Cluster Structures and Legendrian Links

BIRS Workshop - Interactions of gauge theory with contact and symplectic topology in dimensions 3 and 4

Roger Casals (UC Davis) March 7th 2022

Simplified Main Result

Main goal: Construction of quasi-cluster A-structures on the moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support in a Legendrian link $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$.

Legendrian front

Simplified Main Result

Main goal: Construction of quasi-cluster A-structures on the moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support in a Legendrian link $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$.

Legendrian front

(i) What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$?

Simplified Main Result

Main goal: Construction of quasi-cluster A-structures on the moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support in a Legendrian link $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$.

Legendrian front

(i) What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$?
(ii) What does it mean for $\mathfrak{M}(\Lambda)$ to have a cluster A-structure?

Simplified Main Result

Main goal: Construction of quasi-cluster A-structures on the moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support in a Legendrian link $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$.

Legendrian front

(i) What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$?
(ii) What does it mean for $\mathfrak{M}(\Lambda)$ to have a cluster A-structure?
(iii) Why is it useful to have cluster A-structures?

Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link $\Lambda \subset\left(T_{\infty}^{*} \mathbb{R}^{2}, \xi_{\text {st }}\right) \cong\left(\mathbb{R}^{2} \times S_{\theta}^{1}, \operatorname{ker}(d \theta-y d x)\right)$.

Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link $\Lambda \subset\left(T_{\infty}^{*} \mathbb{R}^{2}, \xi_{\text {st }}\right) \cong\left(\mathbb{R}^{2} \times S_{\theta}^{1}, \operatorname{ker}(d \theta-y d x)\right)$.
2. Study embedded exact Lagrangian surfaces $L \subset T^{*} \mathbb{R}^{2}$ with boundary Λ.

Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link $\Lambda \subset\left(T_{\infty}^{*} \mathbb{R}^{2}, \xi_{\text {st }}\right) \cong\left(\mathbb{R}^{2} \times S_{\theta}^{1}, \operatorname{ker}(d \theta-y d x)\right)$.
2. Study embedded exact Lagrangian surfaces $L \subset T^{*} \mathbb{R}^{2}$ with boundary Λ.

- A Legendrian invariant: category of sheaves with singular support on Λ.

Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link $\wedge \subset\left(T_{\infty}^{*} \mathbb{R}^{2}, \xi_{\text {st }}\right) \cong\left(\mathbb{R}^{2} \times S_{\theta}^{1}, \operatorname{ker}(d \theta-y d x)\right)$.
2. Study embedded exact Lagrangian surfaces $L \subset T^{*} \mathbb{R}^{2}$ with boundary Λ.

- A Legendrian invariant: category of sheaves with singular support on Λ.
- A moduli stack $\mathfrak{M}(\Lambda)$ of objects can be extracted.

Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link $\wedge \subset\left(T_{\infty}^{*} \mathbb{R}^{2}, \xi_{\text {st }}\right) \cong\left(\mathbb{R}^{2} \times S_{\theta}^{1}, \operatorname{ker}(d \theta-y d x)\right)$.
2. Study embedded exact Lagrangian surfaces $L \subset T^{*} \mathbb{R}^{2}$ with boundary Λ.

- A Legendrian invariant: category of sheaves with singular support on Λ.
- A moduli stack $\mathfrak{M}(\Lambda)$ of objects can be extracted.
- Lagrangian filling gives $\left(\mathbb{C}^{*}\right)^{b_{1}(L(\mathbb{G}))} \subset \mathfrak{M}(\Lambda)$ chart.

Smooth Surfaces vs. Lagrangian Fillings

Differences between smooth and Hamiltonian isotopy classes include:

Smooth Surfaces vs. Lagrangian Fillings

Differences between smooth and Hamiltonian isotopy classes include:

1. Λ might or might not have a Lagrangian filling. In addition, if there exists a Lagrangian filling L, then $g(L)=g_{s}(L)$, determined by $t b(\Lambda)$.

Smooth Surfaces vs. Lagrangian Fillings

Differences between smooth and Hamiltonian isotopy classes include:

1. Λ might or might not have a Lagrangian filling. In addition, if there exists a Lagrangian filling L, then $g(L)=g_{s}(L)$, determined by $t b(\Lambda)$.
2. \exists conjectural classification for positive braids:

Conjecture (ADE Classification of Lagrangian Fillings)

Let $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{s t}\right)$ be the Legendrian closure of a positive braid. Then:
(A) If Λ is link of the A_{n}-singularity, then Λ has precisely $\frac{1}{n+2}\binom{2 n+2}{n+1}$ fillings.
(D) If Λ is link of the D_{n}-singularity, then Λ has precisely $\frac{3 n-2}{n}\binom{2 n-2}{n-1}$ fillings.
(E) If E_{6}, E_{7}, E_{8}-singularities, then precisely 833, 4160, and 25080 fillings.

