Cluster Structures and Legendrian Links

BIRS Workshop – Interactions of gauge theory with contact and symplectic topology in dimensions 3 and 4

Roger Casals (UC Davis) March 7th 2022
 Symposis
 A(G) and L(G)
 The moduli M(A)
 Cluster A-coordinates

 • 0000000
 000
 0000
 0000

 Simplified Main Result
 Cluster A-coordinates
 0000

Main goal: Construction of **quasi-cluster** *A*-**structures** on the moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support in a Legendrian link $\Lambda \subset (\mathbb{R}^3, \xi_{st})$.

Legendrian front

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

 Symposis
 A(G) and L(G)
 The moduli M(A)
 Cluster A-coordinates

 • 0000000
 000
 0000
 0000

 Simplified Main Result
 Cluster A-coordinates
 0000

Main goal: Construction of **quasi-cluster** *A*-structures on the moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support in a Legendrian link $\Lambda \subset (\mathbb{R}^3, \xi_{st})$.

Legendrian front

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

(i) What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$?

 Symposis
 A(G) and L(G)
 The moduli M(A)
 Cluster A-coordinates

 • 0000000
 000
 0000
 0000

 Simplified Main Result
 • 0000
 • 0000

Main goal: Construction of **quasi-cluster** *A*-structures on the moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support in a Legendrian link $\Lambda \subset (\mathbb{R}^3, \xi_{st})$.

Legendrian front

(i) What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$?

(ii) What does it mean for $\mathfrak{M}(\Lambda)$ to have a cluster A-structure?

 Symposis
 A(G) and L(G)
 The moduli M(A)
 Cluster A-coordinates

 •0000000
 000
 0000
 0000

 Simplified Main Result
 •0000
 0000

Main goal: Construction of **quasi-cluster** *A*-structures on the moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support in a Legendrian link $\Lambda \subset (\mathbb{R}^3, \xi_{st})$.

Legendrian front

(i) What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$?

(ii) What does it mean for $\mathfrak{M}(\Lambda)$ to have a cluster A-structure?

(iii) Why is it useful to have cluster A-structures?

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli $\mathfrak{M}(\Lambda)$	Cluster A-coordinates
0000000	000	0000	00000
Lagrangian	Fillings		

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Synopsis	Λ(G) and <i>L</i> (G)	The moduli 𝔐(Λ)	Cluster A-coordinates
0000000	000	0000	00000
Lagrangian Fil	lings		

1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty} \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta - ydx)).$

*ロト *目 * * * * * * * * * * * * * * *

Synopsis 0000000	Λ(G) and <i>L</i> (G) 000	The moduli ൝(A) 0000	Cluster A-coordinates 00000			
Lagrangian	Lagrangian Fillings					

- 1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty} \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .

Synopsis O●OOOOOO	Λ(G) and <i>L</i> (G) 000	The moduli $\mathfrak{M}(\Lambda)$ 0000	Cluster A-coordinates 00000
Lagrangian	Fillings		

- 1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty} \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .

 A Legendrian invariant: category of sheaves with singular support on Λ.

Synopsis O●OOOOOO	Λ(G) and <i>L</i> (G) 000	The moduli $\mathfrak{M}(\Lambda)$ 0000	Cluster A-coordinates 00000
Lagrangian F	illings		

- 1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty} \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .

- A Legendrian invariant: category of sheaves with singular support on Λ.
- A moduli stack 𝔐(Λ) of objects can be extracted.

Synopsis O●OOOOOO	Λ(G) and <i>L</i> (G) 000	The moduli M(Λ) 0000	Cluster A-coordinates
Lagrangian	Fillings		

- 1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty} \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .

- A Legendrian invariant: category of sheaves with singular support on Λ.
- A moduli stack M(Λ) of objects can be extracted.
- Lagrangian filling gives $(\mathbb{C}^*)^{b_1(L(\mathbb{G}))} \subset \mathfrak{M}(\Lambda)$ chart.

Smooth Surface	es vs. Lagrangiar	Fillings	
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli M(Λ)	Cluster A-coordinates

Differences between smooth and Hamiltonian isotopy classes include:

	000	•	00000
	1	· F ·II·	00000
Synopsis	Λ(G) and L(G)	I he moduli 𝔐(Λ)	Cluster A-coordinates

Differences between smooth and Hamiltonian isotopy classes include:

ション ふゆ アメリア メリア しょうくしゃ

1. A might or might not have a Lagrangian filling. In addition, if there exists a Lagrangian filling L, then $g(L) = g_s(L)$, determined by $tb(\Lambda)$.

