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Simplified Main Result

Main goal: Construction of quasi-cluster A-structures on the moduli
M(Λ) of sheaves with singular support in a Legendrian link Λ ⊂ (R3, ξst).

(i) What is the geometric intuition for the moduli M(Λ)?

(ii) What does it mean for M(Λ) to have a cluster A-structure?

(iii) Why is it useful to have cluster A-structures?
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Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link Λ ⊂ (T ∗∞R2, ξst) ∼= (R2×S1
θ , ker(dθ− ydx)).

2. Study embedded exact Lagrangian surfaces L ⊂ T ∗R2 with boundary Λ.

A Legendrian invariant:
category of sheaves with
singular support on Λ.

A moduli stack M(Λ) of
objects can be extracted.

Lagrangian filling gives
(C∗)b1(L(G)) ⊂M(Λ) chart.
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Smooth Surfaces vs. Lagrangian Fillings

Differences between smooth and Hamiltonian isotopy classes include:

1. Λ might or might not have a Lagrangian filling. In addition, if there
exists a Lagrangian filling L, then g(L) = gs(L), determined by tb(Λ).

2. ∃ conjectural classification for positive braids:

Conjecture (ADE Classification of Lagrangian Fillings)

Let Λ ⊂ (R3, ξst) be the Legendrian closure of a positive braid. Then:

(A) If Λ is link of the An-singularity, then Λ has precisely 1
n+2

(
2n+2
n+1

)
fillings.

(D) If Λ is link of the Dn-singularity, then Λ has precisely 3n−2
n

(
2n−2
n−1

)
fillings.

(E) If E6, E7, E8-singularities, then precisely 833, 4160, and 25080 fillings.

Else Λ has infinitely many exact Lagrangian fillings.

The ∞-many fillings above can be conjecturally parametrized using the
cluster algebras. (=⇒ App. #1: Distinguishing fillings.)
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The intuition for cluster varieties

Definition

A cluster A-variety M is a union M
(cd.2)

=
⋃

s∈S Ts , Ts
∼= (C∗)d algebraic

tori, with a given identification SpecTs
∼= C[A±1

s,1 , . . . ,A
±1
s,d ] such that,

in these identifications, the transition functions are A-mutations µAs,i .

Input to define all µAs,i is a quiver, or lattice basis with intersection form.
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Properties and Examples

Why caring about the moduli M(Λ) being a cluster A-variety?

Outstanding geometry: computation of singular cohomology, with
mixed Hodge structure, existence of holomorphic symplectic form, with
curious Lefschetz, Fq-point counts, any more. (E.g. H∗(M(Λ819 ),C).)

Trefoil Example: Then M(Λ31 ) = {z1 + z3 + z1z2z3 + 1 = 0} ⊂ C3,
quiver is • → • and we have five algebraic tori:

T1 = Spec{z±1
1 , (1+z1z2)±1}, T2 = Spec{z±1

3 , (1+z3z2)±1}, T3 = Spec{z±1
1 , z±1

3 },

T4 = Spec{z±1
2 , (1 + z1z2)±1}, T5 = Spec{z±1

2 , (1 + z3z2)±1}.
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The Main Result

Main Theorem: For Λ = Λ(G), the moduli variety M(Λ(G),T )
is a (quasi)cluster A-variety. In fact, the quiver is Q(G,B) and

the mutable vertices are L-compressible in a canonical filling L(G).

Theorem (C.-Weng - Coming Soon)

Let G ⊂ R2 be an admissible grid plabic graph, Λ = Λ(G) its associated Legendrian
link and T ⊂ Λ π0-surjective marked points. Then, there exists a canonical embedded
exact Lagrangian filling L = L(G) of Λ and a basis B = {η1, . . . , ηs} of the relative
homology group H1(L \ T ,Λ \ T ;Z), indexed by Faces(G) and T , such that:

(i) The microlocal merodromies associated to the cycles ηi in L, i ∈ [1, s], are global
regular functions on the moduli variety M(Λ,T ). In addition, the construction of the
basis B dictates which microlocal merodromies are globally non-vanishing.

(ii) For each sugar-free hull of G, there exists a unique relative cycle η ∈ B that is
Poincaré dual to an L-compressible absolute cycle γ ∈ H1(L,Z), bounding an
embedded Lagrangian disk D(γ), and a canonical relative cycle µ(η,D(γ)) in
H1(µ(L,D(γ)) \ T ,Λ \ T ;Z) such that the microlocal merodromy along µ(η,D(γ)) is
a global regular function on the moduli variety M(Λ,T ).

(iii) The new microlocal merodromy µ(η,D(γ)) is a cluster A-mutation of the initial
microlocal merodromy of η with quiver Q(G,B), the intersection quiver of the basis B.
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Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically not the Hamiltonian one.

(ii) This is a central motivation to find:

Lagrangian fillings + L-compressible cycles.