Else \wedge has infinitely many exact Lagrangian fillings.
The ∞-many fillings above can be conjecturally parametrized using the cluster algebras. (\Longrightarrow App. \#1: Distinguishing fillings.)

The intuition for cluster varieties

Definition

A cluster A-variety \mathfrak{M} is a union $\mathfrak{M} \stackrel{(c d .2)}{=} \bigcup_{s \in S} T_{s}, T_{s} \cong\left(\mathbb{C}^{*}\right)^{d}$ algebraic tori, with a given identification Spec $T_{s} \cong \mathbb{C}\left[A_{s, 1}^{ \pm 1}, \ldots, A_{s, d}^{ \pm 1}\right]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_{s, i}}$.

The intuition for cluster varieties

Definition

A cluster A-variety \mathfrak{M} is a union $\mathfrak{M} \stackrel{(c d .2)}{=} \bigcup_{s \in S} T_{s}, T_{s} \cong\left(\mathbb{C}^{*}\right)^{d}$ algebraic tori, with a given identification Spec $T_{s} \cong \mathbb{C}\left[A_{s, 1}^{ \pm 1}, \ldots, A_{s, d}^{ \pm 1}\right]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_{s, i}}$.

Input to define all $\mu_{A_{s, i}}$ is a quiver, or lattice basis with intersection form.

Properties and Examples

Why caring about the moduli $\mathfrak{M}(\Lambda)$ being a cluster A-variety?

Properties and Examples

Why caring about the moduli $\mathfrak{M}(\Lambda)$ being a cluster A-variety?

- Outstanding geometry: computation of singular cohomology, with mixed Hodge structure, existence of holomorphic symplectic form, with curious Lefschetz, \mathbb{F}_{q}-point counts, any more. (E.g. $H^{*}\left(\mathfrak{M}\left(\Lambda_{8_{19}}\right), \mathbb{C}\right)$.)

Properties and Examples

Why caring about the moduli $\mathfrak{M}(\Lambda)$ being a cluster A-variety?

- Outstanding geometry: computation of singular cohomology, with mixed Hodge structure, existence of holomorphic symplectic form, with curious Lefschetz, \mathbb{F}_{q}-point counts, any more. (E.g. $H^{*}\left(\mathfrak{M}\left(\Lambda_{8_{19}}\right), \mathbb{C}\right)$.)
- Trefoil Example: Then $\mathfrak{M}\left(\Lambda_{3_{1}}\right)=\left\{z_{1}+z_{3}+z_{1} z_{2} z_{3}+1=0\right\} \subset \mathbb{C}^{3}$, quiver is $\bullet \rightarrow \bullet$ and we have five algebraic tori:

$$
\begin{gathered}
T_{1}=\operatorname{Spec}\left\{z_{1}^{ \pm 1},\left(1+z_{1} z_{2}\right)^{ \pm 1}\right\}, \quad T_{2}=\operatorname{Spec}\left\{z_{3}^{ \pm 1},\left(1+z_{3} z_{2}\right)^{ \pm 1}\right\}, \quad T_{3}=\operatorname{Spec}\left\{z_{1}^{ \pm 1}, z_{3}^{ \pm 1}\right\}, \\
T_{4}=\operatorname{Spec}\left\{z_{2}^{ \pm 1},\left(1+z_{1} z_{2}\right)^{ \pm 1}\right\}, \quad T_{5}=\operatorname{Spec}\left\{z_{2}^{ \pm 1},\left(1+z_{3} z_{2}\right)^{ \pm 1}\right\} .
\end{gathered}
$$

The Main Result

Main Theorem: For $\Lambda=\Lambda(\mathbb{G})$, the moduli variety $\mathfrak{M}(\Lambda(\mathbb{G}), T)$ is a (quasi)cluster A-variety. In fact, the quiver is $Q(\mathbb{G}, B)$ and the mutable vertices are \mathbb{L}-compressible in a canonical filling $L(\mathbb{G})$.

Theorem (C.-Weng - Coming Soon)

Let $\mathbb{G} \subset \mathbb{R}^{2}$ be an admissible grid plabic graph, $\Lambda=\Lambda(\mathbb{G})$ its associated Legendrian link and $T \subset \wedge \pi_{0}$-surjective marked points. Then, there exists a canonical embedded exact Lagrangian filling $L=L(\mathbb{G})$ of Λ and a basis $B=\left\{\eta_{1}, \ldots, \eta_{s}\right\}$ of the relative homology group $H_{1}(L \backslash T, \Lambda \backslash T ; \mathbb{Z})$, indexed by Faces (\mathbb{G}) and T, such that:
(i) The microlocal merodromies associated to the cycles η_{i} in $L, i \in[1, s]$, are global regular functions on the moduli variety $\mathfrak{M}(\Lambda, T)$. In addition, the construction of the basis B dictates which microlocal merodromies are globally non-vanishing.
(ii) For each sugar-free hull of \mathbb{G}, there exists a unique relative cycle $\eta \in B$ that is Poincaré dual to an \mathbb{L}-compressible absolute cycle $\gamma \in H_{1}(L, \mathbb{Z})$, bounding an embedded Lagrangian disk $D(\gamma)$, and a canonical relative cycle $\mu(\eta, D(\gamma))$ in $H_{1}(\mu(L, D(\gamma)) \backslash T, \Lambda \backslash T ; \mathbb{Z})$ such that the microlocal merodromy along $\mu(\eta, D(\gamma))$ is a global regular function on the moduli variety $\mathfrak{M}(\Lambda, T)$.
(iii) The new microlocal merodromy $\mu(\eta, D(\gamma))$ is a cluster A-mutation of the initial microlocal merodromy of η with quiver $Q(\mathbb{G}, B)$, the intersection quiver of the basis B.

Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically not the Hamiltonian one.

Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically not the Hamiltonian one.
(ii) This is a central motivation to find:

Lagrangian fillings $+\mathbb{L}$-compressible cycles.

Lagrangian Disk Surgeries

A symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically not the Hamiltonian one.
(ii) This is a central motivation to find:

Lagrangian fillings $+\mathbb{L}$-compressible cycles.
(iii) How do you find these? \longrightarrow Legendrian weaves. Calculus in Geom.\&Top. '22, ∞-fillings in Ann. Math. '22 + more

Summary Thus Far

The key points at this stage

Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right) \rightsquigarrow D^{-}$-stack $\mathfrak{M}(\Lambda)$ of objects in $\operatorname{Sh}_{\Lambda}\left(\mathbb{R}^{2}\right)$.

Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right) \rightsquigarrow D^{-}$-stack $\mathfrak{M}(\Lambda)$ of objects in $\operatorname{Sh}_{\Lambda}\left(\mathbb{R}^{2}\right)$.
(i) $\mathfrak{M}(\Lambda)$ acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian $L \subset\left(\mathbb{R}^{4}, \lambda_{\text {st }}\right), \partial L=\Lambda$, with local system, gives a point in $\mathfrak{M}(\Lambda)$. Focus on Abelian local systems $H^{1}\left(L, \mathbb{C}^{*}\right)$, then:

Lagrangian filling $L \rightsquigarrow\left(\mathbb{C}^{*}\right)^{b_{1}(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.

Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right) \rightsquigarrow D^{-}$-stack $\mathfrak{M}(\Lambda)$ of objects in $\operatorname{Sh}_{\wedge}\left(\mathbb{R}^{2}\right)$.
(i) $\mathfrak{M}(\Lambda)$ acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian $L \subset\left(\mathbb{R}^{4}, \lambda_{\text {st }}\right), \partial L=\Lambda$, with local system, gives a point in $\mathfrak{M}(\Lambda)$. Focus on Abelian local systems $H^{1}\left(L, \mathbb{C}^{*}\right)$, then:

Lagrangian filling $L \rightsquigarrow\left(\mathbb{C}^{*}\right)^{b_{1}(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.
(ii) Given \mathbb{L}-compressible cycle $\gamma \subset L, \gamma$-surgery gives new filling $\mu_{\gamma}(L)$, and thus new toric chart in $\mathfrak{M}(\Lambda)$. Need regular functions from L.

Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right) \rightsquigarrow D^{-}$-stack $\mathfrak{M}(\Lambda)$ of objects in $\operatorname{Sh}_{\Lambda}\left(\mathbb{R}^{2}\right)$.
(i) $\mathfrak{M}(\Lambda)$ acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian $L \subset\left(\mathbb{R}^{4}, \lambda_{\text {st }}\right), \partial L=\Lambda$, with local system, gives a point in $\mathfrak{M}(\Lambda)$. Focus on Abelian local systems $H^{1}\left(L, \mathbb{C}^{*}\right)$, then:

Lagrangian filling $L \rightsquigarrow\left(\mathbb{C}^{*}\right)^{b_{1}(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.
 and thus new toric chart in $\mathfrak{M}(\Lambda)$. Need regular functions from L.
(I) Need Λ such that D^{-}-stack $\mathfrak{M}(\Lambda)$ is accessible, e.g. affine variety or algebraic quotient thereof, so cluster structures make sense:
\rightsquigarrow Legendrian links Λ obtained from grid plabic graph \mathbb{G}

Legendrian links $\Lambda(\mathbb{G})$ \& Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^{2}$ is:

Legendrian links $\Lambda(\mathbb{G})$ \& Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^{2}$ is:

The alternating strand diagram associated to \mathbb{G} is drawn as follows:

Legendrian links $\Lambda(\mathbb{G})$ \& Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^{2}$ is:

The alternating strand diagram associated to \mathbb{G} is drawn as follows:

Legendrian links $\Lambda(\mathbb{G})$ \& Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^{2}$ is:

The alternating strand diagram associated to \mathbb{G} is drawn as follows:

Then, $\Lambda(\mathbb{G}) \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$ is the Legendrian link associated this front, after satelliting the Legendrian S^{1}-fiber of $T_{\infty}^{*} \mathbb{R}^{2}$ to the standard unknot.

