Classical wave methods and modern gauge transforms:

Spectral asymptotics in the one dimensional case

Joint with L. Parnovski and R. Shterenberg

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.
- $-\Delta_{g}$ has discrete spectrum, $0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.
- $-\Delta_{g}$ has discrete spectrum, $0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

Conjecture (Sommerfeld-Lorentz, 1910)

Let

$$
N(\lambda):=\#\left\{j: \lambda_{j} \leq \lambda\right\} .
$$

Then,

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right)
$$

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.
- $-\Delta_{g}$ has discrete spectrum, $0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

Conjecture (Sommerfeld-Lorentz, 1910)

Let

$$
N(\lambda):=\#\left\{j: \lambda_{j} \leq \lambda\right\} .
$$

Then,

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right)
$$

- (Hilbert, 1910) This conjecture will not be proved in my lifetime.

High energy spectral asymptotics: the origins

- Let (M, g) be a smooth, compact Riemannian manifold of dimension d and $-\Delta_{g}$ be the Laplace-Beltrami operator on M.
- $-\Delta_{g}$ has discrete spectrum, $0=\lambda_{0}^{2}<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

Theorem (Weyl, 1911 (slightly modified setting))

Let

$$
N(\lambda):=\#\left\{j: \lambda_{j} \leq \lambda\right\} .
$$

Then,

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right) .
$$

- (Hilbert, 1910) This conjecture will not be proved in my lifetime.

Proved by Weyl in 1911

High energy spectral asymptotics: heat traces

- Consider $u(t): \operatorname{tr}\left(e^{t \Delta_{g}}\right)=\sum_{j} e^{-t \lambda_{j}^{2}}$.

High energy spectral asymptotics: heat traces

- Consider $u(t): \operatorname{tr}\left(e^{t \Delta_{g}}\right)=\sum_{j} e^{-t \lambda_{j}^{2}}$.

Theorem (Minakshisundaram-Pleijel - 1949)

Let (M, g) be a smooth, compact Riemannian manifold of dimension d. Then, there are $\left\{a_{j}\right\}_{j=1}^{\infty}$ such that for all N,

$$
u(t)=\frac{\operatorname{vol}(M)}{(4 \pi t)^{\frac{d}{2}}}+\sum_{j=1}^{N-1} a_{j} t^{-\frac{d}{2}+j}+O\left(t^{-\frac{d}{2}+N}\right)
$$

High energy spectral asymptotics: heat traces

- Consider $u(t): \operatorname{tr}\left(e^{t \Delta_{g}}\right)=\sum_{j} e^{-t \lambda_{j}^{2}}$.

Theorem (Minakshisundaram-Pleijel - 1949)

Let (M, g) be a smooth, compact Riemannian manifold of dimension d. Then, there are $\left\{a_{j}\right\}_{j=1}^{\infty}$ such that for all N,

$$
u(t)=\frac{\operatorname{vol}(M)}{(4 \pi t)^{\frac{d}{2}}}+\sum_{j=1}^{N-1} a_{j} t^{-\frac{d}{2}+j}+O\left(t^{-\frac{d}{2}+N}\right)
$$

- Asymptotics for $u(t)$ imply the theorem of Weyl:

$$
N(\lambda)=\frac{\operatorname{volg}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right) .
$$

High energy spectral asymptotics: heat traces

- Consider $u(t): \operatorname{tr}\left(e^{t \Delta_{g}}\right)=\sum_{j} e^{-t \lambda_{j}^{2}}$.

