NEW EVIDENCE THAT COHOMOLOGICAL INVARIANTS MIGHT DETERMINE ALBERT ALGEBRAS/GROUPS OF TYPE F_{4} UNIQUELY UP TO ISOMORPHISM:

TO ANDREI RAPINCHUK ON THE OCCASION OF HIS 60TH BIRTHDAY (joint work with A. Lourdeaux, A. Pianzola)

Vladimir Chernousov
 University of Alberta

BIRS workshop June 16, 2022
(1) Albert Algebras

(2) Cohomological invariants

(3) The main result and strategy of the proof

Throughout F is the base field of characteristic $\neq 2,3$.

Throughout F is the base field of characteristic $\neq 2,3$.
Definition

Throughout F is the base field of characteristic $\neq 2,3$.
Definition
A Jordan algebra over F is a unital, commutative F-algebra A

Throughout F is the base field of characteristic $\neq 2,3$.

Definition

A Jordan algebra over F is a unital, commutative F-algebra A in which the Jordan identity

Throughout F is the base field of characteristic $\neq 2,3$.

Definition

A Jordan algebra over F is a unital, commutative F-algebra A in which the Jordan identity

$$
(x y)(x x)=x(y(x x))
$$

Throughout F is the base field of characteristic $\neq 2,3$.

Definition

A Jordan algebra over F is a unital, commutative F-algebra A in which the Jordan identity

$$
(x y)(x x)=x(y(x x))
$$

holds for all $x, y \in A$.

Throughout F is the base field of characteristic $\neq 2,3$.

Definition

A Jordan algebra over F is a unital, commutative F-algebra A in which the Jordan identity

$$
(x y)(x x)=x(y(x x))
$$

holds for all $x, y \in A$.
Example. If B is an associative algebra over F with multiplication

Throughout F is the base field of characteristic $\neq 2,3$.

Definition

A Jordan algebra over F is a unital, commutative F-algebra A in which the Jordan identity

$$
(x y)(x x)=x(y(x x))
$$

holds for all $x, y \in A$.
Example. If B is an associative algebra over F with multiplication denoted by \cdot, then the anticommutator

Throughout F is the base field of characteristic $\neq 2,3$.

Definition

A Jordan algebra over F is a unital, commutative F-algebra A in which the Jordan identity

$$
(x y)(x x)=x(y(x x))
$$

holds for all $x, y \in A$.
Example. If B is an associative algebra over F with multiplication denoted by \cdot, then the anticommutator

$$
\frac{1}{2}(x \cdot y+y \cdot x)
$$

Throughout F is the base field of characteristic $\neq 2,3$.

Definition

A Jordan algebra over F is a unital, commutative F-algebra A in which the Jordan identity

$$
(x y)(x x)=x(y(x x))
$$

holds for all $x, y \in A$.
Example. If B is an associative algebra over F with multiplication denoted by \cdot, then the anticommutator

$$
\frac{1}{2}(x \cdot y+y \cdot x)
$$

endows B with a Jordan algebra structure, which we denote by B^{+}.

Definition

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts.

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.
(2) Over separably closed fields all Albert algebras are isomorphic.

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.
(2) Over separably closed fields all Albert algebras are isomorphic.
(3) All Albert algebras over K are twisted forms of each other.

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.
(2) Over separably closed fields all Albert algebras are isomorphic.
(3) All Albert algebras over K are twisted forms of each other.
(4) The automorphism group $\operatorname{Aut}(A)$ of an Albert algebra has type F_{4}.

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.
(2) Over separably closed fields all Albert algebras are isomorphic.
(3) All Albert algebras over K are twisted forms of each other.
(4) The automorphism group $\operatorname{Aut}(A)$ of an Albert algebra has type F_{4}.

Thus, there are natural bijections between 3 sets:

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.
(2) Over separably closed fields all Albert algebras are isomorphic.
(3) All Albert algebras over K are twisted forms of each other.
(4) The automorphism group $\operatorname{Aut}(A)$ of an Albert algebra has type F_{4}.

