Colored $\mathrm{sl}(\mathrm{N})$ homology, $\mathrm{SU}(\mathrm{N})$ representations, and the Hopf link

Joshua Wang

March 8, 2022

Outline

1. Khovanov homology and $\operatorname{SU}(2)$ representations.

Outline

1. Khovanov homology and $\operatorname{SU}(2)$ representations.
2. $\mathfrak{s l}(N)$ homology and $\operatorname{SU}(N)$ representations.

Outline

1. Khovanov homology and $\operatorname{SU}(2)$ representations.
2. $\mathfrak{s l}(N)$ homology and $\operatorname{SU}(N)$ representations.
3. Colored $\mathfrak{s l}(N)$ homology and $\operatorname{SU}(N)$ representations.

Khovanov homology and SU(2) representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Khovanov homology and SU(2) representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Examples:

Khovanov homology and SU(2) representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Examples:

- $\mathscr{R}_{2}($ unknot $)=S^{2}$

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Examples:

- $\mathscr{R}_{2}($ unknot $)=S^{2}$
- $\mathscr{R}_{2}($ two-component unlink $)=S^{2} \times S^{2}$

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Examples:

- $\mathscr{R}_{2}($ unknot $)=S^{2}$
- $\mathscr{R}_{2}($ two-component unlink $)=S^{2} \times S^{2}$
- $\mathscr{R}_{2}($ Hopf link $)=S^{2} \sqcup S^{2}$

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Examples:

- $\mathscr{R}_{2}($ unknot $)=S^{2}$
- $\mathscr{R}_{2}($ two-component unlink $)=S^{2} \times S^{2}$
- \mathscr{R}_{2} (Hopf link) $=S^{2} \sqcup S^{2}$
- $\mathscr{R}_{2}($ trefoil $)=S^{2} \sqcup \mathrm{SO}(3)$

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Examples:

- $\mathscr{R}_{2}($ unknot $)=S^{2}$
- $\mathscr{R}_{2}($ two-component unlink $)=S^{2} \times S^{2}$
- \mathscr{R}_{2} (Hopf link) $=S^{2} \sqcup S^{2}$
- $\mathscr{R}_{2}($ trefoil $)=S^{2} \sqcup \mathrm{SO}(3)$

Observation (Kronheimer-Mrowka '08, Jacobsson-Rubinsztein '08) If L is a $(2, n)$-torus knot or link, then $\mathrm{Kh}(L) \cong H^{*}\left(\mathscr{R}_{2}(L)\right)$ as abelian groups.

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Examples:

- $\mathscr{R}_{2}($ unknot $)=S^{2}$
- $\mathscr{R}_{2}($ two-component unlink $)=S^{2} \times S^{2}$
- \mathscr{R}_{2} (Hopf link) $=S^{2} \sqcup S^{2}$
- $\mathscr{R}_{2}($ trefoil $)=S^{2} \sqcup \mathrm{SO}(3)$
$K h=\mathbf{Z}^{2}$
$K h=\mathbf{Z}^{4}$
$K h=Z^{4}$
$K h=\mathbf{Z}^{4} \oplus \mathbf{Z} / 2$

Observation (Kronheimer-Mrowka '08, Jacobsson-Rubinsztein '08) If L is a $(2, n)$-torus knot or link, then $\mathrm{Kh}(L) \cong H^{*}\left(\mathscr{R}_{2}(L)\right)$ as abelian groups.

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a link $L \subset S^{3}$, consider the space

$$
\mathscr{R}_{2}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(2) \mid \rho(\text { meridian }) \text { is traceless }\right\}
$$

Examples:

- $\mathscr{R}_{2}($ unknot $)=S^{2}$
- $\mathscr{R}_{2}($ two-component unlink $)=S^{2} \times S^{2}$
- \mathscr{R}_{2} (Hopf link) $=S^{2} \sqcup S^{2}$
- $\mathscr{R}_{2}($ trefoil $)=S^{2} \sqcup \mathrm{SO}(3)$
$K h=\mathbf{Z}^{2}$
$K h=\mathbf{Z}^{4}$
$K h=\mathbf{Z}^{4}$
$K h=\mathbf{Z}^{4} \oplus \mathbf{Z} / 2$

Observation (Kronheimer-Mrowka '08, Jacobsson-Rubinsztein '08) If L is a $(2, n)$-torus knot or link, then $\mathrm{Kh}(L) \cong H^{*}\left(\mathscr{R}_{2}(L)\right)$ as abelian groups.