Examples of $\Lambda(\mathbb{G})$

Positive braid closures via plabic fences:

Examples of $\Lambda(\mathbb{G})$

Positive braid closures via plabic fences:

Examples of $\Lambda(\mathbb{G})$

Positive braid closures via plabic fences:

Legendrian Twist Knots:

The Lagrangian filling $L(\mathbb{G})$ and its basis

A fundamental property of $\Lambda(\mathbb{G})$ is given by the following result:

Theorem (Construction of weave Lagrangian filling with basis)

There exists a canonical weave $\mathfrak{w}(\mathbb{G})$ representing an embedded Lagrangian filling $L(\mathbb{G})$ of $\Lambda(\mathbb{G})$. (Algorithmically from \mathbb{G}.)
In addition, \exists basis of Y -cycles for $H_{1}(L(\mathbb{G}) ; \mathbb{Z})$ from Hasse diagram of sugar-free hulls. In there, sugar-free cycles are \mathbb{L}-compressible and the rest, in bijection with some faces, are immersed.

The Lagrangian filling $L(\mathbb{G})$ and its basis

A fundamental property of $\Lambda(\mathbb{G})$ is given by the following result:
Theorem (Construction of weave Lagrangian filling with basis)
There exists a canonical weave $\mathfrak{w}(\mathbb{G})$ representing an embedded Lagrangian filling $L(\mathbb{G})$ of $\Lambda(\mathbb{G})$. (Algorithmically from \mathbb{G}.)

In addition, \exists basis of Y -cycles for $H_{1}(L(\mathbb{G}) ; \mathbb{Z})$ from Hasse diagram of sugar-free hulls. In there, sugar-free cycles are \mathbb{L}-compressible and the rest, in bijection with some faces, are immersed.

Calculus of weaves allows for a planar diagrammatic manipulation of Lagrangian fillings in $\left(\mathbb{R}^{4}, \lambda_{\mathrm{st}}\right)+$ study of their \mathbb{L}-compressible cycles.

The Lagrangian filling $L(\mathbb{G})$ and its basis

A fundamental property of $\Lambda(\mathbb{G})$ is given by the following result:

Theorem (Construction of weave Lagrangian filling with basis)

There exists a canonical weave $\mathfrak{w}(\mathbb{G})$ representing an embedded Lagrangian filling $L(\mathbb{G})$ of $\Lambda(\mathbb{G})$. (Algorithmically from \mathbb{G}.)

In addition, \exists basis of Y-cycles for $H_{1}(L(\mathbb{G}) ; \mathbb{Z})$ from Hasse diagram of sugar-free hulls. In there, sugar-free cycles are \mathbb{L}-compressible and the rest, in bijection with some faces, are immersed.

Calculus of weaves allows for a planar diagrammatic manipulation of Lagrangian fillings in $\left(\mathbb{R}^{4}, \lambda_{\text {st }}\right)+$ study of their \mathbb{L}-compressible cycles.

The moduli $\mathfrak{M}(\Lambda)$

By definition, $\mathfrak{M}(\Lambda)$ is the D^{-}-stack of $\mathrm{Ob}\left(\operatorname{Sh}_{\Lambda}^{(1)}\left(\mathbb{R}^{2}, \tau\right)\right)$.

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^{2}$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

The moduli $\mathfrak{M}(\Lambda)$

By definition, $\mathfrak{M}(\Lambda)$ is the D^{-}-stack of $\mathrm{Ob}\left(\operatorname{Sh}_{\Lambda}^{(1)}\left(\mathbb{R}^{2}, \tau\right)\right)$.

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^{2}$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

(i) U, V, W are framed \mathbb{C}-vector spaces.

The moduli $\mathfrak{M}(\Lambda)$

By definition, $\mathfrak{M}(\Lambda)$ is the D^{-}-stack of $\mathrm{Ob}\left(\operatorname{Sh}_{\Lambda}^{(1)}\left(\mathbb{R}^{2}, \tau\right)\right)$.

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^{2}$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

(i) U, V, W are framed \mathbb{C}-vector spaces.
(ii) f, g linear maps, f injective and g surjective, respecting frames.

The moduli $\mathfrak{M}(\Lambda)$

By definition, $\mathfrak{M}(\Lambda)$ is the D^{-}-stack of $\mathrm{Ob}\left(\operatorname{Sh}_{\Lambda}^{(1)}\left(\mathbb{R}^{2}, \tau\right)\right)$.

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^{2}$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

(i) U, V, W are framed \mathbb{C}-vector spaces.
(ii) f, g linear maps, f injective and g surjective, respecting frames.
(iii) Crossing: acyclicity of $U \rightrightarrows V_{1} \oplus V_{2} \rightarrow W+$ condition on frames.

The moduli $\mathfrak{M}(\Lambda)$

By definition, $\mathfrak{M}(\Lambda)$ is the D^{-}-stack of $\mathrm{Ob}\left(\operatorname{Sh}_{\Lambda}^{(1)}\left(\mathbb{R}^{2}, \tau\right)\right)$.