Thus, there are natural bijections between 3 sets:
(a) The set $\mathcal{A l b} b_{F}$ of isomorphism classes of Albert algebras over F;

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.
(2) Over separably closed fields all Albert algebras are isomorphic.
(3) All Albert algebras over K are twisted forms of each other.
(4) The automorphism group $\operatorname{Aut}(A)$ of an Albert algebra has type F_{4}.

Thus, there are natural bijections between 3 sets:
(a) The set $\mathcal{A l b} b_{F}$ of isomorphism classes of Albert algebras over F;
(b) The set $\mathcal{G} r S_{F_{4}, F}$ of isomorphism classes of groups of type F_{4} over F;

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan subalgebra of B^{+}for some associative algebra B, and exceptional otherwise. An Albert algebra is then defined as a simple, exceptional Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.
(2) Over separably closed fields all Albert algebras are isomorphic.
(3) All Albert algebras over K are twisted forms of each other.
(4) The automorphism group $\operatorname{Aut}(A)$ of an Albert algebra has type F_{4}.

Thus, there are natural bijections between 3 sets:
(a) The set $\mathcal{A l b} b_{F}$ of isomorphism classes of Albert algebras over F;
(b) The set $\mathcal{G r S}_{F_{4}, F}$ of isomorphism classes of groups of type F_{4} over F;
(c) The set \mathcal{T} orsors $_{F_{4}, F}$ of isomorphism classes of F_{4}-torsors over F.

First Tits construction

Example:

First Tits construction

Example: Let D be a central simple algebra over F of degree 3 .

First Tits construction

Example: Let D be a central simple algebra over F of degree 3 . Take $A=D \oplus D \oplus D$ as a vector space.

First Tits construction

> Example: Let D be a central simple algebra over F of degree 3 . Take $A=D \oplus D \oplus D$ as a vector space. Fix a scalar $\mu \in F^{\times}$.

First Tits construction

Example: Let D be a central simple algebra over F of degree 3 . Take $A=D \oplus D \oplus D$ as a vector space. Fix a scalar $\mu \in F^{\times}$. Define the cross product on D by

$$
u \times v=u v+v u-T_{D}(u) v-T_{D}(v) u-T_{D}(u v)+T_{D}(u) T_{D}(v),
$$

First Tits construction

Example: Let D be a central simple algebra over F of degree 3 . Take $A=D \oplus D \oplus D$ as a vector space. Fix a scalar $\mu \in F^{\times}$. Define the cross product on D by

$$
u \times v=u v+v u-T_{D}(u) v-T_{D}(v) u-T_{D}(u v)+T_{D}(u) T_{D}(v),
$$

and write $\widetilde{u}=T_{D}(u)-u$ for $u \in D$.

First Tits construction

Example: Let D be a central simple algebra over F of degree 3 . Take $A=D \oplus D \oplus D$ as a vector space. Fix a scalar $\mu \in F^{\times}$. Define the cross product on D by

$$
u \times v=u v+v u-T_{D}(u) v-T_{D}(v) u-T_{D}(u v)+T_{D}(u) T_{D}(v)
$$

and write $\widetilde{u}=T_{D}(u)-u$ for $u \in D$.
The product $(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ in $A=D \oplus D \oplus D$ is then given by

First Tits construction

Example: Let D be a central simple algebra over F of degree 3 . Take $A=D \oplus D \oplus D$ as a vector space. Fix a scalar $\mu \in F^{\times}$. Define the cross product on D by

$$
u \times v=u v+v u-T_{D}(u) v-T_{D}(v) u-T_{D}(u v)+T_{D}(u) T_{D}(v),
$$

and write $\widetilde{u}=T_{D}(u)-u$ for $u \in D$.
The product $(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ in $A=D \oplus D \oplus D$ is then given by

$$
\frac{1}{2}\left(x x^{\prime}+x^{\prime} x+\widetilde{y z^{\prime}}+\widetilde{y^{\prime} z}, \widetilde{x} y^{\prime}+\widetilde{x^{\prime} y}+\mu^{-1} z \times z^{\prime}, z \widetilde{x^{\prime}}+z^{\prime} \widetilde{x}+\mu y \times y^{\prime}\right)
$$