(iii) How do you find these? −→ Legendrian weaves.
Calculus in Geom.&Top. ’22, ∞-fillings in Ann. Math. ’22 + more
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Summary Thus Far

The key points at this stage

Legendrian knot Λ ⊂ (R3, ξst) D−-stack M(Λ) of objects in ShΛ(R2).

(i) M(Λ) acts as “space of Lagrangian fillings”, in that an embedded exact
Lagrangian L ⊂ (R4, λst), ∂L = Λ, with local system, gives a point in
M(Λ). Focus on Abelian local systems H1(L,C∗), then:

Lagrangian filling L  (C∗)b1(L) ⊂M(Λ) toric chart. .

(ii) Given L-compressible cycle γ ⊂ L, γ-surgery gives new filling µγ(L),
and thus new toric chart in M(Λ). Need regular functions from L.

(I) Need Λ such that D−-stack M(Λ) is accessible, e.g. affine variety or
algebraic quotient thereof, so cluster structures make sense:

 Legendrian links Λ obtained from grid plabic graph G
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Legendrian links Λ(G) & Grid Plabic Graphs G

By definition, a grid plabic graph G ⊂ R2 is:

The alternating strand diagram associated to G is drawn as follows:

Then, Λ(G) ⊂ (R3, ξst) is the Legendrian link associated this front,
after satelliting the Legendrian S1-fiber of T ∗∞R2 to the standard unknot.
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Examples of Λ(G)

Positive braid closures via plabic fences:

Legendrian Twist Knots:
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The Lagrangian filling L(G) and its basis

A fundamental property of Λ(G) is given by the following result:

Theorem (Construction of weave Lagrangian filling with basis)

There exists a canonical weave w(G) representing an embedded
Lagrangian filling L(G) of Λ(G). (Algorithmically from G.)

In addition, ∃ basis of Y-cycles for H1(L(G);Z) from Hasse diagram of
sugar-free hulls. In there, sugar-free cycles are L-compressible and the
rest, in bijection with some faces, are immersed.

Calculus of weaves allows for a planar diagrammatic manipulation of
Lagrangian fillings in (R4, λst) + study of their L-compressible cycles.
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The moduli M(Λ)

By definition, M(Λ) is the D−-stack of Ob(Sh
(1)
Λ (R2, τ)).

Proposition (Lie theoretic description of M(Λ(G)))

Let G ⊂ R2 be a grid plabic graph. Then, there exists a front for the
Legendrian Λ(G) such that M(Λ) is described as the moduli:

(i) U,V ,W are framed C-vector spaces.

(ii) f , g linear maps, f injective and g surjective, respecting frames.

(iii) Crossing: acyclicity of U ⇒ V1 ⊕ V2 →W + condition on frames.

(iv) Marked points allow framing to be rescaled.
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Examples of M(Λ(G)) – Part I

Example Trefoil: Consider the plabic fence G for β = σ3
1 ∈ Br+

2 . Then

M(Λ(G)) = {(v1, v2, v3, v4, v5) : vi ∈ C2, det(vi , vi+1) = 1, i ∈ Z5}/PGL2(C)

Set v1 = (1, 0), v2 = (0, 1), v3 = (1, z1), v4 = (z4, z3), v5 = (z2,−1).
Then M(Λ(G)) = {z3 + z1 + z1z3z2 = 1} ⊂ C3

z1,z2,z3
.

In this variety, T1 = {z1 6= 0, z3 6= 0} = {v1 ∦ v3, v1 ∦ v4} gives a toric
chart (C∗)2 ⊂M(Λ(G)), and z1 and z3 basis.

How do we choose a basis? ({v1 ∦ v3, v2 ∦ v4} does not work.)



Synopsis Λ(G) and L(G) The moduli M(Λ) Cluster A-coordinates

Examples of M(Λ(G)) – Part I

Example Trefoil: Consider the plabic fence G for β = σ3
1 ∈ Br+

2 . Then

M(Λ(G)) = {(v1, v2, v3, v4, v5) : vi ∈ C2, det(vi , vi+1) = 1, i ∈ Z5}/PGL2(C)

Set v1 = (1, 0), v2 = (0, 1), v3 = (1, z1), v4 = (z4, z3), v5 = (z2,−1).
Then M(Λ(G)) = {z3 + z1 + z1z3z2 = 1} ⊂ C3

z1,z2,z3
.

In this variety, T1 = {z1 6= 0, z3 6= 0} = {v1 ∦ v3, v1 ∦ v4} gives a toric
chart (C∗)2 ⊂M(Λ(G)), and z1 and z3 basis.

How do we choose a basis? ({v1 ∦ v3, v2 ∦ v4} does not work.)



Synopsis Λ(G) and L(G) The moduli M(Λ) Cluster A-coordinates

Examples of M(Λ(G)) – Part I

Example Trefoil: Consider the plabic fence G for β = σ3
1 ∈ Br+

2 . Then

M(Λ(G)) = {(v1, v2, v3, v4, v5) : vi ∈ C2, det(vi , vi+1) = 1, i ∈ Z5}/PGL2(C)

Set v1 = (1, 0), v2 = (0, 1), v3 = (1, z1), v4 = (z4, z3), v5 = (z2,−1).
Then M(Λ(G)) = {z3 + z1 + z1z3z2 = 1} ⊂ C3

z1,z2,z3
.