- $\mathscr{R}_{2}((2,4)$-torus link $)=S^{2} \sqcup S^{2} \sqcup \mathrm{SO}(3)$
- $\mathscr{R}_{2}($ cinquefoil $)=S^{2} \sqcup \mathrm{SO}(3) \sqcup \mathrm{SO}(3)$
$\mathrm{Kh}=\mathbf{Z}^{6} \oplus \mathbf{Z} / 2$
$K h=\mathbf{Z}^{6} \oplus(\mathbf{Z} / 2)^{2}$

Khovanov homology and $\operatorname{SU}(2)$ representations

An explicit view of $\mathscr{R}_{2}(L)$ from a link diagram D :

Khovanov homology and $\operatorname{SU}(2)$ representations

An explicit view of $\mathscr{R}_{2}(L)$ from a link diagram D :

- Associate to each arc A a point $\Lambda_{A} \in S^{2} \subset \mathbf{R}^{3}$.

Khovanov homology and $\mathrm{SU}(2)$ representations

An explicit view of $\mathscr{R}_{2}(L)$ from a link diagram D :

- Associate to each $\operatorname{arc} A$ a point $\Lambda_{A} \in S^{2} \subset \mathbf{R}^{3}$.
- Require that for each crossing

Khovanov homology and $\mathrm{SU}(2)$ representations

An explicit view of $\mathscr{R}_{2}(L)$ from a link diagram D :

- Associate to each arc A a point $\Lambda_{A} \in S^{2} \subset \mathbf{R}^{3}$.
- Require that for each crossing

180° rotation about the axis passing through Λ_{A} swaps Λ_{B} and Λ_{C}.

Khovanov homology and $\mathrm{SU}(2)$ representations

An explicit view of $\mathscr{R}_{2}(L)$ from a link diagram D :

- Associate to each $\operatorname{arc} A$ a point $\Lambda_{A} \in S^{2} \subset \mathbf{R}^{3}$.
- Require that for each crossing

180° rotation about the axis passing through Λ_{A} swaps Λ_{B} and Λ_{C}.

Khovanov homology and $\mathrm{SU}(2)$ representations

An explicit view of $\mathscr{R}_{2}(L)$ from a link diagram D :

- Associate to each $\operatorname{arc} A$ a point $\Lambda_{A} \in S^{2} \subset \mathbf{R}^{3}$.
- Require that for each crossing

180° rotation about the axis passing through Λ_{A} swaps Λ_{B} and Λ_{C}.

$\mathscr{R}_{2}(L)=$ set of all such configurations of points on S^{2}.

Khovanov homology and $\mathrm{SU}(2)$ representations

Khovanov homology and $\mathrm{SU}(2)$ representations

$$
\mathscr{R}_{2}(\text { Hopf link })=S^{2} \sqcup S^{2}=\left\{\Lambda_{A}=\Lambda_{B}\right\} \sqcup\left\{\Lambda_{A}=-\Lambda_{B}\right\}
$$

Khovanov homology and $\mathrm{SU}(2)$ representations

$$
\mathscr{R}_{2}(\text { Hopf link })=S^{2} \sqcup S^{2}=\left\{\Lambda_{A}=\Lambda_{B}\right\} \sqcup\left\{\Lambda_{A}=-\Lambda_{B}\right\}
$$

Khovanov homology and $\mathrm{SU}(2)$ representations

$$
\mathscr{R}_{2}(\text { Hopf link })=S^{2} \sqcup S^{2}=\left\{\Lambda_{A}=\Lambda_{B}\right\} \sqcup\left\{\Lambda_{A}=-\Lambda_{B}\right\}
$$

$$
\begin{aligned}
\mathscr{R}_{2}(\text { trefoil }) & =S^{2} \sqcup \mathrm{SO}(3) \\
& =\left\{\Lambda_{A}=\Lambda_{B}=\Lambda_{C}\right\} \sqcup\left\{\Lambda_{A}, \Lambda_{B}, \Lambda_{C} \text { equidistant on a great circle }\right\}
\end{aligned}
$$

Khovanov homology and $S U(2)$ representations

Given a particular arc A in our diagram, we obtain a fiber bundle

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a particular arc A in our diagram, we obtain a fiber bundle

- a "reduced" space $\overline{\mathscr{R}_{2}}(L)$ of meridian-traceless $\mathrm{SU}(2)$ representations.

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a particular arc A in our diagram, we obtain a fiber bundle

- a "reduced" space $\overline{\mathscr{R}_{2}}(L)$ of meridian-traceless $\mathrm{SU}(2)$ representations.
- a ring map $H^{*}\left(S^{2}\right) \rightarrow H^{*}\left(\mathscr{R}_{2}(L)\right)$, giving $H^{*}\left(\mathscr{R}_{2}(L)\right)$ the structure of a $\mathbf{Z}[X] / X^{2}$-module.