Smooth Si	urfaces vs. Lagra	angian Fillings	
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli $\mathfrak{M}(\Lambda)$	Cluster A-coordinates

Differences between smooth and Hamiltonian isotopy classes include:

- 1. A might or might not have a Lagrangian filling. In addition, if there exists a Lagrangian filling L, then $g(L) = g_s(L)$, determined by $tb(\Lambda)$.
- 2. \exists conjectural classification for positive braids:

Conjecture (ADE Classification of Lagrangian Fillings)

Let $\Lambda \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian closure of a positive braid. Then: (A) If Λ is link of the A_n -singularity, then Λ has precisely $\frac{1}{n+2} \binom{2n+2}{n+1}$ fillings. (D) If Λ is link of the D_n -singularity, then Λ has precisely $\frac{3n-2}{n} \binom{2n-2}{n-1}$ fillings. (E) If E_6 , E_7 , E_8 -singularities, then precisely 833, 4160, and 25080 fillings. Else Λ has infinitely many exact Lagrangian fillings.

The ∞ -many fillings above can be conjecturally parametrized using the *cluster algebras.* (\Longrightarrow App. #1: Distinguishing fillings.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The intuition	for cluster va	riotion	
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates

Definition

A cluster *A*-variety \mathfrak{M} is a union $\mathfrak{M} \stackrel{(cd.2)}{=} \bigcup_{s \in S} T_s$, $T_s \cong (\mathbb{C}^*)^d$ algebraic tori, with a given identification Spec $T_s \cong \mathbb{C}[A_{s,1}^{\pm 1}, \ldots, A_{s,d}^{\pm 1}]$ such that, in these identifications, the transition functions are *A*-mutations $\mu_{A_{s,i}}$.

ション ふゆ アメリア メリア しょうくしゃ

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates
0000000	000	0000	00000
The intuitio	n for cluster va	riation	

Definition

A cluster A-variety \mathfrak{M} is a union $\mathfrak{M} \stackrel{(cd.2)}{=} \bigcup_{s \in S} T_s$, $T_s \cong (\mathbb{C}^*)^d$ algebraic tori, with a given identification Spec $T_s \cong \mathbb{C}[A_{s,1}^{\pm 1}, \ldots, A_{s,d}^{\pm 1}]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_{s,i}}$.

Input to define all $\mu_{A_{s,i}}$ is a *quiver*, or lattice basis with intersection form.

Properties an	d Examples		
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates

Why caring about the **moduli** $\mathfrak{M}(\Lambda)$ being a **cluster** A-variety?

Properties and	Examples		
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli M(Λ)	Cluster A-coordinates

Why caring about the **moduli** $\mathfrak{M}(\Lambda)$ being a **cluster** *A*-variety?

 Outstanding geometry: computation of singular cohomology, with mixed Hodge structure, existence of holomorphic symplectic form, with curious Lefschetz, F_q-point counts, any more. (E.g. H^{*}(M(Λ₈₁₉), C).)

ション ふゆ アメリア メリア しょうくしゃ

Properties and	Examples		
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli M(Λ)	Cluster A-coordinates

Why caring about the **moduli** $\mathfrak{M}(\Lambda)$ being a **cluster** *A*-variety?

- Outstanding geometry: computation of singular cohomology, with mixed Hodge structure, existence of holomorphic symplectic form, with curious Lefschetz, F_q-point counts, any more. (E.g. H^{*}(M(Λ₈₁₉), C).)
- **Trefoil Example**: Then $\mathfrak{M}(\Lambda_{3_1}) = \{z_1 + z_3 + z_1z_2z_3 + 1 = 0\} \subset \mathbb{C}^3$, quiver is $\bullet \to \bullet$ and we have *five* algebraic tori:

 $T_1 = \operatorname{Spec}\{z_1^{\pm 1}, (1+z_1z_2)^{\pm 1}\}, \quad T_2 = \operatorname{Spec}\{z_3^{\pm 1}, (1+z_3z_2)^{\pm 1}\}, \quad T_3 = \operatorname{Spec}\{z_1^{\pm 1}, z_3^{\pm 1}\},$

$$T_4 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_1z_2)^{\pm 1}\}, \quad T_5 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_3z_2)^{\pm 1}\}.$$

ション ふゆ アメリア メリア しょうくしゃ

Sync	psis	
000	000	00

Λ(G) and *L*(G)

The moduli M(Λ)

Cluster A-coordinates

The Main Result

Main Theorem: For $\Lambda = \Lambda(\mathbb{G})$, the moduli variety $\mathfrak{M}(\Lambda(\mathbb{G}), T)$ is a **(quasi)cluster** *A*-variety. In fact, the quiver is $Q(\mathbb{G}, B)$ and the mutable vertices are \mathbb{L} -compressible in a canonical filling $L(\mathbb{G})$.