Proposition (Lie theoretic description of $\mathfrak{M}(\Lambda(\mathbb{G}))$)

Let $\mathbb{G} \subset \mathbb{R}^{2}$ be a grid plabic graph. Then, there exists a front for the Legendrian $\Lambda(\mathbb{G})$ such that $\mathfrak{M}(\Lambda)$ is described as the moduli:

(i) U, V, W are framed \mathbb{C}-vector spaces.
(ii) f, g linear maps, f injective and g surjective, respecting frames.
(iii) Crossing: acyclicity of $U \rightrightarrows V_{1} \oplus V_{2} \rightarrow W+$ condition on frames.
(iv) Marked points allow framing to be rescaled.

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$ - Part I

Example Trefoil: Consider the plabic fence \mathbb{G} for $\beta=\sigma_{1}^{3} \in \mathrm{Br}_{2}^{+}$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right): v_{i} \in \mathbb{C}^{2}, \operatorname{det}\left(v_{i}, v_{i+1}\right)=1, i \in \mathbb{Z}_{5}\right\} / \mathrm{PGL}_{2}(\mathbb{C})$

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$ - Part I

Example Trefoil: Consider the plabic fence \mathbb{G} for $\beta=\sigma_{1}^{3} \in \mathrm{Br}_{2}^{+}$. Then $\mathfrak{M}(\wedge(\mathbb{G}))=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right): v_{i} \in \mathbb{C}^{2}, \operatorname{det}\left(v_{i}, v_{i+1}\right)=1, i \in \mathbb{Z}_{5}\right\} / \mathrm{PGL}_{2}(\mathbb{C})$

- Set $v_{1}=(1,0), v_{2}=(0,1), v_{3}=\left(1, z_{1}\right), v_{4}=\left(z_{4}, z_{3}\right), v_{5}=\left(z_{2},-1\right)$.

Then $\mathfrak{M}(\Lambda(\mathbb{G}))=\left\{z_{3}+z_{1}+z_{1} z_{3} z_{2}=1\right\} \subset \mathbb{C}_{z_{1}, z_{2}, z_{3}}^{3}$.

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$ - Part I

Example Trefoil: Consider the plabic fence \mathbb{G} for $\beta=\sigma_{1}^{3} \in \mathrm{Br}_{2}^{+}$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right): v_{i} \in \mathbb{C}^{2}, \operatorname{det}\left(v_{i}, v_{i+1}\right)=1, i \in \mathbb{Z}_{5}\right\} / \mathrm{PGL}_{2}(\mathbb{C})$

- Set $v_{1}=(1,0), v_{2}=(0,1), v_{3}=\left(1, z_{1}\right), v_{4}=\left(z_{4}, z_{3}\right), v_{5}=\left(z_{2},-1\right)$.

Then $\mathfrak{M}(\Lambda(\mathbb{G}))=\left\{z_{3}+z_{1}+z_{1} z_{3} z_{2}=1\right\} \subset \mathbb{C}_{z_{1}, z_{2}, z_{3}}^{3}$.

- In this variety, $T_{1}=\left\{z_{1} \neq 0, z_{3} \neq 0\right\}=\left\{v_{1} \nVdash v_{3}, v_{1} \nVdash v_{4}\right\}$ gives a toric chart $\left(\mathbb{C}^{*}\right)^{2} \subset \mathfrak{M}(\Lambda(\mathbb{G}))$, and z_{1} and z_{3} basis.

How do we choose a basis? ($\left\{v_{1} \nVdash v_{3}, v_{2} \nVdash v_{4}\right\}$ does not work.)

Examples of $\mathfrak{M}(\wedge(\mathbb{G}))$ - Part II

Positive braids: \mathbb{G} plabic fence for $\beta=\sigma_{i_{1}} \ldots \sigma_{i_{s}} \in \operatorname{Br}_{n}^{+}$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $\left(G L_{n} / U\right)^{s+n(n-1)}$ with F_{j}, F_{j+1} in $s_{i j}$-relative position, with a Δ_{n}^{2}, plus framing conditions. ([CGGS 1\&2])
E.g., for $[\beta]=T(k, n), \mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \backslash\left\{\Delta_{1,2} \cdots \Delta_{n+k, 1}=0\right\}$.

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$ - Part II

Positive braids: \mathbb{G} plabic fence for $\beta=\sigma_{i_{1}} \ldots \sigma_{i_{s}} \in \operatorname{Br}_{n}^{+}$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $\left(G L_{n} / U\right)^{s+n(n-1)}$ with F_{j}, F_{j+1} in $s_{i_{i}}$-relative position, with a Δ_{n}^{2}, plus framing conditions. ([CGGS 1\&2])
E.g., for $[\beta]=T(k, n), \mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \backslash\left\{\Delta_{1,2} \cdots \Delta_{n+k, 1}=0\right\}$.

