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Definition over Q

For elliptic curves over Q, we can define modularity in two ways:

Geometric There is a nonconstant map X0(N)→ E defined over
Q.

Analytic There is a Hecke eigenform f of weight 2 and level
Γ0(N) such that L(f , χ, s) = L(E , χ, s) for all
Dirichlet characters χ.

The equivalence was known for several years before it was proved
by Wiles et al. that all elliptic curves are modular.



Definition over function fields

Now let X be a smooth curve over a finite field Fq, and let K be
its function field. Let E be an elliptic curve over K , which gives an
elliptic surface E/X . We assume that j(E ) /∈ Fq.

It is known that L(E , χ, s) is always a holomorphic function (in
fact, a polynomial in q−s). We can define its analytic modularity
in the same way, although newforms in this context have quite a
different flavour.

Likewise, Drinfeld defined modular curves X∞0 (Nf ), where ∞ is a
place of K where E has split multiplicative reduction and Nf is an
arbitrary divisor not containing ∞. So we can define geometric
modularity (for elliptic curves with a suitable ∞).



What we are looking for

Drinfeld introduced a moduli stack of r -legged shtukas of rank 2,
depending on an effective divisor N on X and a subset Σ∞ of the
support, which is of relative dimension r over X r . For r = 1 this is
closely related to a Drinfeld modular curve. So modularity of E
essentially means that there is a correspondence between the space
of 1-legged shtukas and E .

A curve in correspondence with an elliptic curve admits a map to it.

More generally, we can define higher modularity in a similar way:
there should be a correspondence between the space of r -legged
shtukas and E r . (Note that E r means the product over the ground
field, not over P1.)



Higher modularity

Let ShtrG (Γ0(N); Σ∞) be a suitable moduli stack of shtukas and
E → X an elliptic fibration of conductor N. Let E r be the r -fold
product over Fq. We say that E is r -modular if there is a nontrivial
correspondence between ShtrG (Γ0(N); Σ∞) and E r .

In other words, there should be a variety Y mapping with finite
degree to both ShtrG (Γ0(N); Σ∞) and E r , commuting with the
maps to X r .

This would follow from Tate’s conjecture.



Motivation for this work

This project grew out of Jared’s study of a paper of Yun and
Zhang in which they

prove an identity between (1) The r-th central derivative
of the quadratic base change L-function associated to an
everywhere unramified cuspidal automorphic representa-
tion π of PGL2; (2) The self-intersection number of the
π-isotypic component of the Heegner–Drinfeld cycle.

This says something analogous to Gross-Zagier for the first
nonzero coefficient of an L-series of an elliptic curve of rank r .



Our main theorem

Theorem
Let E → P1 be a tame rational elliptic fibration with rank 0. Then:

1. If E is unstable, then E is 2-modular.

2. In some cases where E is semistable and q ≤ 7, we have that
E is 2-modular.

(“Tame” only matters in characteristic 2 or 3).

We certainly expect that the hypothesis on q should not be
necessary. Some of the missing cases with q ≤ 7 could be proved.



Plan for the rest of the talk

For the rest of the talk, we specialize to X = P1, and we consider
only E → X which is a rational surface of rank 0. We will do the
following:

1. Explain why the shtuka moduli spaces ShtrG (Γ0(N); Σ∞) can
be described in terms of concrete conditions on a 2× 2 matrix
of polynomials.

2. Describe some of the geometry of these spaces for r = 2.

3. Indicate how we relate these to E2 in some special cases.

4. Time permitting, describe one example for r = 3.
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Not a definition of shtukas

For our purposes, a shtuka is a map of vector bundles on a scheme
which has certain special properties at some fixed or varying points.

Vector bundles on general schemes are very complicated. The easy
way out of that problem is to take the base to be P1. Then every
vector bundle is a direct sum of line bundles O(ni ) in a unique way.

Maps of vector bundles on general schemes are very complicated.
However, maps of line bundles are not. A map from O(D) to
O(D ′) is essentially a section of O(D ′ − D).