Theorem (Minakshisundaram-Pleijel - 1949)

Let (M, g) be a smooth, compact Riemannian manifold of dimension d. Then, there are $\left\{a_{j}\right\}_{j=1}^{\infty}$ such that for all N,

$$
u(t)=\frac{\operatorname{vol}(M)}{(4 \pi t)^{\frac{d}{2}}}+\sum_{j=1}^{N-1} a_{j} t^{-\frac{d}{2}+j}+O\left(t^{-\frac{d}{2}+N}\right)
$$

- Asymptotics for $u(t)$ imply the theorem of Weyl:

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}_{\mathbb{R}}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+o\left(\lambda^{d}\right) .
$$

Naive Conjecture

Let $N(\lambda):=\#\left\{j: \lambda_{j} \leq \lambda\right\}$. Then, there are $\left\{b_{j}\right\}_{j=1}^{\infty}$ such that for all N

$$
N(\lambda)=\frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+\sum_{j=1}^{N-1} b_{j} \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

The naive conjecture is obviously false

- Let $(M, g)=\left(\mathbb{S}^{2}, g_{\text {round }}\right)$.
- For every $\ell=0,1, \ldots$, the value $\ell(\ell+1)$ is an eigenvalue for $-\Delta_{\mathbb{S}^{2}}$ with multiplicity $2 \ell+1$ and these are the only eigenvalues.

The naive conjecture is obviously false

- Let $(M, g)=\left(\mathbb{S}^{2}, g_{\text {round }}\right)$.
- For every $\ell=0,1, \ldots$, the value $\ell(\ell+1)$ is an eigenvalue for $-\Delta_{\mathbb{S}^{2}}$ with multiplicity $2 \ell+1$ and these are the only eigenvalues.
- Suppose the Naive Conjecture is true:

The naive conjecture is obviously false

- Let $(M, g)=\left(\mathbb{S}^{2}, g_{\text {round }}\right)$.
- For every $\ell=0,1, \ldots$, the value $\ell(\ell+1)$ is an eigenvalue for $-\Delta_{\mathbb{S}^{2}}$ with multiplicity $2 \ell+1$ and these are the only eigenvalues.
- Suppose the Naive Conjecture is true: For any $0<\epsilon \ll 1$,

$$
2 \ell+1=N(\sqrt{\ell(\ell+1)+\epsilon})-N(\sqrt{\ell(\ell+1)-\epsilon})
$$

The naive conjecture is obviously false

- Let $(M, g)=\left(\mathbb{S}^{2}, g_{\text {round }}\right)$.
- For every $\ell=0,1, \ldots$, the value $\ell(\ell+1)$ is an eigenvalue for $-\Delta_{\mathbb{S}^{2}}$ with multiplicity $2 \ell+1$ and these are the only eigenvalues.
- Suppose the Naive Conjecture is true: For any $0<\epsilon \ll 1$,

$$
\begin{aligned}
2 \ell+1 & =N(\sqrt{\ell(\ell+1)+\epsilon})-N(\sqrt{\ell(\ell+1)-\epsilon}) \\
& =b_{0}[(\ell(\ell+1)+\epsilon)-(\ell(\ell+1)-\epsilon)]+b_{1}(\sqrt{\ell(\ell+1)+\epsilon}-\sqrt{\ell(\ell+1)-\epsilon})+O(1) \\
& =2 \epsilon b_{0}+O(1)
\end{aligned}
$$

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}
$$

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

Theorem (Duistermaat-Guillemin, 1975)

If there are few periodic geodesics, then $E(\lambda, g, V)=o\left(\lambda^{d-1}\right)$.

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

Theorem (Duistermaat-Guillemin, 1975)

If there are few periodic geodesics, then $E(\lambda, g, V)=o\left(\lambda^{d-1}\right)$. If there are only periodic geodesics $E(\lambda, g, V) \neq o\left(\lambda^{d-1}\right)$.

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

Theorem (Duistermaat-Guillemin, 1975)

If there are few periodic geodesics, then $E(\lambda, g, V)=o\left(\lambda^{d-1}\right)$. If there are only periodic geodesics $E(\lambda, g, V) \neq o\left(\lambda^{d-1}\right)$.

Theorem (Canzani-G, 2020)

If there are 'very' few periodic geodesics, then $E(\lambda, g, V)=O\left(\lambda^{d-1} / \log \lambda\right)$.