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a particular arc A in our diagram, we obtain a fiber bundle

- a "reduced" space $\overline{\mathscr{R}_{2}}(L)$ of meridian-traceless $\mathrm{SU}(2)$ representations.
- a ring map $H^{*}\left(S^{2}\right) \rightarrow H^{*}\left(\mathscr{R}_{2}(L)\right)$, giving $H^{*}\left(\mathscr{R}_{2}(L)\right)$ the structure of a $\mathbf{Z}[X] / X^{2}$-module.

Observation

If L is a $(2, n)$-torus knot or link, then $\mathrm{Kh}(L) \cong H^{*}\left(\mathscr{R}_{2}(L)\right)$ as modules over $\mathbf{Z}[X] / X^{2}$ and $\overline{\mathrm{Kh}}(L) \cong H^{*}\left(\overline{\mathscr{R}_{2}}(L)\right)$.

Khovanov homology and $\mathrm{SU}(2)$ representations

Given a particular arc A in our diagram, we obtain a fiber bundle

- a "reduced" space $\overline{\mathscr{R}_{2}}(L)$ of meridian-traceless $\mathrm{SU}(2)$ representations.
- a ring map $H^{*}\left(S^{2}\right) \rightarrow H^{*}\left(\mathscr{R}_{2}(L)\right)$, giving $H^{*}\left(\mathscr{R}_{2}(L)\right)$ the structure of a $\mathbf{Z}[X] / X^{2}$-module.

Observation

If L is a $(2, n)$-torus knot or link, then $\mathrm{Kh}(L) \cong H^{*}\left(\mathscr{R}_{2}(L)\right)$ as modules over $\mathbf{Z}[X] / X^{2}$ and $\overline{\mathrm{Kh}}(L) \cong H^{*}\left(\overline{\mathscr{R}_{2}}(L)\right)$.

Also true when L is a rational link (Lewallen ' 09 + Shumakovitch ' 10), but there are alternating 3-bridge counterexamples (Zentner '11).

Khovanov homology and $\operatorname{SU}(2)$ representations

Kronheimer-Mrowka '11 define an $\operatorname{SU}(2)$ instanton homology for links $I^{\#}(L)$, together with a spectral sequence $K h(L) \Longrightarrow I^{\#}(L)$.

Khovanov homology and $\operatorname{SU}(2)$ representations

Kronheimer-Mrowka '11 define an $\operatorname{SU}(2)$ instanton homology for links $I^{\#}(L)$, together with a spectral sequence $K h(L) \Longrightarrow I^{\#}(L)$.

$K h(L)$

$\|^{\#}(L)$

Khovanov homology and $\operatorname{SU}(2)$ representations

Kronheimer-Mrowka '11 define an $\operatorname{SU}(2)$ instanton homology for links $I^{\sharp}(L)$, together with a spectral sequence $K h(L) \Longrightarrow I^{\#}(L)$.

$K h(L)$

$I^{\#}(L)$
$I^{\#}$ is defined by a version of Morse homology for the Chern-Simons functional CS. The space $\mathscr{R}_{2}(L)$ is the set of critical points of CS.

Khovanov homology and $\mathrm{SU}(2)$ representations

Kronheimer-Mrowka '11 define an $\operatorname{SU}(2)$ instanton homology for links $I^{\#}(L)$, together with a spectral sequence $K h(L) \Longrightarrow I^{\#}(L)$.

$K h(L)$

$I^{\sharp}(L)$
$I^{\#}$ is defined by a version of Morse homology for the Chern-Simons functional CS. The space $\mathscr{R}_{2}(L)$ is the set of critical points of CS. If CS is Morse-Bott, there is a spectral sequence $H^{*}\left(\mathscr{R}_{2}(L)\right) \Longrightarrow I^{\sharp}(L)$.

Khovanov homology and $\mathrm{SU}(2)$ representations

Kronheimer-Mrowka '11 define an $\operatorname{SU}(2)$ instanton homology for links $I^{\#}(L)$, together with a spectral sequence $K h(L) \Longrightarrow I^{\#}(L)$.

$I^{\#}$ is defined by a version of Morse homology for the Chern-Simons functional CS. The space $\mathscr{R}_{2}(L)$ is the set of critical points of CS. If CS is Morse-Bott, there is a spectral sequence $H^{*}\left(\mathscr{R}_{2}(L)\right) \Longrightarrow I^{\sharp}(L)$.

Khovanov homology and $\mathrm{SU}(2)$ representations

Kronheimer-Mrowka '11 define an $\operatorname{SU}(2)$ instanton homology for links $I^{\sharp}(L)$, together with a spectral sequence $K h(L) \Longrightarrow I^{\#}(L)$.

$I^{\#}$ is defined by a version of Morse homology for the Chern-Simons functional CS. The space $\mathscr{R}_{2}(L)$ is the set of critical points of CS. If CS is Morse-Bott, there is a spectral sequence $H^{*}\left(\mathscr{R}_{2}(L)\right) \Longrightarrow I^{\sharp}(L)$.

