
NEW EVIDENCE THAT COHOMOLOGICAL

INVARIANTS MIGHT DETERMINE ALBERT

ALGEBRAS/GROUPS OF TYPE F4 UNIQUELY

UP TO ISOMORPHISM:

TO ANDREI RAPINCHUK

ON THE OCCASION OF HIS 60TH BIRTHDAY

(joint work with A. Lourdeaux , A. Pianzola)

Vladimir Chernousov
University of Alberta

BIRS workshop June 16, 2022



Albert Algebras

1 Albert Algebras

2 Cohomological invariants

3 The main result and strategy of the proof

Vladimir Chernousov (University of Alberta) BIRS workshop June 16, 2022 2 / 14



Albert Algebras

Throughout F is the base field of characteristic 6= 2, 3.

Definition

A Jordan algebra over F is a unital, commutative F-algebra A
in which the Jordan identity

(xy)(xx) = x(y(xx))

holds for all x, y ∈ A.

Example. If B is an associative algebra over F with multiplication

denoted by ·, then the anticommutator

1
2
(x · y + y · x)

endows B with a Jordan algebra structure, which we denote by B+.
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Albert Algebras

Definition

A Jordan algebra A is called special if it is isomorphic to a Jordan
subalgebra of B+ for some associative algebra B, and exceptional
otherwise. An Albert algebra is then defined as a simple, exceptional
Jordan algebra.

Facts. (1) The dimension of any Albert algebra is 27.
(2) Over separably closed fields all Albert algebras are isomorphic.
(3) All Albert algebras over K are twisted forms of each other.
(4) The automorphism group Aut(A) of an Albert algebra has type F4.

Thus, there are natural bijections between 3 sets:

(a) The set AlbF of isomorphism classes of Albert algebras over F;
(b) The set GrsF4,F of isomorphism classes of groups of type F4 over F;
(c) The set T orsorsF4,F of isomorphism classes of F4-torsors over F.
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Albert Algebras

First Tits construction

Example:

Let D be a central simple algebra over F of degree 3

.

Take A = D⊕D⊕D as a vector space. Fix a scalar µ ∈ F×.
Define the cross product on D by

u× v = uv + vu− TD(u)v− TD(v)u− TD(uv) + TD(u)TD(v),

and write ũ = TD(u)− u for u ∈ D.
The product (x, y, z)(x′, y′, z′) in A = D⊕D⊕D is then given by

1
2
(xx′ + x′x + ỹz′ + ỹ′z, x̃y′ + x̃′y + µ−1z× z′, zx̃′ + z′x̃ + µy× y′).

One then writes A = J(D, µ) and says that A arises from D and µ via
the first Tits construction.
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and write ũ = TD(u)− u for u ∈ D.
The product (x, y, z)(x′, y′, z′) in A = D⊕D⊕D is then given by

1
2
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and write ũ = TD(u)− u for u ∈ D.
The product (x, y, z)(x′, y′, z′) in A = D⊕D⊕D is then given by

1
2
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and write ũ = TD(u)− u for u ∈ D.
The product (x, y, z)(x′, y′, z′) in A = D⊕D⊕D is then given by

1
2
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Albert Algebras

“Cell structure”

By cells in A we mean Jordan subalgebras in A.

Assume an Albert algebra A is division. The description of Jordan
subalgebras in A is well known.

1 There are two trivial Jordan subalgebras: J = 0 and J = A;
2 F ⊂ E ⊂ A cubic field extensions;
3 9-dimensional subalgebras F ⊂ B+ ⊂ A.

Needless to say that the intersection of cells is a cell.
The cell structure on A is useless without a natural companion:
it comes with the action of the structure group Str(A).
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Albert Algebras

Structure group

Every Albert algebra A is endowed with a cubic form

N : A→ K

known as the norm of A (analogue of the reduced norm in a central
simple algebra).

The structure group Str(A) of A is the affine group scheme
whose R-points are defined by

Str(A)(R) = {x ∈ GL(A)(R) | x is a norm similarity of A⊗K R}

for every F-ring R.