High energy spectral asymptotics: improved errors

- Let $V \in C^{\infty}(M ;[0, \infty))$
- $-\Delta_{g}+V$ has discrete spectrum, $0 \leq \lambda_{0}^{2} \leq \lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \ldots$, with $\lambda_{j} \rightarrow \infty$.

$$
N(\lambda, g, V):=\#\left\{j: \lambda_{j} \leq \lambda\right\}=: \frac{\operatorname{vol}_{g}(M) \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right)}{(2 \pi)^{d}} \lambda^{d}+E(\lambda, g, V)
$$

- Levitan (1952), Avakumović (1956), $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$
- Hörmander (1968) - introduces the theory of Fourier integral operators $E(\lambda, g, V)=O\left(\lambda^{d-1}\right)$

Theorem (Duistermaat-Guillemin, 1975)

If there are few periodic geodesics, then $E(\lambda, g, V)=o\left(\lambda^{d-1}\right)$. If there are only periodic geodesics $E(\lambda, g, V) \neq o\left(\lambda^{d-1}\right)$.

Theorem (Canzani-G, 2020)

If there are 'very' few periodic geodesics, then $E(\lambda, g, V)=O\left(\lambda^{d-1} / \log \lambda\right)$.
All based on Levitan's wave method (to be explained later).

A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then $N(\lambda, g, V)$ has a full asymptotic expansion in powers of λ.

- Problem!: We do not know of any compact manifolds without a closed geodesic

A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then $N(\lambda, g, V)$ has a full asymptotic expansion in powers of λ.

- Problem!: We do not know of any compact manifolds without a closed geodesic
- Move to non-compact manifolds

A second naive conjecture

Naive Conjecture

If there are no periodic geodesics, then $N(\lambda, g, V)$ has a full asymptotic expansion in powers of λ.

- Problem!: We do not know of any compact manifolds without a closed geodesic
- Move to non-compact manifolds
- New problem!: $N(\lambda, g, V)$ does not make sense here.

A replacement for the Weyl law

The local density of states is given by

$$
e\left(-\Delta_{g}+V, \lambda\right)(x):=1_{\left(-\infty, \lambda^{2}\right]}\left(-\Delta_{g}+V\right)(x, x)
$$

A replacement for the Weyl law

The local density of states is given by

$$
e\left(-\Delta_{g}+V, \lambda\right)(x):=1_{\left(-\infty, \lambda^{2}\right]}\left(-\Delta_{g}+V\right)(x, x)
$$

Theorem (Levitan 1952, Avakumović 1956, Hörmander 1968)

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+O\left(\lambda^{d-1}\right)
$$

A replacement for the Weyl law

The local density of states is given by

$$
e\left(-\Delta_{g}+V, \lambda\right)(x):=1_{\left(-\infty, \lambda^{2}\right]}\left(-\Delta_{g}+V\right)(x, x)
$$

Theorem (Levitan 1952, Avakumović 1956, Hörmander 1968)

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+O\left(\lambda^{d-1}\right)
$$

Theorem (Safarov 1988, Sogge-Zelditch 2002)

If there are few loops from x to itself, then

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \mathrm{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+o\left(\lambda^{d-1}\right)
$$

A replacement for the Weyl law

The local density of states is given by

$$
e\left(-\Delta_{g}+V, \lambda\right)(x):=1_{\left(-\infty, \lambda^{2}\right]}\left(-\Delta_{g}+V\right)(x, x)
$$

Theorem (Levitan 1952, Avakumović 1956, Hörmander 1968)

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+O\left(\lambda^{d-1}\right)
$$

Theorem (Safarov 1988, Sogge-Zelditch 2002)

If there are few loops from x to itself, then

$$
e\left(-\Delta_{g}+V, \lambda\right)(x)=(2 \pi)^{-d} \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}+o\left(\lambda^{d-1}\right)
$$

If the geodesics through x are all periodic with the same time,

$$
\left|e\left(-\Delta_{g}+V, \lambda\right)(x)-(2 \pi)^{-d} \operatorname{vol}_{\mathbb{R}^{d}}\left(B_{1}\right) \lambda^{d}\right| \neq o\left(\lambda^{d-1}\right)
$$

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.
- Move to non-compact manifolds.