For rational links, both spectral sequences immediately degenerate.

$\mathfrak{s l}(N)$ link homology

The $\mathfrak{s l}(N)$ link polynomial $P_{N}(L) \in \mathbf{Z}\left[q, q^{-1}\right]$ is defined by the skein relation

$$
q^{N} P_{N}(\pi)-q^{-N} P_{N}(/)=\left(q+q^{-1}\right) P_{N}(\geqslant)
$$

and $P_{N}($ unknot $)=q^{N-1}+q^{N-3}+\cdots+q^{-(N-1)} . P_{2}$ is the Jones polynomial.

$\mathfrak{s l}(N)$ link homology

The $\mathfrak{s l}(N)$ link polynomial $P_{N}(L) \in \mathbf{Z}\left[q, q^{-1}\right]$ is defined by the skein relation

$$
q^{N} P_{N}(\pi)-q^{-N} P_{N}(/)=\left(q+q^{-1}\right) P_{N}(\geqslant)
$$

and $P_{N}($ unknot $)=q^{N-1}+q^{N-3}+\cdots+q^{-(N-1)} . P_{2}$ is the Jones polynomial.

Khovanov-Rozansky homology ($\mathfrak{s l}(N)$ link homology), denoted $\mathrm{KR}_{N}(L)$, is a bigraded homological invariant categorifying P_{N}. Note: $\mathrm{KR}_{2}(L) \cong \mathrm{Kh}(L)$.

$\mathfrak{s l}(N)$ link homology

The $\mathfrak{s l}(N)$ link polynomial $P_{N}(L) \in \mathbf{Z}\left[q, q^{-1}\right]$ is defined by the skein relation

$$
q^{N} P_{N}(\pi)-q^{-N} P_{N}(/)=\left(q+q^{-1}\right) P_{N}(\geqslant)
$$

and $P_{N}($ unknot $)=q^{N-1}+q^{N-3}+\cdots+q^{-(N-1)} . P_{2}$ is the Jones polynomial.

Khovanov-Rozansky homology ($\mathfrak{s l}(N)$ link homology), denoted $\mathrm{KR}_{N}(L)$, is a bigraded homological invariant categorifying P_{N}. Note: $\mathrm{KR}_{2}(L) \cong \mathrm{Kh}(L)$.

- First defined by Khovanov-Rozansky '08 over \mathbf{Q}.

$\mathfrak{s l}(N)$ link homology

The $\mathfrak{s l}(N)$ link polynomial $P_{N}(L) \in \mathbf{Z}\left[q, q^{-1}\right]$ is defined by the skein relation

$$
q^{N} P_{N}(\pi)-q^{-N} P_{N}(/)=\left(q+q^{-1}\right) P_{N}(\geqslant)
$$

and $P_{N}($ unknot $)=q^{N-1}+q^{N-3}+\cdots+q^{-(N-1)} . P_{2}$ is the Jones polynomial.

Khovanov-Rozansky homology ($\mathfrak{s l}(N)$ link homology), denoted $\mathrm{KR}_{N}(L)$, is a bigraded homological invariant categorifying P_{N}. Note: $\mathrm{KR}_{2}(L) \cong \mathrm{Kh}(L)$.

- First defined by Khovanov-Rozansky '08 over \mathbf{Q}.
- Defined by Queffelec-Rose '18, Robert-Wagner '20 over Z.

$\mathfrak{s l}(N)$ link homology

The $\mathfrak{s l}(N)$ link polynomial $P_{N}(L) \in \mathbf{Z}\left[q, q^{-1}\right]$ is defined by the skein relation

$$
q^{N} P_{N}(\nearrow)-q^{-N} P_{N}(/)=\left(q+q^{-1}\right) P_{N}(\geqslant)
$$

and $P_{N}($ unknot $)=q^{N-1}+q^{N-3}+\cdots+q^{-(N-1)} . P_{2}$ is the Jones polynomial.

Khovanov-Rozansky homology ($\mathfrak{s l}(N)$ link homology), denoted $\mathrm{KR}_{N}(L)$, is a bigraded homological invariant categorifying P_{N}. Note: $\mathrm{KR}_{2}(L) \cong \mathrm{Kh}(L)$.

- First defined by Khovanov-Rozansky '08 over \mathbf{Q}.
- Defined by Queffelec-Rose '18, Robert-Wagner '20 over Z.
P_{N} extends to certain trivalent graphs in the plane (MOY graphs) so that

$$
\begin{aligned}
& P_{N}(\pi)=q P_{N}(5)-P_{N}(2) \\
& P_{N}(\pi)=q^{-1} P_{N}(\%)-P_{N}\left(\begin{array}{l}
\pi
\end{array}\right) \quad(+ \text { a global shift })
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology

The $\mathfrak{s l}(N)$ chain complex of a link diagram is defined by a cube of resolutions. Associated to each MOY graph Γ is a state space $\mathrm{C}_{N}(\Gamma)$ that is functorial for foams.