Theorem (C.-Weng - Coming Soon)

Let $\mathbb{G} \subset \mathbb{R}^2$ be an admissible grid plabic graph, $\Lambda = \Lambda(\mathbb{G})$ its associated Legendrian link and $T \subset \Lambda \pi_0$ -surjective marked points. Then, there exists a canonical embedded exact Lagrangian filling $L = L(\mathbb{G})$ of Λ and a basis $B = \{\eta_1, \ldots, \eta_s\}$ of the relative homology group $H_1(L \setminus T, \Lambda \setminus T; \mathbb{Z})$, indexed by Faces(\mathbb{G}) and T, such that:

(i) The microlocal merodromies associated to the cycles η_i in L, $i \in [1, s]$, are global regular functions on the moduli variety $\mathfrak{M}(\Lambda, T)$. In addition, the construction of the basis B dictates which microlocal merodromies are globally non-vanishing.

(ii) For each sugar-free hull of \mathbb{G} , there exists a unique relative cycle $\eta \in B$ that is Poincaré dual to an \mathbb{L} -compressible absolute cycle $\gamma \in H_1(L, \mathbb{Z})$, bounding an embedded Lagrangian disk $D(\gamma)$, and a canonical relative cycle $\mu(\eta, D(\gamma))$ in $H_1(\mu(L, D(\gamma)) \setminus T, \Lambda \setminus T; \mathbb{Z})$ such that the microlocal merodromy along $\mu(\eta, D(\gamma))$ is a global regular function on the moduli variety $\mathfrak{M}(\Lambda, T)$.

(iii) The new microlocal merodromy $\mu(\eta, D(\gamma))$ is a cluster A-mutation of the initial microlocal merodromy of η with quiver $Q(\mathbb{G}, B)$, the intersection quiver of the basis B.

 Synopsis
 Λ(C) and L(C)
 The moduli 𝔅(Λ)
 Cluster A-coordinates

 00000000
 0000
 0000
 00000

Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

1			
00000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates

Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

(i) Preserves the smooth isotopy class, typically *not* the Hamiltonian one.

•			
00000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates

Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically not the Hamiltonian one.

(ii) This is a central motivation to find:

Lagrangian fillings + \mathbb{L} -compressible cycles.

•		•	
00000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates

Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically not the Hamiltonian one.

(ii) This is a central motivation to find:

Lagrangian fillings + \mathbb{L} -compressible cycles.

(iii) How do you find these? → Legendrian weaves.
 Calculus in Geom.&Top. '22, ∞-fillings in Ann. Math. '22 + more

Occord Occord<	Summary Thus	Far		
	0000000●	000	0000	00000

Summary Th	us Far		
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates

....

The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightsquigarrow D^-$ -stack $\mathfrak{M}(\Lambda)$ of objects in $Sh_{\Lambda}(\mathbb{R}^2)$.

Summary Thus	Far		
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli M(Λ)	Cluster A-coordinates

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightsquigarrow D^-$ -stack $\mathfrak{M}(\Lambda)$ of objects in $Sh_{\Lambda}(\mathbb{R}^2)$.

(i) M(Λ) acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian L ⊂ (ℝ⁴, λ_{st}), ∂L = Λ, with local system, gives a point in M(Λ). Focus on Abelian local systems H¹(L, ℂ*), then:

Lagrangian filling $L \rightsquigarrow (\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.

ション ふゆ アメリア メリア しょうくしゃ

Summary Thus	Far		
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightsquigarrow D^-$ -stack $\mathfrak{M}(\Lambda)$ of objects in $Sh_{\Lambda}(\mathbb{R}^2)$.

(i) M(Λ) acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian L ⊂ (ℝ⁴, λ_{st}), ∂L = Λ, with local system, gives a point in M(Λ). Focus on Abelian local systems H¹(L, ℂ*), then:

Lagrangian filling $L \rightsquigarrow (\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.

ション ふぼう メリン メリン しょうくしゃ

(ii) Given L-compressible cycle $\gamma \subset L$, γ -surgery gives new filling $\mu_{\gamma}(L)$, and thus new toric chart in $\mathfrak{M}(\Lambda)$. Need regular functions from L.

Synopsis	Λ(G) and L(G)	The moduli M(Λ)	Cluster A-coordinates
Summary Thus	Far		

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightsquigarrow D^-$ -stack $\mathfrak{M}(\Lambda)$ of objects in $Sh_{\Lambda}(\mathbb{R}^2)$.

