\sigma\rangle$ Galois,
$$\boxed{\sigma(x)=\rho x+1}$$
 (and converse - Galois $\Rightarrow 1+a\eta^p\in R^*)$

3. If $R \to \overline{R}$, $\eta \overline{R} = 0$, $(p\overline{R} = 0)$ and $\overline{S}/\overline{R}$ is C_p Galois $\Rightarrow \overline{S}$ lifts to S/R which is C_p Galois IF $1 + \eta R \subseteq R^*$ (e.g., R local but in many more cases) "Corollary:" Can remove $\rho \in R$ assumption via corestriction (not super easy).

3. Degree p Azumaya algebras

In my thesis (1976!)

I showed that if pR = 0

Br(R)[p] generated by "differential crossed products" which are algebras generated by x, y subject to xy - yx = 1, x^p , y^p central.

Call this algebra [a, b] if $x^p = a$, $x^p = b$.

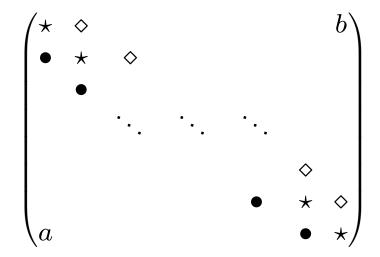
Note: Azumaya even if ab = 0! (i.e., All a, b).

Surprising observation (+ many years)

In [a, b], xy satisfies $(xy)^p - (xy)$ central and is Galois!

ALMOST CYCLIC Algebras

Split Case:



Diagonal = R[xy]. Super diagonal element + "a" is x. Subdiagonal element plus b is y. Note: xy might be singular but rank $\ge p - 1$ since xy separable $\Rightarrow 0$ at most 1 eigenvalue $\Rightarrow x, y$ rank $\ge p-1$. So mod any maximal ideal can assume all super diagonal entries of x and subdiagonal entries y are $\ne 0$ though a = 0, b = 0 possible

 $\Rightarrow R[xy]$, x, y generates full matrix ring.

WHAT IS NOT IMPORTANT: "differential" "crossed product" "characteristic p"

WHAT IS IMPORTANT: R[xy]/R cyclic Galois, rank $xy \ge p-1$

Characteristic 0 example:

 $R \ a \ \mathbb{Z}[\rho] \ algebra$

A/R generated by x,y such that x^p = $a \in R$, y^p = $b \in R$ AND

$$xy - \rho yx = 1.$$

Call $A = [a, b]_{\rho}$.

This Azumaya $\Leftrightarrow 1 + ab\eta^p \in R^*$

because R[xy]/R Galois

$$\sigma(xy) = \rho(xy) + 1 \quad (xy)^p + g(xy) = ab$$

Theorem: $R \to \overline{R}$, $\eta \overline{R} = 0$, $(1 + \eta R) \subseteq R^* \Rightarrow$ Br $(R) \to$ Br (\overline{R}) subjective on elements of order p. By the way, what does "almost cyclic" mean? Look at $[a,b]\rho$. Let S = R[xy], $1 + ab\eta \in R^*$ $(xy)x = x(yx) = x(\rho^{-1}xy - p^{-1}) = x\sigma^{-1}(xy)$.

SO if $P_{\sigma} = \{z \in A \mid z\theta = \sigma(\theta)z \text{ all } \theta \in S\}$ then $x \in P_{\sigma}$.

$$y(xy) = (xy)y = (\rho^{-1}xy - \rho^{-1})y = \sigma^{-1}(xy)y.$$

<u>SO</u> $y^{p-1} \in P_{\sigma}$

Matrix argument from above shows

 $P_{\sigma}P_{\sigma^{-1}} = R \text{ and } (P_{\sigma})^p = R$

 $\Rightarrow P_{\sigma}$ is in Pic(S).

Definition: Almost cyclic algebra of degree p. S/R degree p, $G = \langle \sigma \rangle$ Galois $I \in \operatorname{Pic}(S)$ with $\varphi : I^p \cong S$. $A = \Delta(S/R, \sigma, I, \varphi) =$ $S \oplus I \oplus \cdots \oplus I^{p-1}$. Use φ to multiply. I hard to work with but [a, b] and $[a, b]_{\rho}$ are

I hard to work with but [a, b] and $[a, b]_{\rho}$ are special.