First Tits construction

Example: Let D be a central simple algebra over F of degree 3 . Take $A=D \oplus D \oplus D$ as a vector space. Fix a scalar $\mu \in F^{\times}$. Define the cross product on D by

$$
u \times v=u v+v u-T_{D}(u) v-T_{D}(v) u-T_{D}(u v)+T_{D}(u) T_{D}(v),
$$

and write $\widetilde{u}=T_{D}(u)-u$ for $u \in D$.
The product $(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ in $A=D \oplus D \oplus D$ is then given by

$$
\frac{1}{2}\left(x x^{\prime}+x^{\prime} x+\widetilde{y z^{\prime}}+\widetilde{y^{\prime} z}, \widetilde{x} y^{\prime}+\widetilde{x^{\prime} y}+\mu^{-1} z \times z^{\prime}, z \widetilde{x^{\prime}}+z^{\prime} \widetilde{x}+\mu y \times y^{\prime}\right)
$$

One then writes $A=J(D, \mu)$ and says that A arises from D and μ via the first Tits construction.

"Cell structure"

By cells in A we mean Jordan subalgebras in A.

"Cell structure"

By cells in A we mean Jordan subalgebras in A.
Assume an Albert algebra A is division. The description of Jordan subalgebras in A is well known.

"Cell structure"

By cells in A we mean Jordan subalgebras in A.
Assume an Albert algebra A is division. The description of Jordan subalgebras in A is well known.
(1) There are two trivial Jordan subalgebras: $J=0$ and $J=A$;

"Cell structure"

By cells in A we mean Jordan subalgebras in A.
Assume an Albert algebra A is division. The description of Jordan subalgebras in A is well known.
(1) There are two trivial Jordan subalgebras: $J=0$ and $J=A$;
(2) $F \subset E \subset A$ cubic field extensions;

"Cell structure"

By cells in A we mean Jordan subalgebras in A.
Assume an Albert algebra A is division. The description of Jordan subalgebras in A is well known.
(1) There are two trivial Jordan subalgebras: $J=0$ and $J=A$;
(2) $F \subset E \subset A$ cubic field extensions;
(3) 9-dimensional subalgebras $F \subset B^{+} \subset A$.

"Cell structure"

By cells in A we mean Jordan subalgebras in A.
Assume an Albert algebra A is division. The description of Jordan subalgebras in A is well known.
(1) There are two trivial Jordan subalgebras: $J=0$ and $J=A$;
(2) $F \subset E \subset A$ cubic field extensions;
(3) 9-dimensional subalgebras $F \subset B^{+} \subset A$.

Needless to say that the intersection of cells is a cell.

"Cell structure"

By cells in A we mean Jordan subalgebras in A.
Assume an Albert algebra A is division. The description of Jordan subalgebras in A is well known.
(1) There are two trivial Jordan subalgebras: $J=0$ and $J=A$;
(2) $F \subset E \subset A$ cubic field extensions;
(3) 9-dimensional subalgebras $F \subset B^{+} \subset A$.

Needless to say that the intersection of cells is a cell.
The cell structure on A is useless without a natural companion:

"Cell structure"

By cells in A we mean Jordan subalgebras in A.
Assume an Albert algebra A is division. The description of Jordan subalgebras in A is well known.
(1) There are two trivial Jordan subalgebras: $J=0$ and $J=A$;
(2) $F \subset E \subset A$ cubic field extensions;
(3) 9-dimensional subalgebras $F \subset B^{+} \subset A$.

Needless to say that the intersection of cells is a cell. The cell structure on A is useless without a natural companion: it comes with the action of the structure group $\mathbf{S t r}(A)$.

Structure group

Every Albert algebra A is endowed with a cubic form

Structure group

Every Albert algebra A is endowed with a cubic form

$$
N: A \rightarrow K
$$

Structure group

Every Albert algebra A is endowed with a cubic form

$$
N: A \rightarrow K
$$

known as the norm of A (analogue of the reduced norm in a central simple algebra).