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.
- Move to non-compact manifolds. Now this makes sense!

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.
- Move to non-compact manifolds. Now this makes sense!
- One example $M=\mathbb{R}^{d}$ with the standard metric.

A third naive conjecture

Naive Conjecture

If there are no geodesic loops, then $e\left(-\Delta_{g}+V, \lambda\right)(x)$ has a full asymptotic expansion in powers of λ.

- Problem!: (still) We do not know of any compact manifolds without a loop.
- Move to non-compact manifolds. Now this makes sense!
- One example $M=\mathbb{R}^{d}$ with the standard metric.
- Still a problem $V=|x|^{2}$.

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha}
$$

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L \infty} \leq C_{\alpha}
$$

Conjecture (Parnovski-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L \infty} \leq C_{\alpha}
$$

Conjecture (Parnovski-Shterenberg 2016)
Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

$$
\hat{\imath}
$$

Conjecture (Parnovski-Shterenberg 2016)
Suppose $V_{1}, V_{2} \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, if $V_{1}=V_{2}$ in a neighborhood of x, for any $N>0$, we have

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V_{1}, \lambda\right)(x)-e\left(-\Delta_{\mathbb{R}^{d}}+V_{2}, \lambda\right)(x)=O\left(\lambda^{-N}\right)
$$

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha}
$$

Conjecture (Parnovski-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

This conjecture is complicated. Since the spectrum can be very wild

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha}
$$

Conjecture (Parnovski-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

This conjecture is complicated. Since the spectrum can be very wild

- Dense pure point

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha}
$$

Conjecture (Parnovski-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

This conjecture is complicated. Since the spectrum can be very wild

- Dense pure point
- Positive, but arbitrarily small Hausdorff dimension

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha}
$$

Conjecture (Parnovski-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

This conjecture is complicated. Since the spectrum can be very wild

- Dense pure point
- Positive, but arbitrarily small Hausdorff dimension
- Absolutely continuous

A less naive conjecture

We say $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ if $V \in C^{\infty}$ and for all $\alpha \in \mathbb{N}^{d}$, there are $C_{\alpha}>0$ such that

$$
\left\|\partial_{x}^{\alpha} V\right\|_{L^{\infty}} \leq C_{\alpha}
$$

Conjecture (Parnovski-Shterenberg 2016)

Suppose $V \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then, there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for any $N>0$,

$$
e\left(-\Delta_{\mathbb{R}^{d}}+V, \lambda\right)(x)=\sum_{j=0}^{N-1} a_{j}(x) \lambda^{d-j}+O\left(\lambda^{d-N}\right)
$$

This conjecture is complicated. Since the spectrum can be very wild

- Dense pure point
- Positive, but arbitrarily small Hausdorff dimension
- Absolutely continuous
- Singular continuous

The conjecture is known for several classes of potentials

Potential	Method	Reference

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic		[Parnovski-Shterenberg 2016]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic		[Parnovski-Shterenberg 2016]
almost periodic (+conditions)		[Parnovski-Shterenberg 2016]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic		[Parnovski-Shterenberg 2016]
almost periodic (+conditions)		[Parnovski-Shterenberg 2016]
compactly supported		[Popov-Shubin 1983]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic	gauge transform (GT)	[Parnovski-Shterenberg 2016]
almost periodic (+conditions)	GT	[Parnovski-Shterenberg 2016]
compactly supported		[Popov-Shubin 1983]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic	gauge transform (GT)	[Parnovski-Shterenberg 2016]
almost periodic (+conditions)	GT	[Parnovski-Shterenberg 2016]
compactly supported	wave method	[Popov-Shubin 1983]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic	gauge transform (GT)	[Parnovski-Shterenberg 2016]
almost periodic (+conditions)	GT	[Parnovski-Shterenberg 2016]
compactly supported	wave method	[Popov-Shubin 1983]
compactly supported +periodic on \mathbb{R}		[G 2020]