$\mathfrak{s l}(N)$ link homology

The $\mathfrak{s l}(N)$ chain complex of a link diagram is defined by a cube of resolutions. Associated to each MOY graph Γ is a state space $\mathrm{C}_{N}(\Gamma)$ that is functorial for foams. $\mathrm{C}_{N}(\Gamma)$ is a \mathbf{Z}-graded free abelian group with graded rank $P_{N}(\Gamma)$.

$\mathfrak{s l}(N)$ link homology

The $\mathfrak{s l}(N)$ chain complex of a link diagram is defined by a cube of resolutions. Associated to each MOY graph Γ is a state space $\mathrm{C}_{N}(\Gamma)$ that is functorial for foams. $\mathrm{C}_{N}(\Gamma)$ is a Z-graded free abelian group with graded rank $P_{N}(\Gamma)$.

$$
\begin{aligned}
& \left.\mathrm{C}_{N}\left(\aleph^{\boldsymbol{N}}\right)=h^{-1} q \mathrm{C}_{N}() \mathbf{V}\right)
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

Associate to L the space

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \mid \rho(\text { meridian }) \in C_{1}\right\}
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Associate to L the space

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \mid \rho(\text { meridian }) \in C_{1}\right\}
$$

where $C_{1} \subset \mathrm{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{\pi i / N} \operatorname{diag}(-1,1, \ldots, 1)
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Associate to L the space

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \operatorname{SU}(N) \mid \rho(\text { meridian }) \in C_{1}\right\}
$$

where $C_{1} \subset \mathrm{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{\pi i / N} \operatorname{diag}(-1,1, \ldots, 1)
$$

Each $A \in C_{1}$ determines an orthogonal decomposition of \mathbf{C}^{N}

$$
\mathbf{C}^{N}=\Lambda_{A} \oplus\left(\Lambda_{A}\right)^{\perp} \quad \begin{aligned}
& \Lambda_{A}=\left(-\mathrm{e}^{\pi i / N}\right) \text {-eigenspace of } A \\
& \left(\Lambda_{A}\right)^{\perp}=\mathrm{e}^{\pi i / N_{-}} \text {eigenspace of } A
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Associate to L the space

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \operatorname{SU}(N) \mid \rho(\text { meridian }) \in C_{1}\right\}
$$

where $C_{1} \subset \mathrm{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{\pi i / N} \operatorname{diag}(-1,1, \ldots, 1)
$$

Each $A \in C_{1}$ determines an orthogonal decomposition of \mathbf{C}^{N}

$$
\mathbf{C}^{N}=\Lambda_{A} \oplus\left(\Lambda_{A}\right)^{\perp} \quad \begin{aligned}
& \Lambda_{A}=\left(-\mathrm{e}^{\pi i / N}\right) \text {-eigenspace of } A \\
& \left(\Lambda_{A}\right)^{\perp}=\mathrm{e}^{\pi i / N_{-}} \text {eigenspace of } A
\end{aligned}
$$

There is an identification $C_{1}=\mathbf{C} \mathbf{P}^{N-1}$ given by $A \mapsto \Lambda_{A}$.

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Associate to L the space

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \mid \rho(\text { meridian }) \in C_{1}\right\}
$$

where $C_{1} \subset \mathrm{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{\pi i / N} \operatorname{diag}(-1,1, \ldots, 1)
$$

Each $A \in C_{1}$ determines an orthogonal decomposition of \mathbf{C}^{N}

$$
\begin{array}{ll}
\mathbf{C}^{N}=\Lambda_{A} \oplus\left(\Lambda_{A}\right)^{\perp} & \Lambda_{A}=\left(-\mathrm{e}^{\pi i / N}\right) \text {-eigenspace of } A \\
\left(\Lambda_{A}\right)^{\perp}=\mathrm{e}^{\pi i / N} \text {-eigenspace of } A
\end{array}
$$

There is an identification $C_{1}=\mathbf{C} \mathbf{P}^{N-1}$ given by $A \mapsto \Lambda_{A}$.
Given a diagram of L, we can think of a point in $\mathscr{R}_{N}(L)$ as a choice of $\Lambda_{A} \in \mathbf{C} \mathbf{P}^{N-1}$ for each $\operatorname{arc} A$, subject to a constraint for each crossing.