Structure group

Every Albert algebra A is endowed with a cubic form

$$
N: A \rightarrow K
$$

known as the norm of A (analogue of the reduced norm in a central simple algebra).

The structure group $\operatorname{Str}(A)$ of A is the affine group scheme

Structure group

Every Albert algebra A is endowed with a cubic form

$$
N: A \rightarrow K
$$

known as the norm of A (analogue of the reduced norm in a central simple algebra).

The structure group $\operatorname{Str}(A)$ of A is the affine group scheme whose R-points are defined by

Structure group

Every Albert algebra A is endowed with a cubic form

$$
N: A \rightarrow K
$$

known as the norm of A (analogue of the reduced norm in a central simple algebra).

The structure group $\operatorname{Str}(A)$ of A is the affine group scheme whose R-points are defined by
$\operatorname{Str}(A)(R)=\left\{x \in \mathbf{G L}(A)(R) \mid x\right.$ is a norm similarity of $\left.A \otimes_{K} R\right\}$

Structure group

Every Albert algebra A is endowed with a cubic form

$$
N: A \rightarrow K
$$

known as the norm of A (analogue of the reduced norm in a central simple algebra).

The structure group $\mathbf{S t r}(A)$ of A is the affine group scheme whose R-points are defined by
$\operatorname{Str}(A)(R)=\left\{x \in \mathbf{G L}(A)(R) \mid x\right.$ is a norm similarity of $\left.A \otimes_{K} R\right\}$
for every F-ring R.

Structure group

Every Albert algebra A is endowed with a cubic form

$$
N: A \rightarrow K
$$

known as the norm of A (analogue of the reduced norm in a central simple algebra).

The structure group $\mathbf{S t r}(A)$ of A is the affine group scheme whose R-points are defined by
$\operatorname{Str}(A)(R)=\left\{x \in \mathbf{G L}(A)(R) \mid x\right.$ is a norm similarity of $\left.A \otimes_{K} R\right\}$
for every F-ring R.
Facts: $\operatorname{Str}(A)$ is a reductive group scheme whose central torus is G_{m}

Structure group

Every Albert algebra A is endowed with a cubic form

$$
N: A \rightarrow K
$$

known as the norm of A (analogue of the reduced norm in a central simple algebra).

The structure group $\mathbf{S t r}(A)$ of A is the affine group scheme whose R-points are defined by

$$
\operatorname{Str}(A)(R)=\left\{x \in \mathbf{G L}(A)(R) \mid x \text { is a norm similarity of } A \otimes_{K} R\right\}
$$

for every F-ring R.
Facts: $\operatorname{Str}(A)$ is a reductive group scheme whose central torus is G_{m} and whose derived subgroup is a simple simply connected group of type E_{6}.

(1) Albert Algebras

(2) Cohomological invariants

(3) The main result and strategy of the proof

Construction of f_{3}, f_{5}-invariants

Let A be an Albert algebra over a field F of characteristic $\neq 2$.

Construction of f_{3}, f_{5}-invariants

Let A be an Albert algebra over a field F of characteristic $\neq 2$. It has a trace form $\operatorname{Tr}: A \rightarrow F$ and a quadratic form $q_{A}(x)=\operatorname{Tr}\left(x^{2}\right) / 2$.

Construction of f_{3}, f_{5}-invariants

Let A be an Albert algebra over a field F of characteristic $\neq 2$.
It has a trace form $\operatorname{Tr}: A \rightarrow F$ and a quadratic form $q_{A}(x)=\operatorname{Tr}\left(x^{2}\right) / 2$.
Theorem (J.-P. Serre 1995). There exist 3- and 5-Pfister forms q_{3}, q_{5} such that

Construction of f_{3}, f_{5}-invariants

Let A be an Albert algebra over a field F of characteristic $\neq 2$.
It has a trace form $\operatorname{Tr}: A \rightarrow F$ and a quadratic form $q_{A}(x)=\operatorname{Tr}\left(x^{2}\right) / 2$.
Theorem (J.-P. Serre 1995). There exist 3- and 5-Pfister forms q_{3}, q_{5} such that $q_{A} \oplus q_{3} \simeq\langle 2,2,2\rangle \oplus q_{5}$.