The conjecture is known for several classes of potentials

Potential	Method	Reference
periodic	gauge transform (GT)	[Parnovski-Shterenberg 2016]
almost periodic (+conditions)	GT	[Parnovski-Shterenberg 2016]
compactly supported	wave method	[Popov-Shubin 1983]
compactly supported +periodic on \mathbb{R}	wave method + GT	[G 2020]

The conjecture is true in 1 dimension

Theorem (G - Parnovski - Shterenberg 2022)

Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then there are $\left\{a_{j}(x)\right\}_{j=0}^{\infty}$ such that for all $N>0$, there is $C_{N}>0$ satisfying

$$
\left|e\left(-\Delta_{\mathbb{R}}+V, \lambda\right)(x)-\sum_{j=0}^{N-1} a_{j}(x) \lambda^{1-2 j}\right| \leq C_{N} \lambda^{1-2 N} .
$$

Moreover $a_{j}(x)$ can be determined from a finite (j-dependent) number of derivatives of V at x.

Corollaries of the theorem: Spectral Gaps

Corollary (G - Parnovski - Shterenberg 2022)
Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then for all $N>0$, there is $C_{N}>0$ such that for all $\lambda \geq 1$ and $\epsilon>0$, if

$$
\operatorname{spec}\left(-\Delta_{\mathbb{R}}+V\right) \cap[\lambda-\epsilon, \lambda+\epsilon]=\emptyset,
$$

then

$$
\epsilon \leq C_{N} \lambda^{-N} .
$$

Corollaries of the theorem: Almost plane waves

Corollary (G - Parnovski - Shterenberg 2022)
Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then for all $N>0$ there are $c_{N}>0$ and $C>0$ such that for any $\lambda>1$ and any solution of

$$
\left(-\Delta_{\mathbb{R}}+V-\lambda^{2}\right) u=0
$$

and any $x_{1}, x_{2} \in \mathbb{R}$ with $\left|x_{1}-x_{2}\right|<c_{N} \lambda^{N}$,

$$
\left|u\left(x_{1}\right)\right|^{2}+\lambda^{-2}\left|u^{\prime}\left(x_{1}\right)\right|^{2} \leq e^{C \lambda^{-1}}\left(\left|u\left(x_{2}\right)\right|^{2}+\lambda^{-2}\left|u^{\prime}\left(x_{2}\right)\right|^{2}\right)
$$

Corollaries of the theorem: Almost plane waves

Corollary (G - Parnovski - Shterenberg 2022)

Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. Then for all $N>0$ there are $c_{N}>0$ and $C>0$ such that for any $\lambda>1$ and any solution of

$$
\left(-\Delta_{\mathbb{R}}+V-\lambda^{2}\right) u=0
$$

and any $x_{1}, x_{2} \in \mathbb{R}$ with $\left|x_{1}-x_{2}\right|<c_{N} \lambda^{N}$,

$$
\left|u\left(x_{1}\right)\right|^{2}+\lambda^{-2}\left|u^{\prime}\left(x_{1}\right)\right|^{2} \leq e^{C \lambda^{-1}}\left(\left|u\left(x_{2}\right)\right|^{2}+\lambda^{-2}\left|u^{\prime}\left(x_{2}\right)\right|^{2}\right)
$$

Corollaries of the theorem: Lyapunov exponents

Corollary (G - Parnovski - Shterenberg 2022, (see also Delyon-Foulon 1986))
Let $V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})$. If the Lyapunov exponent, $\Lambda(\lambda)$, makes sense, then $\Lambda(\lambda) \leq C_{N} \lambda^{-N}$.