(i) M(Λ) acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian L ⊂ (ℝ⁴, λ_{st}), ∂L = Λ, with local system, gives a point in M(Λ). Focus on Abelian local systems H¹(L, ℂ*), then:

Lagrangian filling $L \rightsquigarrow (\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.

- (ii) Given L-compressible cycle $\gamma \subset L$, γ -surgery gives new filling $\mu_{\gamma}(L)$, and thus new toric chart in $\mathfrak{M}(\Lambda)$. Need regular functions from L.
- Need Λ such that D⁻-stack M(Λ) is accessible, e.g. affine variety or algebraic quotient thereof, so cluster structures make sense:

 \rightsquigarrow Legendrian links Λ obtained from grid plabic graph $\mathbb G$

 Synopsis
 Λ(C) and L(G)
 The moduli 𝔅(Λ)
 Cluster A-coordinates

 0000000
 000
 0000
 00000

Legendrian links $\Lambda(\mathbb{G})$ & Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^2$ is:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Legendrian links $\Lambda(\mathbb{G})$ & Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^2$ is:

The alternating strand diagram associated to \mathbb{G} is drawn as follows:

 Synopsis
 A(G) and L(G)
 The moduli $\mathfrak{M}(\Lambda)$ Cluster A-coordinates

 00000000
 0000
 00000
 00000

Legendrian links $\Lambda(\mathbb{G})$ & Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^2$ is:

The alternating strand diagram associated to $\mathbb G$ is drawn as follows:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 Synopsis
 Λ(C) and L(C)
 The moduli 𝔅(Λ)
 Cluster A-coordinates

 00000000
 0000
 00000
 00000

Legendrian links $\Lambda(\mathbb{G})$ & Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^2$ is:

The alternating strand diagram associated to \mathbb{G} is drawn as follows:

Then, $\Lambda(\mathbb{G}) \subset (\mathbb{R}^3, \xi_{st})$ is the Legendrian link associated this front, after satelliting the Legendrian S^1 -fiber of $T^*_{\infty} \mathbb{R}^2$ to the standard unknot.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates
00000000	000		00000
Exam	ples of $\Lambda(\mathbb{G})$		

Positive braid closures via plabic fences:

T(2,n) T(3,4)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli $\mathfrak{M}(\Lambda)$	Cluster A-coordinates
0000000	000		00000
Examples of Λ	(\mathbb{G})		

Positive braid closures via plabic fences:

 $\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ &$

Positive braid closures via plabic fences:

Legendrian Twist Knots:

Synopsis $\Lambda(\mathbb{G})$ and $L(\mathbb{G})$ The moduli $\mathfrak{M}(\Lambda)$ Cluster A-coordinates \mathfrak{OOOO} The Lagrangian filling $L(\mathbb{G})$ and its basis

A fundamental property of $\Lambda(\mathbb{G})$ is given by the following result:

Theorem (Construction of weave Lagrangian filling with basis)

There exists a **canonical weave** $\mathfrak{w}(\mathbb{G})$ representing an embedded Lagrangian filling $L(\mathbb{G})$ of $\Lambda(\mathbb{G})$. (Algorithmically from \mathbb{G} .)

In addition, \exists basis of Y-cycles for $H_1(L(\mathbb{G}); \mathbb{Z})$ from Hasse diagram of sugar-free hulls. In there, sugar-free cycles are \mathbb{L} -compressible and the rest, in bijection with some faces, are immersed.

 $\Lambda(\mathbb{G})$ and $L(\mathbb{G})$ Synopsis

The Lagrangian filling $L(\mathbb{G})$ and its basis

A fundamental property of $\Lambda(\mathbb{G})$ is given by the following result:

Theorem (Construction of weave Lagrangian filling with basis)

There exists a canonical weave $\mathfrak{w}(\mathbb{G})$ representing an embedded Lagrangian filling $L(\mathbb{G})$ of $\Lambda(\mathbb{G})$. (Algorithmically from \mathbb{G} .)

In addition, \exists basis of Y-cycles for $H_1(L(\mathbb{G}); \mathbb{Z})$ from Hasse diagram of sugar-free hulls. In there, sugar-free cycles are \mathbb{L} -compressible and the rest, in bijection with some faces, are **immersed**.

Calculus of weaves allows for a *planar diagrammatic manipulation* of Lagrangian fillings in $(\mathbb{R}^4, \lambda_{st})$ + study of their L-compressible cycles.

Synopsis $\Lambda(G)$ and L(G)The moduli $\mathfrak{W}(\Lambda)$ Cluster A-coordinates0000000000000000000The Lagrangian filling L(G) and its basis

The Lagrangian filling $L(\mathbb{G})$ and its basis

A fundamental property of $\Lambda(\mathbb{G})$ is given by the following result:

Theorem (Construction of weave Lagrangian filling with basis)

There exists a **canonical weave** $\mathfrak{w}(\mathbb{G})$ representing an embedded Lagrangian filling $L(\mathbb{G})$ of $\Lambda(\mathbb{G})$. (Algorithmically from \mathbb{G} .)