Example $m\left(5_{2}\right): \mathfrak{M}(\Lambda(\mathbb{G}))$ involves incidences of flags in varying \mathbb{P}^{k} 's.

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$ - Part II

Positive braids: \mathbb{G} plabic fence for $\beta=\sigma_{i_{1}} \ldots \sigma_{i_{s}} \in \operatorname{Br}_{n}^{+}$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $\left(G L_{n} / U\right)^{s+n(n-1)}$ with F_{j}, F_{j+1} in $s_{i_{j}}$-relative position, with a Δ_{n}^{2}, plus framing conditions. ([CGGS 1\&2])
E.g., for $[\beta]=T(k, n), \mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \backslash\left\{\Delta_{1,2} \cdots \Delta_{n+k, 1}=0\right\}$.

Example $m\left(5_{2}\right): \mathfrak{M}(\Lambda(\mathbb{G}))$ involves incidences of flags in varying \mathbb{P}^{k} 's.

Some degenerations allowed, but some not!

The key points at this stage

- Theorem A: Let \mathbb{G} be a GP-graph. Then
$\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{\text { s.t. }}{\rightsquigarrow}$ embedded Lagrangian filling $L(\mathbb{G})+$ basis of Y-cycles
Plus, we can read \mathbb{L}-compressible l.i. cycles from \mathbb{G} combinatorially.

The key points at this stage

- Theorem A: Let \mathbb{G} be a GP-graph. Then
$\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{\text { s.t. }}{\rightsquigarrow}$ embedded Lagrangian filling $L(\mathbb{G})+$ basis of Y -cycles
Plus, we can read \mathbb{L}-compressible I.i. cycles from \mathbb{G} combinatorially.
- Theorem B: $\mathfrak{M}(\Lambda(\mathbb{G}))$ is isomorphic to the moduli of solutions of an incidence problem of affine flags in varying \mathbb{C}^{k} 's such that
$\mathfrak{w}(\mathbb{G})$ weave $\stackrel{\text { gives }}{\sim \sim} T_{\mathfrak{w}(\mathbb{G})} \subset \mathfrak{M}(\Lambda(\mathbb{G}))$ open toric chart
Moreover, $T_{\mathfrak{w}(\mathbb{G})} \cong\left(\mathbb{C}^{*}\right)^{d}$ from further flag transversality conditions.

The key points at this stage

- Theorem A: Let \mathbb{G} be a GP-graph. Then
$\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{\text { s.t. }}{\rightsquigarrow}$ embedded Lagrangian filling $L(\mathbb{G})+$ basis of Y-cycles
Plus, we can read \mathbb{L}-compressible l.i. cycles from \mathbb{G} combinatorially.
- Theorem B: $\mathfrak{M}(\Lambda(\mathbb{G}))$ is isomorphic to the moduli of solutions of an incidence problem of affine flags in varying \mathbb{C}^{k} s such that

$$
\mathfrak{w}(\mathbb{G}) \text { weave } \stackrel{\text { gives }}{\rightsquigarrow} T_{\mathfrak{w}(\mathbb{G})} \subset \mathfrak{M}(\Lambda(\mathbb{G})) \text { open toric chart }
$$

Moreover, $T_{\mathfrak{w}(\mathbb{G})} \cong\left(\mathbb{C}^{*}\right)^{d}$ from further flag transversality conditions.

- Next: Theorem C. Need to introduce the basis of regular functions:

$$
\mathfrak{w}(\mathbb{G}) \text { weave } \stackrel{\text { gives }}{\rightsquigarrow>} T_{\mathfrak{w}(\mathbb{G})} \text { open toric chart }+ \text { basis of } \mathbb{C}\left[T_{\mathfrak{w}(\mathbb{G})}\right]
$$

In addition, this basis $\mathbb{C}\left[T_{\mathfrak{w}(\mathbb{G})}\right]$ must change according to cluster A-mutation for $Q(B(\mathbb{G}))$ when Lagrangian surgery is performed.

The microlocal local system on $L(\mathbb{G})$ and $\Lambda(\mathbb{G})$

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$
\mathbb{I} \mathrm{Sh}_{\Lambda}\left(\mathbb{R}^{2}\right) \longrightarrow \mu \operatorname{Sh}_{\Lambda}, \quad \mu \operatorname{Sh}_{\Lambda}(\Lambda) \cong \operatorname{Loc}(\Lambda)
$$

where Λ is a Legendrian. This is used twice: $\Lambda=\widetilde{L}(\mathbb{G})$ and $\Lambda=\Lambda(\mathbb{G})$.
-

The microlocal local system on $L(\mathbb{G})$ and $\Lambda(\mathbb{G})$

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$
\mathbb{I} \mathrm{Sh}_{\Lambda}\left(\mathbb{R}^{2}\right) \longrightarrow \mu \operatorname{Sh}_{\Lambda}, \quad \mu \operatorname{Sh}_{\Lambda}(\Lambda) \cong \operatorname{Loc}(\Lambda)
$$

where Λ is a Legendrian. This is used twice: $\Lambda=\widetilde{L}(\mathbb{G})$ and $\Lambda=\Lambda(\mathbb{G})$.
(1) Upshot: Each point in $\mathfrak{M}(\mathbb{G})$ defines a local system in $\Lambda(\mathbb{G})$, and each point in the $\mathfrak{w}(\mathbb{G})$ toric chart defines a local system in $L(\mathbb{G})$.