Corollaries of the theorem: Lyapunov exponents

```
Corollary (G - Parnovski - Shterenberg 2022, (see also Delyon-Foulon 1986))
Let \(V \in C_{b}^{\infty}(\mathbb{R} ; \mathbb{R})\). If the Lyapunov exponent, \(\Lambda(\lambda)\), makes sense, then
\(\Lambda(\lambda) \leq C_{N} \lambda^{-N}\).
```

Heuristic message
The spectrum WANTS to be absolutely continuous.

Ideas from the proof: Wave method

- Use the Fourier transform to write:

$$
1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{\lambda} \int e^{i t(\mu-\sqrt{-\Delta+V)}} d t d \mu
$$

Ideas from the proof: Wave method

- Use the Fourier transform to write:

$$
1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{\lambda} \int e^{i t(\mu-\sqrt{-\Delta+V})} d t d \mu
$$

- Approximate by a 'smooth version':

Ideas from the proof: Wave method

- Use the Fourier transform to write:

$$
1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{\lambda} \int e^{i t(\mu-\sqrt{-\Delta+V})} d t d \mu
$$

- Approximate by a 'smooth version': Let $\hat{\rho}$ have compact support. Then,

$$
\rho * 1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\int_{-\infty}^{\lambda} \int \hat{\rho}(t) e^{i t(\mu-\sqrt{-\Delta+V})} d t d \mu
$$

Ideas from the proof: Wave method

- Use the Fourier transform to write:

$$
1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{\lambda} \int e^{i t(\mu-\sqrt{-\Delta+V})} d t d \mu
$$

- Approximate by a 'smooth version': Let $\hat{\rho}$ have compact support. Then,

$$
\rho * 1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\int_{-\infty}^{\lambda} \int \hat{\rho}(t) e^{i t(\mu-\sqrt{-\Delta+V})} d t d \mu
$$

- use a parametrix for $e^{-i t \sqrt{-\Delta+V}}$ to obtain asymptotics for the smoothed version.

Ideas from the proof: Wave method

- Use the Fourier transform to write:

$$
1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\frac{1}{2 \pi} \int_{-\infty}^{\lambda} \int e^{i t(\mu-\sqrt{-\Delta+V})} d t d \mu
$$

- Approximate by a 'smooth version': Let $\hat{\rho}$ have compact support. Then,

$$
\rho * 1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\int_{-\infty}^{\lambda} \int \hat{\rho}(t) e^{i t(\mu-\sqrt{-\Delta+V})} d t d \mu
$$

- use a parametrix for $e^{-i t \sqrt{-\Delta+V}}$ to obtain asymptotics for the smoothed version.
- Tauberian methods or scattering theory allow us to compare smoothed with unsmoothed.

Ideas from the proof: Gauge transform

- Use Moser averaging to reduce a periodic problem to a constant coefficient problem: Find Φ so that

$$
e^{i \Phi}(-\Delta+V) e^{-i \Phi}=-\Delta+m(D)+\text { smoothing }, \quad D=-i \partial
$$

Ideas from the proof: Gauge transform

- Use Moser averaging to reduce a periodic problem to a constant coefficient problem: Find Φ so that

$$
e^{i \Phi}(-\Delta+V) e^{-i \Phi}=-\Delta+m(D)+\text { smoothing }, \quad D=-i \partial
$$

- Can be reduced to solving a series of commutator equations

$$
[-\Delta, \tilde{\Phi}]=V
$$

Ideas from the proof: Gauge transform

- Use Moser averaging to reduce a periodic problem to a constant coefficient problem: Find Φ so that

$$
e^{i \Phi}(-\Delta+V) e^{-i \Phi}=-\Delta+m(D)+\text { smoothing }, \quad D=-i \partial
$$