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(\mathrm{N})$ representations

Examples:

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

Examples:

- $\mathscr{R}_{N}($ unknot $)=\mathbf{C} \mathbf{P}^{N-1}$

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

Examples:

- $\mathscr{R}_{N}($ unknot $)=\mathbf{C} \mathbf{P}^{N-1}$
- $\mathscr{R}_{N}($ two-component unlink $)=\mathbf{C} \mathbf{P}^{N-1} \times \mathbf{C P}^{N-1}$

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

Examples:

- $\mathscr{R}_{N}($ unknot $)=\mathbf{C} \mathbf{P}^{N-1}$
- $\mathscr{R}_{N}($ two-component unlink $)=\mathbf{C} \mathbf{P}^{N-1} \times \mathbf{C P}^{N-1}$
- $\mathscr{R}_{N}($ Hopf link $)=\mathbf{C} \mathbf{P}^{N-1} \sqcup \mathbf{F}(1,2, N)$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Examples:

- \mathscr{R}_{N} (unknot) $=\mathbf{C} \mathbf{P}^{N-1}$
- \mathscr{R}_{N} (two-component unlink) $=\mathbf{C} \mathbf{P}^{N-1} \times \mathbf{C P}^{N-1}$
- $\mathscr{R}_{N}($ Hopf link $)=\mathbf{C} \mathbf{P}^{N-1} \sqcup \mathbf{F}(1,2, N)$
$\mathbf{F}(1,2, N)$ is the partial flag manifold:

$$
\begin{aligned}
\mathbf{F}(1,2, N) & =\left\{\Lambda_{1} \subset \Lambda_{2} \subset \mathbf{C}^{N} \mid \operatorname{dim} \Lambda_{i}=i\right\} \\
& =\left\{\Lambda_{A}, \Lambda_{B} \in \mathbf{C P}^{N-1} \mid \Lambda_{A}, \Lambda_{B} \text { are orthogonal in } \mathbf{C}^{N}\right\}
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Examples:

- \mathscr{R}_{N} (unknot) $=\mathbf{C} \mathbf{P}^{N-1}$
- $\mathscr{R}_{N}($ two-component unlink $)=\mathbf{C} \mathbf{P}^{N-1} \times \mathbf{C P}^{N-1}$
- $\mathscr{R}_{N}($ Hopf link $)=\mathbf{C} \mathbf{P}^{N-1} \sqcup \mathbf{F}(1,2, N)$
- $\mathscr{R}_{N}($ trefoil $)=\mathbf{C} \mathbf{P}^{N-1} \sqcup X$ where $X=$ unit tangent bundle of $\mathbf{C P}^{N-1}$.
$\mathbf{F}(1,2, N)$ is the partial flag manifold:

$$
\begin{aligned}
\mathbf{F}(1,2, N) & =\left\{\Lambda_{1} \subset \Lambda_{2} \subset \mathbf{C}^{N} \mid \operatorname{dim} \Lambda_{i}=i\right\} \\
& =\left\{\Lambda_{A}, \Lambda_{B} \in \mathbf{C P}^{N-1} \mid \Lambda_{A}, \Lambda_{B} \text { are orthogonal in } \mathbf{C}^{N}\right\}
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Examples:

- \mathscr{R}_{N} (unknot) $=\mathbf{C} \mathbf{P}^{N-1}$
- $\mathscr{R}_{N}($ two-component unlink $)=\mathbf{C} \mathbf{P}^{N-1} \times \mathbf{C P}^{N-1}$
- $\mathscr{R}_{N}($ Hopf link $)=\mathbf{C} \mathbf{P}^{N-1} \sqcup \mathbf{F}(1,2, N)$
- $\mathscr{R}_{N}($ trefoil $)=\mathbf{C} \mathbf{P}^{N-1} \sqcup X$ where $X=$ unit tangent bundle of $\mathbf{C} \mathbf{P}^{N-1}$.
- $\mathscr{R}_{N}((2,4)$-torus link $)=\mathbf{C} \mathbf{P}^{N-1} \sqcup \mathbf{F}(1,2, N) \sqcup X$
- $\mathscr{R}_{N}($ cinquefoil $)=\mathbf{C P}^{N-1} \sqcup X \sqcup X$
$\mathbf{F}(1,2, N)$ is the partial flag manifold:

$$
\begin{aligned}
\mathbf{F}(1,2, N) & =\left\{\Lambda_{1} \subset \Lambda_{2} \subset \mathbf{C}^{N} \mid \operatorname{dim} \Lambda_{i}=i\right\} \\
& =\left\{\Lambda_{A}, \Lambda_{B} \in \mathbf{C P}^{N-1} \mid \Lambda_{A}, \Lambda_{B} \text { are orthogonal in } \mathbf{C}^{N}\right\}
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

$\mathscr{R}_{2}(L)$ was first studied by X.S. Lin '92, and $\mathscr{R}_{N}(L)$ was introduced by Kronheimer-Mrowka '11. Lobb-Zentner '14 and Grant '13 studied the analogue of \mathscr{R}_{N} for MOY graphs Γ, in relation to $P_{N}(\Gamma)$.