In addition, \exists basis of Y-cycles for $H_1(L(\mathbb{G}); \mathbb{Z})$ from Hasse diagram of sugar-free hulls. In there, sugar-free cycles are \mathbb{L} -compressible and the rest, in bijection with some faces, are immersed.

Calculus of weaves allows for a *planar diagrammatic manipulation* of Lagrangian fillings in $(\mathbb{R}^4, \lambda_{st})$ + study of their L-compressible cycles.

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli M(Λ)	Cluster A-coordinates
0000000	000	●000	00000
The moduli $\mathfrak{M}($	Λ)		

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^2$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^2$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i) U, V, W are framed \mathbb{C} -vector spaces.

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^2$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i) U, V, W are framed \mathbb{C} -vector spaces.

(ii) f, g linear maps, f injective and g surjective, respecting frames.

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates
0000000	000	0000	00000
The modul	i 𝔐(∧)		

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^2$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i) U, V, W are framed \mathbb{C} -vector spaces.

- (ii) f, g linear maps, f injective and g surjective, respecting frames.
- (iii) Crossing: acyclicity of $U \rightrightarrows V_1 \oplus V_2 \rightarrow W$ + condition on frames.

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates
0000000	000	0000	00000
The modu	li 𝔐(∧)		

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^2$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

ション ふゆ アメビア メロア しょうくしゃ

- (i) U, V, W are framed \mathbb{C} -vector spaces.
- (ii) f, g linear maps, f injective and g surjective, respecting frames.
- (iii) Crossing: acyclicity of $U \rightrightarrows V_1 \oplus V_2 \rightarrow W$ + condition on frames.
- (iv) Marked points allow framing to be rescaled.

Synopsis $\Lambda(\mathbb{G})$ and $L(\mathbb{G})$ The moduli $\mathfrak{M}(\Lambda)$ Cluster A-coordinates000000000000000000 \Box \Box \Box \Box \Box \Box \Box \Box

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$ – Part I

Example Trefoil: Consider the plabic fence \mathbb{G} for $\beta = \sigma_1^3 \in Br_2^+$. Then

 $\mathfrak{M}(\Lambda(\mathbb{G})) = \{ (v_1, v_2, v_3, v_4, v_5) : v_i \in \mathbb{C}^2, \mathsf{det}(v_i, v_{i+1}) = 1, i \in \mathbb{Z}_5 \} / \mathsf{PGL}_2(\mathbb{C})$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Synopsis Λ(C) and L(C) The moduli 𝔅(Λ) Cluster A-coordinates 0000000 000 0000 0000

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$ – Part I

Example Trefoil: Consider the plabic fence \mathbb{G} for $\beta = \sigma_1^3 \in Br_2^+$. Then

 $\mathfrak{M}(\Lambda(\mathbb{G})) = \{(v_1, v_2, v_3, v_4, v_5) : v_i \in \mathbb{C}^2, \mathsf{det}(v_i, v_{i+1}) = 1, i \in \mathbb{Z}_5\} / \mathsf{PGL}_2(\mathbb{C})$

• Set $v_1 = (1,0), v_2 = (0,1), v_3 = (1,z_1), v_4 = (z_4,z_3), v_5 = (z_2,-1).$ Then $\mathfrak{M}(\Lambda(\mathbb{G})) = \{z_3 + z_1 + z_1 z_3 z_2 = 1\} \subset \mathbb{C}^3_{z_1,z_2,z_3}.$

Synopsis Λ(C) and L(G) The moduli 𝔅(Λ) Cluster A-coordinates 0000000 000 00000 0000 0000

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$ – Part I

Example Trefoil: Consider the plabic fence \mathbb{G} for $\beta = \sigma_1^3 \in Br_2^+$. Then

 $\mathfrak{M}(\Lambda(\mathbb{G})) = \{(v_1, v_2, v_3, v_4, v_5) : v_i \in \mathbb{C}^2, \mathsf{det}(v_i, v_{i+1}) = 1, i \in \mathbb{Z}_5\} / \mathsf{PGL}_2(\mathbb{C})$

- Set $v_1 = (1,0), v_2 = (0,1), v_3 = (1,z_1), v_4 = (z_4,z_3), v_5 = (z_2,-1).$ Then $\mathfrak{M}(\Lambda(\mathbb{G})) = \{z_3 + z_1 + z_1 z_3 z_2 = 1\} \subset \mathbb{C}^3_{z_1,z_2,z_3}.$
- In this variety, $T_1 = \{z_1 \neq 0, z_3 \neq 0\} = \{v_1 \not\parallel v_3, v_1 \not\parallel v_4\}$ gives a toric chart $(\mathbb{C}^*)^2 \subset \mathfrak{M}(\Lambda(\mathbb{G}))$, and z_1 and z_3 basis.