- Can be reduced to solving a series of commutator equations

$$
[-\Delta, \tilde{\Phi}]=V, \quad \text { If } V=e^{i\langle\theta, x\rangle} \Rightarrow \tilde{\Phi}=\frac{e^{i\langle\theta, x\rangle}}{2\langle\xi, \theta\rangle}
$$

Ideas from the proof: Gauge transform

- Use Moser averaging to reduce a periodic problem to a constant coefficient problem: Find Φ so that

$$
e^{i \Phi}(-\Delta+V) e^{-i \Phi}=-\Delta+m(D)+\text { smoothing }, \quad D=-i \partial .
$$

- Can be reduced to solving a series of commutator equations

$$
[-\Delta, \tilde{\Phi}]=V, \quad \text { If } V=e^{i\langle\theta, x\rangle} \Rightarrow \tilde{\Phi}=\frac{e^{i\langle\theta, x\rangle}}{2\langle\xi, \theta\rangle}
$$

- For $H=-\Delta+m(D)$,

$$
1_{\left(-\infty, \lambda^{2}\right]}(H)=\frac{1}{(2 \pi)^{d}} \int_{|\xi|^{2}+m(\xi) \leq \lambda^{2}} e^{i\langle x-y, \xi\rangle} d \xi
$$

The wave method lets us reduce to a periodic operator.

- Finite speed of propagation allows us to make arbitrarily large changes outside a set with very large $\left(\gg \lambda^{N}\right)$ radius.

The wave method lets us reduce to a periodic operator.

- Finite speed of propagation allows us to make arbitrarily large changes outside a set with very large $\left(\gg \lambda^{N}\right)$ radius.

$$
\begin{gathered}
\rho_{T} * 1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\int_{-\infty}^{\lambda} \int \hat{\rho}\left(\frac{t}{T}\right) \cos (t(\mu-\sqrt{-\Delta+V}) d t d \mu \\
\rho_{T}(t):=T \rho(T t)
\end{gathered}
$$

The wave method lets us reduce to a periodic operator.

- Finite speed of propagation allows us to make arbitrarily large changes outside a set with very large $\left(\gg \lambda^{N}\right)$ radius.

$$
\begin{gathered}
\rho_{T} * 1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\int_{-\infty}^{\lambda} \int \hat{\rho}\left(\frac{t}{T}\right) \cos (t(\mu-\sqrt{-\Delta+V}) d t d \mu \\
\rho_{T}(t):=T \rho(T t)
\end{gathered}
$$

- We use this to turn a non-periodic potential, V into a periodic one ${ }^{\mathcal{M}} V$.

The wave method lets us reduce to a periodic operator.

- Finite speed of propagation allows us to make arbitrarily large changes outside a set with very large $\left(\gg \lambda^{N}\right)$ radius.

$$
\begin{gathered}
\rho_{T} * 1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\int_{-\infty}^{\lambda} \int \hat{\rho}\left(\frac{t}{T}\right) \cos (t(\mu-\sqrt{-\Delta+V}) d t d \mu \\
\rho_{T}(t):=T \rho(T t)
\end{gathered}
$$

- We use this to turn a non-periodic potential, V into a periodic one ${ }^{\mathcal{M}} V$.

The wave method lets us reduce to a periodic operator.

- Finite speed of propagation allows us to make arbitrarily large changes outside a set with very large $\left(\gg \lambda^{N}\right)$ radius.

$$
\begin{gathered}
\rho_{T} * 1_{(-\infty, 0]}(\sqrt{-\Delta+V}-\lambda)=\int_{-\infty}^{\lambda} \int \hat{\rho}\left(\frac{t}{T}\right) \cos (t(\mu-\sqrt{-\Delta+V}) d t d \mu \\
\rho_{T}(t):=T \rho(T t)
\end{gathered}
$$

- We use this to turn a non-periodic potential, V into a periodic one ${ }^{\mathcal{M}} V$.