Hidden in all above:

S/R is $G = \langle \sigma \rangle$ Galois, |G| = p

then $R[G] = R[T]/(T^p - 1)R[T]$

and $(T^p - 1) = (T - \rho^{p-1}) \dots (T - \rho)(T - 1)$

R[G] is iterated fiber product but only care about

$$R[G](1) = R[T]/(T - \rho)(T - 1)R[T].$$

Theorem: TFAE

1. $S \cong R[G]$ (normal basis)

2. $S(1) \cong R[G](1)$

3. $S = R[T]/(T^P + g(T) - a)R[T]$ some *a*.

In general,

if P(1) is a rank one R[G](1) projective, $P(1)/(T-1)P(1) \cong R$ and $P_1 = P(1)/(T-\rho)P(1)$ satisfies $P_1^p \cong R$

<u>AND</u> $P(\rho)^G \cong R *_p R$

 \Rightarrow build S/R G-Galois from P(1) so P(1) = S(1)

10

Description of $R *_p R$ as fiber diagram.

$$\begin{array}{ccccc} R *_p R & \longrightarrow & R \\ & & & & \\ & & & & \\ & & & \\ R & & \longrightarrow & R/\eta^p R \end{array} \quad \text{pull back}$$

 $P(p)^G$ always rank one projective over $R *_p R$ and $P(p)^G \cong R *_p R \Rightarrow P_1^p \cong R$

II. Degree p^n Cyclic Extensions

Basically if $R = \mathbb{Z}[\rho][x] \left(\frac{1}{1+\eta^p x}\right)$ and $S = R[T]/(T^p + g(T) - x)$ then S/R "generic" or "versal" mixed characteristic

Now for generalization $R = \mathbb{Z}[\rho][x_1, \dots, x_n]\left(\frac{1}{s}\right)$

where $s \in 1 + \eta M$, $M = (x_1, ..., x_n)$.

Note:

$$R/\eta R = F_p[x_1, \dots, x_n]$$
$$R/MR = \mathbb{Z}[\rho].$$

Suppose S/R is C_{p^r} "versal" or "generic" in some sense.

<u>Vital</u>: in characteristic p gives all.

Next steps:

- 1. Build $T/S/R \ C_{p^{r+1}}$ Galois
- 2. Make generic
- 1 is hard, 2 is easy:
- $R \subset R' = R[x_{n+1}](1/1 + \eta x_{n+1})$
- form $S' = R'[T]/(T^p + g(T) x_{n+1})$

form $T \otimes S'$ over R'

is $C_{p^r}\oplus C_p$ Galois

 $C'_p \hookrightarrow \text{diagonal } C_{p^r} \oplus C_p \text{ Form } (T \otimes S')^{C'_p}.$

Moral: "Generic" T = special T times generic degree p.

To accomplish 1 need an Albert criterion for rings: When does S/R extend? Recall $L/K C_{p^r}$ extends $\Leftrightarrow \Delta(L/K, \rho) = 1 \in Br(K)$

Think of S/R as G/C Galois

$$|G| = p^{r+1}$$
$$|C| = p$$
$$C = \langle \tau \rangle$$

cyclic. Form

$$A = \Delta(S[C]/R[C], \sigma, \tau)$$

Remember $\tau \in C!$ A is actually

S * [G] – twisted group ring where G acts on S

$$A(1) = \frac{A}{(\tau - \rho)(\tau - 1)A}$$
 is really important piece
= $\Delta(S[C](1)/R[C](1), \rho)$
 $\rho = \text{image } \tau.$

Theorem: S/R extends to $C_{p^{r+1}}$ Galois $T/S/R \Leftrightarrow$ $A(1) \simeq \operatorname{End}_{R[C](1)}(P(1))$ where $P_0 = P(1)/(\tau - 1) \cong S$ (over G/C) (easy to arrange) and $P(\rho)^G \cong R *_p R$.

Note \rightarrow One Brauer group condition (like Albert). One Picard group condition.

Ideas in proof:

When $R = \mathbb{Z}[\rho][x_1, \dots x_n](1/s)$ as above R is regular so $Br(R) \hookrightarrow Br(q(R))$ and deal with Brauer condition at field level (old Albert condition).

Also $\operatorname{Pic}(R) = \operatorname{Pic}(\mathbb{Z}[\rho])$ and $R^* \to (R/\eta)^*$ surjective and $\operatorname{Pic}(R/\eta) = (0)$

The above ideas allow one to lift cyclic extensions of degree p and p^2 . We conjecture:

If $1 + \eta R \subset R^*$, $\eta \in P$, $\overline{R} = R/P$ then every degree p^r cyclic $\overline{S}/\overline{R}$ lifts to a cyclic S/R of the same degree.