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

$\mathscr{R}_{2}(L)$ was first studied by X.S. Lin '92, and $\mathscr{R}_{N}(L)$ was introduced by Kronheimer-Mrowka '11. Lobb-Zentner '14 and Grant ' 13 studied the analogue of \mathscr{R}_{N} for MOY graphs Γ, in relation to $P_{N}(\Gamma)$.

Expected: an $\operatorname{SU}(N)$ instanton homology for links $I_{N}(L)$, defined by a version of Morse theory for a function whose critical set is $\mathscr{R}_{N}(L)$, together with spectral sequences

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

$\mathscr{R}_{2}(L)$ was first studied by X.S. Lin '92, and $\mathscr{R}_{N}(L)$ was introduced by Kronheimer-Mrowka '11. Lobb-Zentner '14 and Grant ' 13 studied the analogue of \mathscr{R}_{N} for MOY graphs Γ, in relation to $P_{N}(\Gamma)$.

Expected: an $\operatorname{SU}(N)$ instanton homology for links $I_{N}(L)$, defined by a version of Morse theory for a function whose critical set is $\mathscr{R}_{N}(L)$, together with spectral sequences

The rank of the $\mathrm{SU}(\mathrm{N})$ instanton homology of Kronheimer-Mrowka '11 turns out to be invariant under crossing change.

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

$\mathscr{R}_{2}(L)$ was first studied by X.S. Lin '92, and $\mathscr{R}_{N}(L)$ was introduced by Kronheimer-Mrowka '11. Lobb-Zentner '14 and Grant ' 13 studied the analogue of \mathscr{R}_{N} for MOY graphs Γ, in relation to $P_{N}(\Gamma)$.

Expected: an $\operatorname{SU}(N)$ instanton homology for links $\mathrm{I}_{N}(L)$, defined by a version of Morse theory for a function whose critical set is $\mathscr{R}_{N}(L)$, together with spectral sequences

The rank of the $\mathrm{SU}(\mathrm{N})$ instanton homology of Kronheimer-Mrowka '11 turns out to be invariant under crossing change. Maybe related to a Lee-type deformation of $\mathrm{KR}_{N}(L)$?

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Observation

If L is a $(2, n)$ torus knot or link, then $\mathrm{KR}_{N}(L) \cong H^{*}\left(\mathscr{R}_{N}(L)\right)$ as abelian groups.

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Observation

If L is a $(2, n)$ torus knot or link, then $\mathrm{KR}_{N}(L) \cong H^{*}\left(\mathscr{R}_{N}(L)\right)$ as abelian groups.

A basepoint on the diagram determines:

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Observation

If L is a $(2, n)$ torus knot or link, then $\mathrm{KR}_{N}(L) \cong H^{*}\left(\mathscr{R}_{N}(L)\right)$ as abelian groups.

A basepoint on the diagram determines:

- a reduced $\mathfrak{s l}(N)$ homology group $\overline{\mathrm{KR}}_{N}(L)$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Observation

If L is a $(2, n)$ torus knot or link, then $\mathrm{KR}_{N}(L) \cong H^{*}\left(\mathscr{R}_{N}(L)\right)$ as abelian groups.

A basepoint on the diagram determines:

- a reduced $\mathfrak{s l}(N)$ homology group $\overline{\mathrm{KR}}_{N}(L)$
- a module structure on $\mathrm{KR}_{N}(L)$ over $\mathrm{KR}_{N}($ unknot $)=\mathbf{Z}[X] / X^{N}$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Observation

If L is a $(2, n)$ torus knot or link, then $\mathrm{KR}_{N}(L) \cong H^{*}\left(\mathscr{R}_{N}(L)\right)$ as abelian groups.

A basepoint on the diagram determines:

- a reduced $\mathfrak{s l}(N)$ homology group $\overline{\mathrm{KR}}_{N}(L)$
- a module structure on $\mathrm{KR}_{N}(L)$ over $\mathrm{KR}_{N}($ unknot $)=\mathbf{Z}[X] / X^{N}$
- a fiber bundle

$$
\begin{aligned}
& \mathscr{R}_{N}(L) \longleftarrow \overline{\mathscr{R}_{N}}(L) \\
& \underset{\mathbf{C P}^{N-1}}{\downarrow}
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Observation

If L is a $(2, n)$ torus knot or link, then $\mathrm{KR}_{N}(L) \cong H^{*}\left(\mathscr{R}_{N}(L)\right)$ as abelian groups.

