An A_{∞} category from instantons
BIRS Workshop: Interactions of gauge theory with contact and symplectic topology in dimensions 3 and 4

Sherry Gong

(on joint work with Ko Honda)

Texas A\&M University

The goal

- Given a disk with n points, we build an A_{∞} category.
- We show that there is a finite set of objects such that all objects in the category can be generated with exact triangles.

Objects of the category

Tangles in $D^{2} \times[0,1]$, with n incoming strands coming in through $D_{2} \times 0$ and n outgoing strands going out of $D_{2} \times 1$.

The morphisms

To define $\operatorname{Hom}\left(D_{1}, D_{2}\right)$ consider

The morphisms pt 2

The morphisms pt 2

$\operatorname{Hom}\left(D_{1}, D_{2}\right)=I C^{\sharp}\left(L_{\overline{D_{1}} D_{2}}, \mathcal{P}_{\overline{D_{1}} D_{2}}\right)$,
the instanton complex of $\left(S^{3}, L_{\overline{D_{1} D_{2}}} \amalg H\right)$ with metric and perturbation data given by $\mathcal{P}_{\overline{D_{1}} D_{2}}$.

Instanton Floer homology

- $\mathbb{Z} / 4$ graded chain complex $I C^{\sharp}$ generated by flat connections with a singularity at the link (and the added Hopf link)
- d map generated by ASD connections.
- $I C^{\sharp}(U)=\mathbb{F} u_{+} \oplus \mathbb{F} u_{-}$
- $m\left(u_{+} \otimes x\right)=x$ for $m: I C^{\sharp}\left(U_{2}\right) \rightarrow I C^{\sharp}(U)$.

Composition $\left(\mu_{2}\right)$ step 1: excision

$$
I C^{\sharp}\left(L_{\overline{D_{2}} D_{3}}, P_{\overline{D_{2} D_{3}}}\right) \otimes I C^{\sharp}\left(L_{\overline{D_{1} D_{2}}}, \mathcal{P}_{\overline{D_{1} D_{2}}}\right) \rightarrow I C^{\sharp}\left(L_{\overline{D_{1} D_{3}}}, \mathcal{P}_{\overline{D_{1} D_{3}}}\right),
$$

will be induced by a composition of maps: excision and then some merging maps.

Composition $\left(\mu_{2}\right)$ step 1: excision

$$
I C^{\sharp}\left(L_{\overline{D_{2} D_{3}}}, \mathcal{P}_{\overline{D_{2} D_{3}}}\right) \otimes I C^{\sharp}\left(L_{\overline{D_{1} D_{2}}}, \mathcal{P}_{\overline{\overline{D_{1}} D_{2}}}\right) \rightarrow I C^{\sharp}\left(L_{\overline{D_{1} D_{3}}}, \mathcal{P}_{\overline{D_{1} D_{3}}}\right),
$$

will be induced by a composition of maps: excision and then some merging maps.

Composition $\left(\mu_{2}\right)$ step 2: joining the links

Composition $\left(\mu_{2}\right)$ step 3: cancelling D_{2}

For a braid, crossings in D_{2} cancel with corresponding ones in $\overline{D_{2}}$, by R2 moves.

Composition $\left(\mu_{2}\right)$ step 3: cancelling D_{2}

For a braid, crossings in D_{2} cancel with corresponding ones in $\overline{D_{2}}$, by R2 moves.

In general, can't.

Composition $\left(\mu_{2}\right)$ step 3: cancelling D_{2} - contd

When this happens, add bands

and cap off resulting unlinked unknotted components.
(Then do $R 2$ moves.)

identity construction

We construct a homotopy identity.
First we add a band for each maximum.

Let Σ_{D} be the corresponding map from the picture on the right to the one on the left.

$$
\operatorname{Id}_{D}=\Sigma_{D}\left(u_{+} \otimes \cdots \otimes u_{+}\right) \in I C^{\sharp}\left(L_{\bar{D} D}\right) .
$$

Composing with homotopy identity

μ_{3} and higher maps - basics

$$
\begin{gathered}
\mu_{1}\left(\mu_{3}\left(x_{1}, x_{2}, x_{3}\right)\right)+\mu_{3}\left(\mu_{1}\left(x_{1}\right), x_{2}, x_{3}\right)+\mu_{3}\left(x_{1}, \mu_{1}\left(x_{2}\right), x_{3}\right)+\mu_{3}\left(x_{1}, x_{2}, \mu_{1}\left(x_{3}\right)\right. \\
=\mu_{2}\left(x_{1}, \mu_{2}\left(x_{2}, x_{3}\right)\right)+\mu_{2}\left(\mu_{2}\left(x_{1}, x_{2}\right), x_{3}\right)
\end{gathered}
$$

μ_{3} and higher maps - excision tori

μ_{3} and higher maps - excision tori

Then $\mu_{2}\left(\mu_{2}\left(B_{1}, B_{2}\right), B_{3}\right)$ is induced by the cobordism

- $(1,2) e \amalg \operatorname{CyI}\left(B_{3}\right)$
- $(1,2) m \amalg C y l\left(B_{3}\right)$
- $(12,3) e$
- $(12,3) m$.
and $\mu_{2}\left(B_{1}, \mu_{2}\left(B_{2}, B_{3}\right)\right)$ is induced by the cobordism
- Cyl($\left.B_{1}\right) \amalg(2,3) e$
- $\operatorname{Cyl}\left(B_{1}\right) \amalg(2,3) m$
- $(1,23) e$
- $(1,23) \mathrm{m}$.

Finite generation - basics

Exact if and only if there are $h_{1} \in \operatorname{Hom}\left(D_{1}, D_{0}\right)$, $h_{2} \in \operatorname{Hom}\left(D_{2}, D_{1}\right)$ and $k \in \operatorname{Hom}\left(D_{1}, D_{1}\right)$ satisfying

- $\mu_{1}\left(h_{1}\right)=\mu_{2}\left(c_{3}, c_{2}\right)$
- $\mu_{1}\left(h_{2}\right)=\mu_{2}\left(c_{1}, c_{3}\right)$
- $\mu_{1}(k)=-\mu_{2}\left(c_{1}, h_{1}\right)+\mu_{2}\left(h_{2}, c_{2}\right)+\mu_{3}\left(c_{1}, c_{3}, c_{2}\right)-e_{Y}$,
where e_{Y} is a chain representative for the identity and for each object D, the following chain complex is acyclic:
$\operatorname{Hom}\left(D, D_{2}\right)[1] \oplus \operatorname{Hom}\left(D, D_{0}\right)[1] \oplus \operatorname{Hom}\left(D, D_{1}\right)$,

$$
\partial=\left[\begin{array}{ccc}
\mu_{1} & 0 & 0 \\
\mu_{2}\left(c_{3},-\right) & \mu_{1} & 0 \\
\mu_{2}\left(h_{2},-\right)+\mu_{3}\left(c_{1}, c_{3},-\right) & \mu_{2}\left(c_{1},-\right) & \mu_{1}
\end{array}\right] .
$$

Construction of h_{i}

This is a construction Kronheimer and Mrowka used to establish the spectral sequence from Khovanov homology.

Consider a path of metrics with fully stretching out the $\left(S^{3}, \mathbb{R} P^{2}\right)$ on one end, and stretching out along the middle $\left(S^{3}, L\right)$ on the other.

Construction of k_{i} : stretching curves

This is similar (but not the same) as a construction Kronheimer and Mrowka used to establish the spectral sequence from Khovanov homology.

Construction of k_{i} : heptagon of metrics

Thank you!

Thank you for the invitation and thank you for listening!