In particular, a map O(m)→ O(n) on P1 is a homogeneous
polynomial of degree n −m in 2 variables, or a polynomial of
degree at most n −m in 1 variable.



Special properties

To simplify life even further, we consider only maps from O⊕O to
O(k)⊕O(k) (usually k is 1 or 2). Then a map of vector bundles
is just a 2 by 2 matrix of polynomials of degree at most k . When
we specialize at a point of P1, we get a 2× 2 matrix over the base
field.

Here are some properties that such a map can have at a point:

1. It can have a kernel.

2. It can have a specified kernel.

3. It can take v to the subspace spanned by v .

4. It can take v to the subspace spanned by vσ, where σ is the
Frobenius.

By imposing these conditions at various points, we obtain a moduli
space of maps which can be studied either concretely or abstractly.
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Defining the moduli space
If a semistable rational elliptic surface has rank 0, it has four bad
fibres. There are essentially four possibilities up to isogeny (one
needs to choose a, b, c , d with a + b + c + d = 12 and abcd a
square, but (2, 2, 4, 4) and (1, 1, 2, 8) turn out to be the same, as
do (3, 3, 3, 3) and (1, 1, 1, 9)).

I will assume that the bad fibres are at 0, 1,−1,∞, though this is
not essential. In this case, one shtuka moduli space over Fq turns
out to be the space of 2× 2 matrices M of polynomials over
Fq(t1, t2)[T ] of degree at most 1, such that:

1. for i = 1,−1, we have that Mi takes (i , 1) into the space
〈(i , 1)〉;

2. Mt1 ,Mt2 are singular;

3. M0 is upper triangular, i.e., takes (1, 0) into 〈(1, 0)〉;
4. we choose w such that M∞ takes (w , 1) into 〈(wq, 1)〉.

(Mx means M with T set equal to x .)



What is this variety?

The first five of these are one condition each, so we have five
equations in P7. The last one defines a cover.

More conveniently, let us consider three variables u, v ,w , where
(u, 1) and (v , 1) generate the kernels of Mt1 ,Mt2 and w is as
above. It is a codimension-1 condition in u, v ,w for such a matrix
to exist, and when it does, it is generically unique.

So we get a surface in A3, which we should compactify into (P1)3.
It then has tridegree (2, 2, q + 1).

This gives it a genus-1 fibration by projecting to the last
coordinate. If it isn’t too singular (it isn’t), we expect h2,0 = q.



How can we break it up?

Negation for the fibration acts as −1 on H2,0.

There are also Atkin-Lehner involutions, which act by involutions
on the base P1. These give us a group isomorphic to (Z/2Z)3.

The quotient by negation is a rational surface. But there are 4
potentially useful subgroups of order 4.

Modding out by these gives one quotient surface with
h2,0 = (q − 3)/4 and three with (q + 1)/4 if q ≡ 3 mod 4, or
(q + 3)/4, (q − 1)/4 if q ≡ 1 mod 4.



q = 3

In particular, let’s look more closely at q = 3.

We always have the Legendre family E0 : y2 = x(x − 1)(x − λ2),
which is semistable with conductor (0) + (1) + (−1) + (∞). It has
I4 fibres at 0,∞ and I2 at ±1.

In characteristic 3, we get two more surfaces E±1 (not related by
isogenies) by changing λ to λ± 1. We expect that the surface
above is in correspondence with the Kummer surfaces of
Ei ,t1 × Ei ,t2 , where Ei ,t means substitute t for λ in Ei .

On the other hand, if we create an elliptic surface with I2 fibres at
0,∞ and I4 at ±1, it is isogenous to the Legendre family above
and does not appear separately.



Finding the correspondences

So we look at the quotients with h2,0 = 1 as above. Call them
K0,K1,K−1.

These are actually not K3 surfaces, since the fibrations have
multiple fibres. (It is to a K3 as an Enriques surface is to a rational
elliptic surface.)

But if we take the Jacobian it does give us a K3 in each case. And
we can check that the point counts match mod 3n when we
specialize t1, t2 to elements of F3n . This shows how to label the Ki .



Is that all?

Well . . . no. If we take any finite-degree map of K3 surfaces over
Fq, the source and target have the same number of points mod q.