How do we choose a basis? $(\{v_1 \not| v_3, v_2 \not| v_4\}$ does not work.)

 $\begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$

Positive braids: \mathbb{G} plabic fence for $\beta = \sigma_{i_1} \dots \sigma_{i_s} \in Br_n^+$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{i_j} -relative position, with a Δ_n^2 , plus framing conditions. ([CGGS 1&2])

E.g., for $[\beta] = T(k, n)$, $\mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.

Positive braids: \mathbb{G} plabic fence for $\beta = \sigma_{i_1} \dots \sigma_{i_s} \in Br_n^+$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{i_j} -relative position, with a Δ_n^2 , plus framing conditions. ([CGGS 1&2])

E.g., for $[\beta] = T(k, n)$, $\mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.

Example $m(5_2)$: $\mathfrak{M}(\Lambda(\mathbb{G}))$ involves incidences of flags in varying \mathbb{P}^k 's.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Positive braids: \mathbb{G} plabic fence for $\beta = \sigma_{i_1} \dots \sigma_{i_s} \in Br_n^+$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{i_j} -relative position, with a Δ_n^2 , plus framing conditions. ([CGGS 1&2])

E.g., for $[\beta] = T(k, n)$, $\mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.

Example $m(5_2)$: $\mathfrak{M}(\Lambda(\mathbb{G}))$ involves incidences of flags in varying \mathbb{P}^k 's.

ション ふゆ アメビア メロア しょうくしゃ

Some degenerations allowed, but some not!

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates
0000000	000	0000	00000
The key poin	ts at this stage		

• **Theorem A**: Let \mathbb{G} be a GP-graph. Then

 $\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{s.t.}{\rightsquigarrow}$ embedded Lagrangian filling $L(\mathbb{G})$ + basis of Y-cycles

ション ふゆ アメビア メロア しょうくしゃ

Plus, we can read $\mathbb L\text{-compressible l.i. cycles from }\mathbb G$ combinatorially.

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates
0000000	000	0000	00000
The key points	at this stage		

• **Theorem A**: Let \mathbb{G} be a GP-graph. Then

 $\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{s.t.}{\rightsquigarrow}$ embedded Lagrangian filling $L(\mathbb{G})$ + basis of Y-cycles

Plus, we can read \mathbb{L} -compressible l.i. cycles from \mathbb{G} combinatorially.

<u>Theorem B</u>: M(Λ(G)) is isomorphic to the moduli of solutions of an incidence problem of affine flags in varying C^k's such that

 $\mathfrak{w}(\mathbb{G}) \text{ weave } \overset{gives}{\leadsto} \mathcal{T}_{\mathfrak{w}(\mathbb{G})} \subset \mathfrak{M}(\Lambda(\mathbb{G})) \text{ open toric chart }$

Moreover, $T_{\mathfrak{w}(\mathbb{G})} \cong (\mathbb{C}^*)^d$ from further flag transversality conditions.

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates
0000000	000	0000	00000
The key points	at this stage		

• **Theorem A**: Let \mathbb{G} be a GP-graph. Then

 $\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{s.t.}{\rightsquigarrow}$ embedded Lagrangian filling $L(\mathbb{G})$ + basis of Y-cycles

Plus, we can read \mathbb{L} -compressible l.i. cycles from \mathbb{G} combinatorially.

<u>Theorem B</u>: M(Λ(G)) is isomorphic to the moduli of solutions of an incidence problem of affine flags in varying C^k's such that

 $\mathfrak{w}(\mathbb{G})$ weave $\stackrel{gives}{\leadsto} \mathcal{T}_{\mathfrak{w}(\mathbb{G})} \subset \mathfrak{M}(\Lambda(\mathbb{G}))$ open toric chart

Moreover, $T_{\mathfrak{w}(\mathbb{G})} \cong (\mathbb{C}^*)^d$ from further flag transversality conditions.

• Next: Theorem C. Need to introduce the basis of regular functions:

 $\mathfrak{w}(\mathbb{G})$ weave $\stackrel{gives}{\leadsto} \mathcal{T}_{\mathfrak{w}(\mathbb{G})}$ open toric chart + basis of $\mathbb{C}[\mathcal{T}_{\mathfrak{w}(\mathbb{G})}]$

In addition, this **basis** $\mathbb{C}[\mathcal{T}_{w(\mathbb{G})}]$ must change according to cluster *A*-mutation for $Q(B(\mathbb{G}))$ when **Lagrangian surgery is performed**.