In this variety, T1 = {z1 6= 0, z3 6= 0} = {v1 ∦ v3, v1 ∦ v4} gives a toric
chart (C∗)2 ⊂M(Λ(G)), and z1 and z3 basis.

How do we choose a basis? ({v1 ∦ v3, v2 ∦ v4} does not work.)



Synopsis Λ(G) and L(G) The moduli M(Λ) Cluster A-coordinates

Examples of M(Λ(G)) – Part II

Positive braids: G plabic fence for β = σi1 . . . σis ∈ Br+
n . Then M(Λ(G))

is the moduli of tuples of affine flags in (GLn/U)s+n(n−1) with Fj ,Fj+1 in
sij -relative position, with a ∆2

n, plus framing conditions. ([CGGS 1&2])

E.g., for [β] = T (k , n), M(Λ(G)) ∼= Gr(k , n + k) \ {∆1,2 · · ·∆n+k,1 = 0}.

Example m(52): M(Λ(G)) involves incidences of flags in varying Pk ’s.

Some degenerations allowed, but some not!
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The key points at this stage

Theorem A: Let G be a GP-graph. Then

∃w(G) weave
s.t.
 embedded Lagrangian filling L(G) + basis of Y-cycles

Plus, we can read L-compressible l.i. cycles from G combinatorially.

Theorem B: M(Λ(G)) is isomorphic to the moduli of solutions of an
incidence problem of affine flags in varying Ck ’s such that

w(G) weave
gives
 Tw(G) ⊂M(Λ(G)) open toric chart

Moreover, Tw(G)
∼= (C∗)d from further flag transversality conditions.

Next: Theorem C. Need to introduce the basis of regular functions:

w(G) weave
gives
 Tw(G) open toric chart + basis of C[Tw(G)]

In addition, this basis C[Tw(G)] must change according to cluster
A-mutation for Q(B(G)) when Lagrangian surgery is performed.
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The microlocal local system on L(G) and Λ(G)

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

IShΛ(R2) −→ µShΛ, µShΛ(Λ) ∼= Loc(Λ),

where Λ is a Legendrian. This is used twice: Λ = L̃(G) and Λ = Λ(G).

(1) Upshot: Each point in M(G) defines a local system in Λ(G), and each
point in the w(G) toric chart defines a local system in L(G).

(2) Theorem: This parallel transport can be computed by using cones in the
braid slice of a weave: ratios of wedges of decorations.
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Microlocal Merodromies

Definition (Key new concept)

Let G be a GP-graph and B(G) the dual relative basis of Y-cycles of
the weave w(G). The microlocal merodromy along η ∈ B(G) is

Aη : M(G) −→ C

where Aη(F •) = “transport decorations of F • in ∂η and compare”.

Theorem (The Technical Properties)

The set of microlocal merodromies {Aη} satisfies:

(i) µγ(Aη) is a cluster A-mutation on Aη if γ absolute Y-tree dual to η.

(ii) Aη and adjacent µγ(Aη) are irreducible and regular functions.

(iii) Af is a unit if and only if non-sugar free hull.

These properties are not true unless η belongs to B(G)!
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The resulting cluster A-structure

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli M(G) admits an upper (quasi)cluster A-structure in its
coordinate ring, with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into
M(G) is an isomorphism, up to codimension 2. This is done by applying
“Technical Properties” and an argument with immersed weaves.

The stronger theorem being proved is in great part symplectic geometric:
ability to define cluster A-coordinate symplectically via merodromies on:

Lagrangian fillings and a basis of dually L-compressible relative cycles
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The end

Thanks a lot!
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Comparison: A-structure (’22) vs. partial X -structure (’16)

For a subclass of these knots, Shende-Treumann-Williams-Zaslow (2016)
had aimed at discussing partial cluster X -structures, which are weaker:

Typically, only able to access a closed subtorus (C∗)s ⊂ (C∗)d , s < d ,
and no basis of regular functions. (Only a subset of rational functions.)

Dependence on braid word. E.g. T (3, 4) knot with (σ1σ2)4, get s = 0
and d = 8, so obtain “zero tori out of 833 (C∗)8-tori”. E.g. T (3, 7) with
(σ1σ2)7 is “zero tori out of infinitely many (C∗)14-tori”.

Even if s = d , still not cover all: for T (3, 3) at most 34 out 50 tori, for
T (3, 4) at most 259, again out of 833. For T (3, n), n ≥ 6, at most finite
out of ∞-many. (Note that weaves reach ∞-many.)

Not possible to compute H∗, nor existence of holomorphic symplectic
forms, nor point counts → X -structures are only rational functions!

Our construction of cluster A-structures always accesses all tori, even if
infinitely many, and always open tori (s = d).
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