Construction of f_{3}, f_{5}-invariants

Let A be an Albert algebra over a field F of characteristic $\neq 2$.
It has a trace form $\operatorname{Tr}: A \rightarrow F$ and a quadratic form $q_{A}(x)=\operatorname{Tr}\left(x^{2}\right) / 2$.
Theorem (J.-P. Serre 1995). There exist 3- and 5-Pfister forms q_{3}, q_{5} such that $q_{A} \oplus q_{3} \simeq\langle 2,2,2\rangle \oplus q_{5}$.

These two Pfister forms give rise to the cohomological invariants

Construction of f_{3}, f_{5}-invariants

Let A be an Albert algebra over a field F of characteristic $\neq 2$.
It has a trace form $\operatorname{Tr}: A \rightarrow F$ and a quadratic form $q_{A}(x)=\operatorname{Tr}\left(x^{2}\right) / 2$.
Theorem (J.-P. Serre 1995). There exist 3- and 5-Pfister forms q_{3}, q_{5} such that $q_{A} \oplus q_{3} \simeq\langle 2,2,2\rangle \oplus q_{5}$.

These two Pfister forms give rise to the cohomological invariants

$$
f_{3}: \mathcal{A l b}_{F} \rightarrow H^{3}(F, \mathbb{Z} / 2) \text { and } f_{5}: \mathcal{A l b _ { F }} \rightarrow H^{5}(F, \mathbb{Z} / 2)
$$

Construction of f_{3}, f_{5}-invariants

Let A be an Albert algebra over a field F of characteristic $\neq 2$.
It has a trace form $\operatorname{Tr}: A \rightarrow F$ and a quadratic form $q_{A}(x)=\operatorname{Tr}\left(x^{2}\right) / 2$.
Theorem (J.-P. Serre 1995). There exist 3- and 5-Pfister forms q_{3}, q_{5} such that $q_{A} \oplus q_{3} \simeq\langle 2,2,2\rangle \oplus q_{5}$.

These two Pfister forms give rise to the cohomological invariants

$$
f_{3}: \mathcal{A l b _ { F }} \rightarrow H^{3}(F, \mathbb{Z} / 2) \text { and } f_{5}: \mathcal{A l b _ { F }} \rightarrow H^{5}(F, \mathbb{Z} / 2)
$$

This construction was extended by H. P. Petersson and M. L. Racine to the case of bad characteristic in 1995.

g_{3}-invariant

Theorem (M. Rost, 1991).
Let $\operatorname{char}(F) \neq 2,3$. There exists a functorial map

g_{3}-invariant

Theorem (M. Rost, 1991).
Let $\operatorname{char}(F) \neq 2,3$. There exists a functorial map

$$
g_{3}: \mathcal{A l b} \rightarrow H^{3}(-, \mathbb{Z} / 3)
$$

g_{3}-invariant

Theorem (M. Rost, 1991).
Let $\operatorname{char}(F) \neq 2,3$. There exists a functorial map

$$
g_{3}: \mathcal{A l b} \rightarrow H^{3}(-, \mathbb{Z} / 3)
$$

If $A=J(D, \mu)$ then $g_{3}(A)=D \cup(\mu)$.

g_{3}-invariant

Theorem (M. Rost, 1991).

Let $\operatorname{char}(F) \neq 2,3$. There exists a functorial map

$$
g_{3}: \mathcal{A l b} \rightarrow H^{3}(-, \mathbb{Z} / 3)
$$

If $A=J(D, \mu)$ then $g_{3}(A)=D \cup(\mu)$.

The Rost construction of g_{3} was extended to the case of bad characteristic by H. P. Petersson and M. Racine.