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$\mathbb{I}Sh_{\Lambda}(\mathbb{R}^2) \longrightarrow \mu Sh_{\Lambda}, \qquad \mu Sh_{\Lambda}(\Lambda) \cong Loc(\Lambda),$$

ション ふぼう メリン メリン しょうくしゃ

where Λ is a Legendrian. This is used twice: $\Lambda = \widetilde{L}(\mathbb{G})$ and $\Lambda = \Lambda(\mathbb{G})$.

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$\mathbb{I}Sh_{\Lambda}(\mathbb{R}^2) \longrightarrow \mu Sh_{\Lambda}, \qquad \mu Sh_{\Lambda}(\Lambda) \cong Loc(\Lambda),$$

ション ふぼう メリン メリン しょうくしゃ

where Λ is a Legendrian. This is used twice: $\Lambda = \widetilde{L}(\mathbb{G})$ and $\Lambda = \Lambda(\mathbb{G})$.

Upshot: Each point in M(G) defines a local system in Λ(G), and each point in the w(G) toric chart defines a local system in L(G).

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$\mathbb{I}Sh_{\Lambda}(\mathbb{R}^2) \longrightarrow \mu Sh_{\Lambda}, \qquad \mu Sh_{\Lambda}(\Lambda) \cong Loc(\Lambda),$$

where Λ is a Legendrian. This is used twice: $\Lambda = \widetilde{L}(\mathbb{G})$ and $\Lambda = \Lambda(\mathbb{G})$.

- Upshot: Each point in M(G) defines a local system in Λ(G), and each point in the w(G) toric chart defines a local system in L(G).
- (2) **Theorem**: This parallel transport can be computed by using cones in the braid slice of a weave: *ratios of wedges of decorations*.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Microlocal	Maradramias		
0000000	000	0000	0000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli $\mathfrak{M}(\Lambda)$	Cluster A-coordinates

Microlocal Merodromies

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the **dual relative basis** of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The **microlocal merodromy** along $\eta \in B(\mathbb{G})$ is

$$A_\eta:\mathfrak{M}(\mathbb{G})\longrightarrow\mathbb{C}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

where $A_{\eta}(F^{\bullet}) =$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Microlocal	Maradramias		
0000000	000	0000	0000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli $\mathfrak{M}(\Lambda)$	Cluster A-coordinates

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the **dual relative basis** of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The **microlocal merodromy** along $\eta \in B(\mathbb{G})$ is

$$\mathsf{A}_\eta:\mathfrak{M}(\mathbb{G})\longrightarrow\mathbb{C}$$

where $A_{\eta}(F^{\bullet}) =$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Theorem (The Technical Properties)

The set of microlocal merodromies $\{A_{\eta}\}$ satisfies:

(i) $\mu_{\gamma}(A_{\eta})$ is a cluster A-mutation on A_{η} if γ absolute Y-tree dual to η . (ii) A_{η} and adjacent $\mu_{\gamma}(A_{\eta})$ are irreducible and regular functions. (iii) A_{f} is a unit if and only if non-sugar free hull.

Microlocal	Maradramias		
0000000	000	0000	00000
Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates

Microlocal Merodromies

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the **dual relative basis** of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The **microlocal merodromy** along $\eta \in B(\mathbb{G})$ is

$$A_\eta:\mathfrak{M}(\mathbb{G})\longrightarrow\mathbb{C}$$

where $A_{\eta}(F^{\bullet}) =$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Theorem (The Technical Properties)

The set of microlocal merodromies $\{A_{\eta}\}$ satisfies:

(i) $\mu_{\gamma}(A_{\eta})$ is a cluster A-mutation on A_{η} if γ absolute Y-tree dual to η . (ii) A_{η} and adjacent $\mu_{\gamma}(A_{\eta})$ are irreducible and regular functions. (iii) A_{f} is a unit if and only if non-sugar free hull.

These properties are **not** true unless η belongs to $B(\mathbb{G})!$

Synopsis	Λ(©) and <i>L</i> (©)	The moduli M(Λ)	Cluster A-coordinates
00000000	000	0000	
The resulting cl	uster A-structure	2	

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli $\mathfrak{M}(\mathbb{G})$ admits an **upper (quasi)cluster** A-structure in its coordinate ring, with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into $\mathfrak{M}(\mathbb{G})$ is an isomorphism, up to codimension 2. This is done by applying "*Technical Properties*" and an argument with *immersed* weaves.