The microlocal local system on $L(\mathbb{G})$ and $\Lambda(\mathbb{G})$

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$
\mathbb{I} \mathrm{Sh}_{\wedge}\left(\mathbb{R}^{2}\right) \longrightarrow \mu \operatorname{Sh}_{\Lambda}, \quad \mu \operatorname{Sh}_{\Lambda}(\Lambda) \cong \operatorname{Loc}(\Lambda)
$$

where Λ is a Legendrian. This is used twice: $\Lambda=\widetilde{L}(\mathbb{G})$ and $\Lambda=\Lambda(\mathbb{G})$.
(1) Upshot: Each point in $\mathfrak{M}(\mathbb{G})$ defines a local system in $\Lambda(\mathbb{G})$, and each point in the $\mathfrak{w}(\mathbb{G})$ toric chart defines a local system in $L(\mathbb{G})$.
(2) Theorem: This parallel transport can be computed by using cones in the braid slice of a weave: ratios of wedges of decorations.

Microlocal Merodromies

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the dual relative basis of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The microlocal merodromy along $\eta \in B(\mathbb{G})$ is

$$
A_{\eta}: \mathfrak{M}(\mathbb{G}) \longrightarrow \mathbb{C}
$$

where $A_{\eta}\left(F^{\bullet}\right)=$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Microlocal Merodromies

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the dual relative basis of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The microlocal merodromy along $\eta \in B(\mathbb{G})$ is

$$
A_{\eta}: \mathfrak{M}(\mathbb{G}) \longrightarrow \mathbb{C}
$$

where $A_{\eta}\left(F^{\bullet}\right)=$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Theorem (The Technical Properties)

The set of microlocal merodromies $\left\{A_{\eta}\right\}$ satisfies:
(i) $\mu_{\gamma}\left(A_{\eta}\right)$ is a cluster A-mutation on A_{η} if γ absolute Y -tree dual to η.
(ii) A_{η} and adjacent $\mu_{\gamma}\left(A_{\eta}\right)$ are irreducible and regular functions.
(iii) A_{f} is a unit if and only if non-sugar free hull.

Microlocal Merodromies

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the dual relative basis of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The microlocal merodromy along $\eta \in B(\mathbb{G})$ is

$$
A_{\eta}: \mathfrak{M}(\mathbb{G}) \longrightarrow \mathbb{C}
$$

where $A_{\eta}\left(F^{\bullet}\right)=$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Theorem (The Technical Properties)

The set of microlocal merodromies $\left\{A_{\eta}\right\}$ satisfies:
(i) $\mu_{\gamma}\left(A_{\eta}\right)$ is a cluster A-mutation on A_{η} if γ absolute Y -tree dual to η.
(ii) A_{η} and adjacent $\mu_{\gamma}\left(A_{\eta}\right)$ are irreducible and regular functions.
(iii) A_{f} is a unit if and only if non-sugar free hull.

These properties are not true unless η belongs to $B(\mathbb{G})$!

The resulting cluster A-structure

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli $\mathfrak{M}(\mathbb{G})$ admits an upper (quasi)cluster A-structure in its coordinate ring, with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into $\mathfrak{M}(\mathbb{G})$ is an isomorphism, up to codimension 2. This is done by applying "Technical Properties" and an argument with immersed weaves.

The resulting cluster A-structure

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli $\mathfrak{M}(\mathbb{G})$ admits an upper (quasi)cluster A-structure in its coordinate ring, with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into $\mathfrak{M}(\mathbb{G})$ is an isomorphism, up to codimension 2. This is done by applying "Technical Properties" and an argument with immersed weaves.

- The stronger theorem being proved is in great part symplectic geometric: ability to define cluster A-coordinate symplectically via merodromies on:

Lagrangian fillings and a basis of dually \mathbb{L}-compressible relative cycles

The end

Thanks a lot!

Comparison: A-structure ('22) vs. partial X-structure ('16)

For a subclass of these knots, Shende-Treumann-Williams-Zaslow (2016) had aimed at discussing partial cluster X-structures, which are weaker:

Comparison: A-structure ('22) vs. partial X-structure ('16)

For a subclass of these knots, Shende-Treumann-Williams-Zaslow (2016) had aimed at discussing partial cluster X-structures, which are weaker:

- Typically, only able to access a closed subtorus $\left(\mathbb{C}^{*}\right)^{s} \subset\left(\mathbb{C}^{*}\right)^{d}, s<d$, and no basis of regular functions. (Only a subset of rational functions.)