III. Degree p^r Almost Cyclic Azumaya Algebras

Let S/R be G-Galois, G cyclic order n. Let $J \in$ Pic(S) have $N(J) \simeq R$. Then $\Delta(S/R, \sigma, \tau, \varphi) =$ T/I as follows

 $S[t,\sigma] \supseteq S \oplus Jt \oplus (Jt)^2 \cdots = T$

 $(Jt)^m = J\sigma(J)\dots\sigma^m(J)t^m$

so $(Jt)^n \cong N(J)St^n$

 $\varphi : (Jt)^n \cong S \text{ G-preserving. Set } I = \langle x - \varphi(x) \rangle.$

Then [a, b] and $[a, b]_{\rho}$ are almost cyclic.

The very general definition above too hard to work with. So let R be a domain, S/R cyclic Galois group G with |G| = n F = q(R) K = $S \otimes_R F$ Set:

$$B = \Delta(K/F, \sigma, a).$$

Assume $x, y \in B$, $x^n = a$, $y^n = b$

$$xs = \sigma(s)x$$
 $sy = y\sigma(s).$

Assume

$$\alpha = xy \in S$$

and

$$Sa + S\alpha + Sadj(\alpha) + Sb = S$$

where

$$\operatorname{adj}(\alpha) = N(\alpha)/\alpha.$$

Let $A = \Delta(S/R, a, \alpha, b)$ be the subalgebra of B generated by S, x, y.

Theorem: $A = \Delta(S/R, a, \alpha, b)$ is Azumaya if and only if $Sa + S\alpha + Sadj(\alpha) + Sb = S$.

Set

$$J_{\sigma} = Sx + Sy^{n-1} \subseteq \{z \in A | zs = \sigma(s)z\}$$

and

$$J_{\sigma^{-1}} = Sx^{n-1} + Sy \subseteq \{z \in A | sz = z\sigma(s)\}.$$

Then

$$J_{\sigma}J_{\sigma^{-1}} = Sa + Sb + S\alpha + S \operatorname{adj}(\alpha)(!)$$

This shows $J_{\sigma} \in \text{Pic}(S)$ when $Sa + S\alpha + Sadj(\alpha) + Sb = S$.

How construct?

S/R is "a-split" $\Leftrightarrow S/aS$ split over R/aR.

Lemma: Suppose S/R is $G = \langle \sigma \rangle$ Galois and *a*-split. Then $\exists \alpha \in S$ and an almost cyclic $A = \Delta(S/R, a, \alpha, b)$. If R is regular the Brauer class of A only depends on S/R and a.

What we actually use:

If $a \in R$ and $\alpha \in S$ is such that $a \mid n(\alpha)$ and $Sa + S\alpha + Sadj(\alpha) = S$ we say a, α are suitable in S.

Note that $Sa + S\alpha + Sadj(\alpha) = S$ means α has rank $\geq n - 1$ modulo aS.

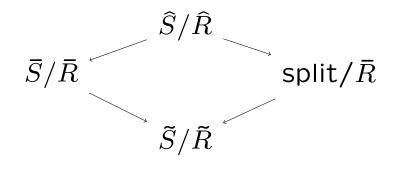
We use suitable a, α to solve 2 problems. First is to make concrete the *p*-divisibility of Br(*R*) when pR = (0). **Theorem:** Suppose pR = 0, R/aR domain and S/R cyclic Galois degree p^r . Let $A = \Delta(S/R, a, \alpha, b)$ be such at a, α are suitable in S. Then \exists degree $p^{r+1} T/R$ and $\alpha' \in T$ with a, α' suitable in T and a $B = \Delta(T/R, a, \alpha', b')$ with p[B] = [A] in Br(R).

Corollary: Apply this to [a, b] over $F_p[a, b]$ to get general result!

Let R be a $\mathbb{Z}[\rho]$ algebra (commutative) and $\bar{R} = R/\eta R$.

Let $\bar{A} = \Delta(\bar{S}/\bar{R}, a, \alpha, b)$ with a, α suitable in S so $(\bar{S}/a\bar{S})/(\bar{R}/a\bar{R}) = \tilde{S}/\tilde{R}$ split.

Take pullback:



21

 $\hat{R} = R/(\eta R \cap aR)$ and \hat{S} defined by pullback. Lift \hat{S} to S/R to get *a*-split S.

Assume \overline{R} regular so Brauer class only depends on a. Apply to $F_p[a, b]$.

The following is a currently a conjecture, but the above ideas yield the result for Brauer classes of order p and p^2 .

Theorem: Let R be a $\mathbb{Z}[\rho]$ algebra. and $\overline{R} = R/\eta R$. Assume $(1 + \eta R) \subseteq R^*$. Then $Br(R) \rightarrow Br(R/\eta)$ surjective on p-primary parts.