Synopsis	Λ(G) and <i>L</i> (G)	The moduli M(Λ)	Cluster A-coordinates
00000000	000	0000	
The resulting cl	uster A-structure	2	

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli $\mathfrak{M}(\mathbb{G})$ admits an **upper (quasi)cluster** A-structure in its coordinate ring, with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into $\mathfrak{M}(\mathbb{G})$ is an isomorphism, up to codimension 2. This is done by applying "*Technical Properties*" and an argument with *immersed* weaves.

• The stronger theorem being proved is in great part symplectic geometric: ability to define cluster *A*-coordinate symplectically via **merodromies** on:

Lagrangian fillings and a basis of dually \mathbb{L} -compressible relative cycles

Synopsis	$\Lambda(\mathbb{G})$ and $L(\mathbb{G})$	The moduli 𝔐(Λ)	Cluster A-coordinates
0000000	000		00000
The and			

Thanks a lot!

"BUT THIS IS THE SIMPLIFIED VERSION FOR THE GENERAL PUBLIC."

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

ション ふぼう メリン メリン しょうくしゃ

 Typically, only able to access a *closed* subtorus (ℂ*)^s ⊂ (ℂ*)^d, s < d, and no basis of regular functions. (Only a subset of rational functions.)

- Typically, only able to access a *closed* subtorus (ℂ*)^s ⊂ (ℂ*)^d, s < d, and no basis of regular functions. (Only a subset of rational functions.)
- Dependence on braid word. E.g. T(3,4) knot with $(\sigma_1\sigma_2)^4$, get s = 0and d = 8, so obtain "zero tori out of 833 $(\mathbb{C}^*)^8$ -tori". E.g. T(3,7) with $(\sigma_1\sigma_2)^7$ is "zero tori out of infinitely many $(\mathbb{C}^*)^{14}$ -tori".

ション ふぼう メリン メリン しょうくしゃ

- Typically, only able to access a *closed* subtorus (ℂ*)^s ⊂ (ℂ*)^d, s < d, and no basis of regular functions. (Only a subset of rational functions.)
- Dependence on braid word. E.g. T(3,4) knot with $(\sigma_1\sigma_2)^4$, get s = 0and d = 8, so obtain "zero tori out of 833 $(\mathbb{C}^*)^8$ -tori". E.g. T(3,7) with $(\sigma_1\sigma_2)^7$ is "zero tori out of infinitely many $(\mathbb{C}^*)^{14}$ -tori".
- Even if s = d, still not cover all: for T(3,3) at most 34 out 50 tori, for T(3,4) at most 259, again out of 833. For T(3,n), n ≥ 6, at most finite out of ∞-many. (Note that weaves reach ∞-many.)

ション ふぼう メリン メリン しょうくしゃ

- Typically, only able to access a *closed* subtorus (ℂ*)^s ⊂ (ℂ*)^d, s < d, and no basis of regular functions. (Only a subset of rational functions.)
- Dependence on braid word. E.g. T(3,4) knot with $(\sigma_1\sigma_2)^4$, get s = 0and d = 8, so obtain "zero tori out of 833 $(\mathbb{C}^*)^8$ -tori". E.g. T(3,7) with $(\sigma_1\sigma_2)^7$ is "zero tori out of infinitely many $(\mathbb{C}^*)^{14}$ -tori".
- Even if s = d, still not cover all: for T(3,3) at most 34 out 50 tori, for T(3,4) at most 259, again out of 833. For T(3,n), n ≥ 6, at most finite out of ∞-many. (Note that weaves reach ∞-many.)
- Not possible to compute H^{*}, nor existence of holomorphic symplectic forms, nor point counts → X-structures are only rational functions!

- Typically, only able to access a *closed* subtorus (ℂ*)^s ⊂ (ℂ*)^d, s < d, and no basis of regular functions. (Only a subset of rational functions.)
- Dependence on braid word. E.g. T(3,4) knot with $(\sigma_1\sigma_2)^4$, get s = 0and d = 8, so obtain "zero tori out of 833 $(\mathbb{C}^*)^8$ -tori". E.g. T(3,7) with $(\sigma_1\sigma_2)^7$ is "zero tori out of infinitely many $(\mathbb{C}^*)^{14}$ -tori".
- Even if s = d, still not cover all: for T(3,3) at most 34 out 50 tori, for T(3,4) at most 259, again out of 833. For T(3,n), n ≥ 6, at most finite out of ∞-many. (Note that weaves reach ∞-many.)
- Not possible to compute H^{*}, nor existence of holomorphic symplectic forms, nor point counts → X-structures are only rational functions!

Our construction of cluster A-structures always accesses all tori, even if infinitely many, and always open tori (s = d).