Facts: Str(A) is a reductive group scheme whose central torus is Gm
and whose derived subgroup is a simple simply connected group of
type E6.
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Cohomological invariants

Construction of f3, f5-invariants

Let A be an Albert algebra over a field F of characteristic 6= 2.

It has a trace form Tr : A→ F and a quadratic form qA(x) = Tr(x2)/2.

Theorem (J.-P. Serre 1995). There exist 3- and 5-Pfister forms q3, q5 such
that qA ⊕ q3 ' 〈2, 2, 2〉 ⊕ q5.

These two Pfister forms give rise to the cohomological invariants

f3 : AlbF → H3(F, Z/2) and f5 : AlbF → H5(F, Z/2)

This construction was extended by H. P. Petersson and M. L. Racine to
the case of bad characteristic in 1995.
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Cohomological invariants

g3-invariant

Theorem (M. Rost, 1991).

Let char(F) 6= 2, 3. There exists a functorial map

g3 : Alb→ H3(−, Z/3).

If A = J(D, µ) then g3(A) = D∪ (µ).

The Rost construction of g3 was extended to the case of bad
characteristic by H. P. Petersson and M. Racine.
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Cohomological invariants

J.-P. Serre question

Question:

Is the map φ = (f3, f5, g3)

AlbF ' H1(F, G0) −→ H3(F, Z/2)×H5(F, Z/2)×H3(F, Z/3)

injective? Here G0 is a split group of type F4.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 11 /

14



Cohomological invariants

J.-P. Serre question

Question:

Is the map φ = (f3, f5, g3)

AlbF ' H1(F, G0) −→ H3(F, Z/2)×H5(F, Z/2)×H3(F, Z/3)

injective? Here G0 is a split group of type F4.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 11 /

14



Cohomological invariants

J.-P. Serre question

Question:

Is the map φ = (f3, f5, g3)

AlbF ' H1(F, G0) −→ H3(F, Z/2)×H5(F, Z/2)×H3(F, Z/3)

injective?

Here G0 is a split group of type F4.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 11 /

14



Cohomological invariants

J.-P. Serre question

Question:

Is the map φ = (f3, f5, g3)

AlbF ' H1(F, G0) −→ H3(F, Z/2)×H5(F, Z/2)×H3(F, Z/3)

injective? Here G0 is a split group of type F4.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 11 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem: The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.
2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds. Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants. Then there exist extensions K/F of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L

.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem:

The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.
2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds. Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants. Then there exist extensions K/F of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L

.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem: The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.

2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds. Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants. Then there exist extensions K/F of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L

.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem: The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.
2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds. Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants. Then there exist extensions K/F of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L

.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem: The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.
2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds.

Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants. Then there exist extensions K/F of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L

.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem: The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.
2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds. Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants. Then there exist extensions K/F of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L

.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem: The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.
2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds. Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants.

Then there exist extensions K/F of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L

.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem: The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.
2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds. Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants. Then there exist extensions K/F

of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L

.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



Cohomological invariants

Known results

For the time being not much is known.

1 T. Springer Theorem: The map

(f3, f5) : H1(F, G0)g3=0 −→ H3(F, Z/2)×H5(F, Z/2)

is injective.
2 V. Chernousov, A. Rapinchuk, I. Rapinchuk:

Assume F is finitely generated and the finiteness conjecture for
groups with good reduction holds. Then φ is proper, i.e. its fibres
are finite.

3 Rost Theorem: assume ξ1, ξ2 ∈ H1(F, G0) have the same
cohomological invariants. Then there exist extensions K/F of
degree dividing 3 and L/F of degree prime to 3 such that
ξ1,K = ξ2,K and ξ1,L = ξ2,L.

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 12 /

14



The main result and strategy of the proof

1 Albert Algebras

2 Cohomological invariants

3 The main result and strategy of the proof

Vladimir Chernousov (University of Alberta)
BIRS workshop June 16, 2022 13 /

14



The main result and strategy of the proof

Theorem (Ch-Lourdeaux- Pianzola ).

Let F be an arbitrary field. Then the natural map

g3 : H1(F, G0)f3=0 −→ H3(F, Z/3)

is injective.
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