And indeed it turns out that these two K3 surfaces are not
isomorphic, even though their point counts match after
specialization.

(One way to see this is to work out the Picard lattices of both,
which we can do when we have elliptic fibrations.)

However, it turns out that the Picard lattices tensored with Q are
the same. In this context that is enough to imply the existence of
a map, at least after extending the base field.



Finding the correspondences

We managed to find the desired correspondences by considering a
suitable chain of maps of K3 surfaces given by isogenies of elliptic
fibrations.

(This is definitely harder than finding the isogeny between two
elliptic curves that are known to be isogenous.)

Theorem
The elliptic curves Ei are 2-modular over F3.

With some further work, we found a general procedure for finding
a map from a K3 to a Kummer surface of a product whenever
possible. Unfortunately it only works over algebraically closed fields
in general.



Digression: general remarks on finding isogenies

For me, an isogeny between two K3 surfaces K , L is a sequence
K = K0,K1, . . . ,Kn = L of K3 surfaces with dominant rational
maps Ki 99K Ki+1 or Ki+1 99K Ki for all i .

This implies that there is a nontrivial correspondence, which is
what we are really interested in. But I have no understanding of
correspondences that don’t arise in this way.

Over finite fields, this implies that the two K3 surfaces have the
same L-function up to cyclotomic factors.



Digression continued

Given two K3 surfaces where you suspect that there is an isogeny,
one way to look for it is to list the elliptic fibrations on each and
their torsion subgroups. Every torsion section of prime order gives
a map to another K3 surface, whose Picard lattice can be
determined. If the two surfaces admit maps to surfaces with
isometric Picard lattices . . . well, we’re not done yet, but it is
progress. We can also take the Jacobian of a fibration with no
section.

This might be a chance to apply Avi’s techniques from yesterday.

One systematic approach to finding isogenies is to try to reduce
the discriminant of Pic K until it is down to 1. Then there is only
one family, and it is closely related to a Kummer surface.

This can always be made to work over C.



q = 5 and q = 7

For q = 5, again we have three elliptic curves: the Legendre family
as before, the family with I1I2I3I6 fibres, and that one with t
changed to −t (which does not give an isogenous surface). The
whole thing works in much the same way. The remaining factor
with h2,0 = 2 appears (from consideration of a related Drinfeld
modular curve and other evidence) to be connected with a curve of
genus 2 with real multiplication by the order of discriminant 17.

For q = 7, we have one quotient with h2,0 = 1, corresponding to
the Legendre family, which we therefore know to be 2-modular.
The other three quotients have h2,0 = 2. One of them again seems
to correspond to the I1I2I3I6 family and its base change by t → −t,
but we do not have a proof. The others seem related to a curve of
genus 2 with RM of discriminant 12.



Digression: reducing surfaces with h2,0 = 2

The cases of q = 7, 8 raise an interesting general question: let V
be a surface with h2,0 = 2. Suppose we know (or suspect) that
H2
et(V ,Qp)/Pic V ⊗Qp is reducible. Can we find K3 surfaces with

the same Galois representations? How do we find correspondences?

Even if you are given one map V → X , finding the other one is by
no means easy.

(The dimension-1 analogue of this is an old and important
problem. For this problem as stated, there are some examples in
the literature and I have a few more. But the general problem of
understanding such surfaces is hard.)



Other base points

For q = 3, 5 there is only one orbit of sets of four points in P1. For
q = 7 there are two. The other one, containing (1, 2, 4,∞), is
more tractable; we only expect one elliptic curve, and that matches
perfectly with the one quotient of the moduli space with h2,0 = 1.

Then again, there are also surfaces whose bad fibres are not above
rational points. These are more difficult because we don’t have as
many Atkin-Lehner involutions, at least not over Fq.



Table of Contents

Introduction to modularity

Demystifying shtukas

The semistable case

Magic base changes

An example of 3-modularity

Done



Magic base changes: vague

Fix an elliptic surface E/P1 with (geometric) Mordell-Weil rank 0.

The reducible fibres contribute 8 to the Picard number 10.