- Crucial new feature - the periodic lattice is huge! $\left(\gg \lambda^{N}\right)$.

An onion peeling gauge transform

- We now assume V is periodic with a potentially very large $\gg \lambda^{N}$ period.

An onion peeling gauge transform

- We now assume V is periodic with a potentially very large $\gg \lambda^{N}$ period.
- Main issue, if $|\theta| \ll 1$, then $\tilde{\Phi}=\frac{e^{i\langle\theta, x\rangle}}{2\langle\xi, \theta\rangle} \gg 1$.

An onion peeling gauge transform

- We now assume V is periodic with a potentially very large $\gg \lambda^{N}$ period.
- Main issue, if $|\theta| \ll 1$, then $\tilde{\Phi}=\frac{e^{i\langle\theta, x\rangle}}{2\langle\xi, \theta\rangle} \gg 1$.

Hope: use that $\left|\partial_{x} e^{i \theta x}\right| \sim|\theta|$.

An onion peeling gauge transform

- We now assume V is periodic with a potentially very large $\gg \lambda^{N}$ period.
- Main issue, if $|\theta| \ll 1$, then $\tilde{\Phi}=\frac{e^{i\langle\theta, x\rangle}}{2\langle\xi, \theta\rangle} \gg 1$.

Hope: use that $\left|\partial_{x} e^{i \theta x}\right| \sim|\theta|$.

- Crucial fact: near $\xi=\lambda, \partial_{x} V \sim r \ll 1$ and $\partial_{x} \Psi \sim r \ll 1$, then $[V, \Psi] \sim r \lambda^{-1}$.

An onion peeling gauge transform

- We now assume V is periodic with a potentially very large $\gg \lambda^{N}$ period.
- Main issue, if $|\theta| \ll 1$, then $\tilde{\Phi}=\frac{e^{i\langle\theta, x\rangle}}{2\langle\xi, \theta\rangle} \gg 1$.

Hope: use that $\left|\partial_{x} e^{i \theta x}\right| \sim|\theta|$.

- Crucial fact: near $\xi=\lambda, \partial_{x} V \sim r \ll 1$ and $\partial_{x} \Psi \sim r \ll 1$, then $[V, \Psi] \sim r \lambda^{-1}$.
- How can we work with $\partial_{x} V \sim r$?

An onion peeling gauge transform

- We now assume V is periodic with a potentially very large $\gg \lambda^{N}$ period.
- Main issue, if $|\theta| \ll 1$, then $\tilde{\Phi}=\frac{e^{i\langle\theta, x\rangle}}{2\langle\xi, \theta\rangle} \gg 1$.

Hope: use that $\left|\partial_{x} e^{i \theta x}\right| \sim|\theta|$.

- Crucial fact: near $\xi=\lambda, \partial_{x} V \sim r \ll 1$ and $\partial_{x} \Psi \sim r \ll 1$, then $[V, \Psi] \sim r \lambda^{-1}$.
- How can we work with $\partial_{x} V \sim r$? Peel off dyadic layers of the fourier transform of V.

An onion peeling gauge transform

- We now assume V is periodic with a potentially very large $\gg \lambda^{N}$ period.
- Main issue, if $|\theta| \ll 1$, then $\tilde{\Phi}=\frac{e^{i\langle\theta, x\rangle}}{2\langle\xi, \theta\rangle} \gg 1$.

Hope: use that $\left|\partial_{x} e^{i \theta x}\right| \sim|\theta|$.

- Crucial fact: near $\xi=\lambda, \partial_{x} V \sim r \ll 1$ and $\partial_{x} \Psi \sim r \ll 1$, then $[V, \Psi] \sim r \lambda^{-1}$.
- How can we work with $\partial_{x} V \sim r$? Peel off dyadic layers of the fourier transform of V.

Peeling successive layers

Thank you!