J.-P. Serre question

Question:

Is the $\operatorname{map} \phi=\left(f_{3}, f_{5}, g_{3}\right)$

J.-P. Serre question

Question:

Is the $\operatorname{map} \phi=\left(f_{3}, f_{5}, g_{3}\right)$

J.-P. Serre question

Question:

Is the $\operatorname{map} \phi=\left(f_{3}, f_{5}, g_{3}\right)$

$$
\mathcal{A l b _ { F }} \simeq H^{1}\left(F, G_{0}\right) \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2) \times H^{3}(F, \mathbb{Z} / 3)
$$

J.-P. Serre question

Question:

Is the $\operatorname{map} \phi=\left(f_{3}, f_{5}, g_{3}\right)$

$$
\mathcal{A l b} b_{F} \simeq H^{1}\left(F, G_{0}\right) \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2) \times H^{3}(F, \mathbb{Z} / 3)
$$ injective? Here G_{0} is a split group of type F_{4}.

Known results

For the time being not much is known.

Known results

For the time being not much is known.
(1) T. Springer Theorem:

Known results

For the time being not much is known.
(1) T. Springer Theorem: The map

$$
\left(f_{3}, f_{5}\right): H^{1}\left(F, G_{0}\right)_{g_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2)
$$

is injective.

Known results

For the time being not much is known.
(1) T. Springer Theorem: The map

$$
\left(f_{3}, f_{5}\right): H^{1}\left(F, G_{0}\right)_{g_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2)
$$

is injective.
(2) V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Known results

For the time being not much is known.
(1) T. Springer Theorem: The map

$$
\left(f_{3}, f_{5}\right): H^{1}\left(F, G_{0}\right)_{g_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2)
$$

is injective.
(2) V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for groups with good reduction holds.

Known results

For the time being not much is known.
(1) T. Springer Theorem: The map

$$
\left(f_{3}, f_{5}\right): H^{1}\left(F, G_{0}\right)_{g_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2)
$$

is injective.
(2) V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for groups with good reduction holds. Then ϕ is proper, i.e. its fibres are finite.

Known results

For the time being not much is known.
(1) T. Springer Theorem: The map

$$
\left(f_{3}, f_{5}\right): H^{1}\left(F, G_{0}\right)_{g_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2)
$$

is injective.
(2) V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for groups with good reduction holds. Then ϕ is proper, i.e. its fibres are finite.
(3) Rost Theorem: assume $\xi_{1}, \xi_{2} \in H^{1}\left(F, G_{0}\right)$ have the same cohomological invariants.

Known results

For the time being not much is known.
(1) T. Springer Theorem: The map

$$
\left(f_{3}, f_{5}\right): H^{1}\left(F, G_{0}\right)_{g_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2)
$$

is injective.
(2) V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for groups with good reduction holds. Then ϕ is proper, i.e. its fibres are finite.
(3) Rost Theorem: assume $\xi_{1}, \xi_{2} \in H^{1}\left(F, G_{0}\right)$ have the same cohomological invariants. Then there exist extensions K / F

Known results

For the time being not much is known.
(1) T. Springer Theorem: The map

$$
\left(f_{3}, f_{5}\right): H^{1}\left(F, G_{0}\right)_{g_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 2) \times H^{5}(F, \mathbb{Z} / 2)
$$

is injective.
(2) V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for groups with good reduction holds. Then ϕ is proper, i.e. its fibres are finite.
(3) Rost Theorem: assume $\xi_{1}, \xi_{2} \in H^{1}\left(F, G_{0}\right)$ have the same cohomological invariants. Then there exist extensions K / F of degree dividing 3 and L / F of degree prime to 3 such that $\xi_{1, K}=\xi_{2, K}$ and $\xi_{1, L}=\xi_{2, L}$.

(1) Albert Algebras

(2) Cohomological invariants

(3) The main result and strategy of the proof

Theorem (Ch-Lourdeaux- Pianzola).

Theorem (Ch-Lourdeaux- Pianzola).

Let F be an arbitrary field. Then the natural map

$$
g_{3}: H^{1}\left(F, G_{0}\right)_{f_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 3)
$$

Theorem (Ch-Lourdeaux- Pianzola).

Let F be an arbitrary field. Then the natural map

$$
g_{3}: H^{1}\left(F, G_{0}\right)_{f_{3}=0} \longrightarrow H^{3}(F, \mathbb{Z} / 3)
$$

is injective.