If we take a generic double cover, each reducible fibre is doubled,
so we get 2 · 8 + 2 = 18 for the generic Picard rank.

These double covers are isogenous to Kummer surfaces of E × E ′.

We would like to have a connection between E ,E ′, E .



Magic base changes: precise

Consider the variety (P1)3 over Fq, with function field
Fq(t1, t2, t3). Let Eti be E base changed so that the variable is ti .

Let π : D → (P1)3 be a double cover. For general t1, t2 (i.e., over
general points in the first two factors) it specializes to a double
cover of P1, so we can pull back Et3 by it to get a K3 elliptic
surface.

If this is isogenous to the Kummer surface of Et1 × Et2 , we say that
π is a magic base change.



Magic is real

There is a 2-parameter family of double covers of P1 and a
2-parameter family of Kummer surfaces of products of elliptic
curves, so we would expect magic base changes to exist.

In fact we have a way to construct them (so far not proved, but
backed up by strong numerical evidence). I’ll state it only for
semistable fibrations (the harder case).



Pulling back the curtain

Suppose that the singularities are at P1,P2,P3,∞. Consider the
2× 2 matrix (

(T − P1)(T − a) b(T − P2)
T − P3 T − d

)
.

There are conditions on a, b, d for this to be singular at
T = t1, t2, t3. If we eliminate b, we can solve for ad and a + d and
find a quadratic polynomial with coefficients in t1, t2, t3 whose
roots are a, d . This turns out to define the magic base change.

(Note that it is symmetric in t1, t2, t3, which is not at all obvious
from the previous definition.)



What is it good for?

We conjecture that there is a correspondence between the shtuka
moduli space and the fibre product of the magic base change with
a Drinfeld modular curve.

This would prove the 2-modularity conjecture for all rational
elliptic fibrations of Mordell-Weil rank 0.

We can prove it for unstable ones, but not for semistable ones, and
so for now our results for semistable fibrations are still limited to
very small fields.



Coincidences

One reason the unstable case is easier is just that we don’t need to
worry about different locations of bad fibres, since PGL2 is
3-transitive.

It turns out that there is not merely a correspondence but a
birational equivalence.
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3-modularity of the Legendre family

Since the Legendre family was the easiest for 2-modularity, we
decided to try to prove its 3-modularity in the same way.

The analogue of the double cover of (P1)3 in this case is a family
of elliptic curves. We use it to construct a candidate threefold T
over Q(t1, t2, t3), which is the fibre product of two elliptic surfaces
over P1.

This is supposed to match T ′(Et1 × Et2 × Et3)/V , where Eti is
y2 = x(x − 1)(x − ti ) and V is the four-group acting by negation
on an even number of factors.



K3 fibrations on each side

I think of T ′ as defined by the equation y2 =
∏3

i=1 xizi (xi − tizi )
in a suitable toric variety. We have the fibration (y : x1x2x3z1z2z3).

On the other side, some straightforward (if unmotivated)
computation gives a birational equivalence of T with a quintic in
P4 that contains 9 planes.

Projection away from one of these expresses T as a family of
quartic surfaces over P1, i.e., a K3 fibration.



What happened

Choosing the right plane on T , we found that the point counts of
the fibres matched nicely after specialization.

This suggested that the generic fibres should be isogenous K3
surfaces, and we were able to prove that.

In fact they are isomorphic; it follows that T and T ′ are
birationally equivalent.

Theorem
The Legendre family is 3-modular over Fq for all q.



Why did it happen?

I have no idea.

It seems amazingly lucky to me, since T and T ′ both have vast
numbers of K3 fibrations. Even if there is a good reason for T ,T ′

to be actually birational rather than just isogenous, why on earth
was it so easy to find two fibrations that match?

(In fact this was the second proof of the birational equivalence that
we found, but this one was more symmetrical.)

I tried to do something like this to prove 3-modularity of other
rank-0 families, but got nowhere.

(For rank greater than 0 we don’t know how to deal even with
2-modularity, so let’s try to figure that out first.)
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End

Thank you for your attention.

Are there any questions?
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