Comparison: A-structure ('22) vs. partial X-structure ('16)

For a subclass of these knots, Shende-Treumann-Williams-Zaslow (2016) had aimed at discussing partial cluster X-structures, which are weaker:

- Typically, only able to access a closed subtorus $\left(\mathbb{C}^{*}\right)^{s} \subset\left(\mathbb{C}^{*}\right)^{d}, s<d$, and no basis of regular functions. (Only a subset of rational functions.)
- Dependence on braid word. E.g. $T(3,4)$ knot with $\left(\sigma_{1} \sigma_{2}\right)^{4}$, get $s=0$ and $d=8$, so obtain "zero tori out of $833\left(\mathbb{C}^{*}\right)^{8}$-tori". E.g. $T(3,7)$ with $\left(\sigma_{1} \sigma_{2}\right)^{7}$ is "zero tori out of infinitely many $\left(\mathbb{C}^{*}\right)^{14}$-tori".

Comparison: A-structure ('22) vs. partial X-structure ('16)

For a subclass of these knots, Shende-Treumann-Williams-Zaslow (2016) had aimed at discussing partial cluster X-structures, which are weaker:

- Typically, only able to access a closed subtorus $\left(\mathbb{C}^{*}\right)^{s} \subset\left(\mathbb{C}^{*}\right)^{d}, s<d$, and no basis of regular functions. (Only a subset of rational functions.)
- Dependence on braid word. E.g. $T(3,4)$ knot with $\left(\sigma_{1} \sigma_{2}\right)^{4}$, get $s=0$ and $d=8$, so obtain "zero tori out of $833\left(\mathbb{C}^{*}\right)^{8}$-tori". E.g. $T(3,7)$ with $\left(\sigma_{1} \sigma_{2}\right)^{7}$ is "zero tori out of infinitely many $\left(\mathbb{C}^{*}\right)^{14}$-tori".
- Even if $s=d$, still not cover all: for $T(3,3)$ at most 34 out 50 tori, for $T(3,4)$ at most 259 , again out of 833 . For $T(3, n), n \geq 6$, at most finite out of ∞-many. (Note that weaves reach ∞-many.)

Comparison: A-structure ('22) vs. partial X-structure ('16)

For a subclass of these knots, Shende-Treumann-Williams-Zaslow (2016) had aimed at discussing partial cluster X-structures, which are weaker:

- Typically, only able to access a closed subtorus $\left(\mathbb{C}^{*}\right)^{s} \subset\left(\mathbb{C}^{*}\right)^{d}, s<d$, and no basis of regular functions. (Only a subset of rational functions.)
- Dependence on braid word. E.g. $T(3,4)$ knot with $\left(\sigma_{1} \sigma_{2}\right)^{4}$, get $s=0$ and $d=8$, so obtain "zero tori out of $833\left(\mathbb{C}^{*}\right)^{8}$-tori". E.g. $T(3,7)$ with $\left(\sigma_{1} \sigma_{2}\right)^{7}$ is "zero tori out of infinitely many $\left(\mathbb{C}^{*}\right)^{14}$-tori".
- Even if $s=d$, still not cover all: for $T(3,3)$ at most 34 out 50 tori, for $T(3,4)$ at most 259 , again out of 833 . For $T(3, n), n \geq 6$, at most finite out of ∞-many. (Note that weaves reach ∞-many.)
- Not possible to compute H^{*}, nor existence of holomorphic symplectic forms, nor point counts $\rightarrow X$-structures are only rational functions!

Comparison: A-structure ('22) vs. partial X-structure ('16)

For a subclass of these knots, Shende-Treumann-Williams-Zaslow (2016) had aimed at discussing partial cluster X-structures, which are weaker:

- Typically, only able to access a closed subtorus $\left(\mathbb{C}^{*}\right)^{s} \subset\left(\mathbb{C}^{*}\right)^{d}, s<d$, and no basis of regular functions. (Only a subset of rational functions.)
- Dependence on braid word. E.g. $T(3,4)$ knot with $\left(\sigma_{1} \sigma_{2}\right)^{4}$, get $s=0$ and $d=8$, so obtain "zero tori out of $833\left(\mathbb{C}^{*}\right)^{8}$-tori". E.g. $T(3,7)$ with $\left(\sigma_{1} \sigma_{2}\right)^{7}$ is "zero tori out of infinitely many $\left(\mathbb{C}^{*}\right)^{14}$-tori".
- Even if $s=d$, still not cover all: for $T(3,3)$ at most 34 out 50 tori, for $T(3,4)$ at most 259 , again out of 833 . For $T(3, n), n \geq 6$, at most finite out of ∞-many. (Note that weaves reach ∞-many.)
- Not possible to compute H^{*}, nor existence of holomorphic symplectic forms, nor point counts $\rightarrow X$-structures are only rational functions!

Our construction of cluster A-structures always accesses all tori, even if infinitely many, and always open tori $(s=d)$.