A basepoint on the diagram determines:

- a reduced $\mathfrak{s l}(N)$ homology group $\overline{\mathrm{KR}}_{N}(L)$
- a module structure on $\mathrm{KR}_{N}(L)$ over $\mathrm{KR}_{N}($ unknot $)=\mathbf{Z}[X] / X^{N}$
- a fiber bundle

$$
\begin{aligned}
& \mathscr{R}_{N}(L) \longleftarrow \overline{\mathscr{R}_{N}}(L) \\
& \underset{\mathbf{C P}^{N-1}}{\downarrow}
\end{aligned}
$$

- a "reduced" space $\overline{\mathscr{R}_{N}}(L)$ of $S U(N)$ representations.

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Observation

If L is a $(2, n)$ torus knot or link, then $\mathrm{KR}_{N}(L) \cong H^{*}\left(\mathscr{R}_{N}(L)\right)$ as abelian groups.

A basepoint on the diagram determines:

- a reduced $\mathfrak{s l}(N)$ homology group $\overline{\mathrm{KR}}_{N}(L)$
- a module structure on $\mathrm{KR}_{N}(L)$ over $\mathrm{KR}_{N}($ unknot $)=\mathbf{Z}[X] / X^{N}$
- a fiber bundle

$$
\begin{aligned}
& \mathscr{R}_{N}(L) \longleftarrow \overline{\mathscr{R}_{N}}(L) \\
& \stackrel{\mathbf{C P}^{N-1}}{\downarrow}
\end{aligned}
$$

- a "reduced" space $\overline{\mathscr{R}_{N}}(L)$ of $S U(N)$ representations.
- $H^{*}\left(\mathscr{R}_{N}(L)\right)$ becomes a module over $H^{*}\left(\mathbf{C} \mathbf{P}^{N-1}\right)=\mathbf{Z}[X] / X^{N}$.

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Observation

If L is a $(2, n)$ torus knot or link, then $\mathrm{KR}_{N}(L) \cong H^{*}\left(\mathscr{R}_{N}(L)\right)$ as abelian groups. In fact, they are isomorphic as $\mathbf{Z}[X] / X^{N}$-modules, and $\overline{\mathrm{KR}}_{N}(L) \cong H^{*}\left(\overline{\mathscr{R}_{N}}(L)\right)$.

A basepoint on the diagram determines:

- a reduced $\mathfrak{s l}(N)$ homology group $\overline{\mathrm{KR}}_{N}(L)$
- a module structure on $\mathrm{KR}_{N}(L)$ over $\mathrm{KR}_{N}($ unknot $)=\mathbf{Z}[X] / X^{N}$
- a fiber bundle

$$
\begin{aligned}
& \mathscr{R}_{N}(L) \longleftarrow \overline{\mathscr{R}_{N}}(L) \\
& \underset{\mathbf{C P}^{N-1}}{\downarrow}
\end{aligned}
$$

- a "reduced" space $\overline{\mathscr{R}_{N}}(L)$ of $S U(N)$ representations.
- $H^{*}\left(\mathscr{R}_{N}(L)\right)$ becomes a module over $H^{*}\left(\mathbf{C} \mathbf{P}^{N-1}\right)=\mathbf{Z}[X] / X^{N}$.

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplification of the full twist complex (e.g. Krasner '09)

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplification of the full twist complex (e.g. Krasner '09)

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplification of the full twist complex (e.g. Krasner '09)

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplification of the full twist complex (e.g. Krasner '09)

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplification of the full twist complex (e.g. Krasner '09)

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Khovanov-Rozansky complex of the Hopf link:

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Khovanov-Rozansky complex of the Hopf link:

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Khovanov-Rozansky complex of the Hopf link:

Khovanov-Rozansky homology of the Hopf link:

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Khovanov-Rozansky complex of the Hopf link:

Khovanov-Rozansky homology of the Hopf link:

$$
\begin{aligned}
\mathrm{KR}_{N}(\circlearrowleft) & \cong \mathrm{C}_{N}(\bigcirc) \oplus \mathrm{C}_{N}\left(\mathrm{Q}^{2}\right) \\
& \cong H^{*}\left(\mathbf{C P}^{N-1}\right) \oplus H^{*}(\mathbf{F}(1,2, N))
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Khovanov-Rozansky complex of the Hopf link:

Khovanov-Rozansky homology of the Hopf link:

$$
\begin{aligned}
\mathrm{KR}_{N}(\bigcirc) & \cong \mathrm{C}_{N}(\bigcirc) \oplus \mathrm{C}_{N}\left(\mathrm{~A}^{2}\right) \\
& \cong H^{*}\left(\mathbf{C P}^{N-1}\right) \oplus H^{*}(\mathbf{F}(1,2, N)) \\
& \cong H^{*} \mathscr{R}_{N}(\square)
\end{aligned}
$$

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

There is an explicit isomorphism (Khovanov '04, Khovanov-Rozansky '08)

$$
H^{*}(\mathbf{F}(1,2, N)) \cong C_{N}\left(\uparrow^{2}\right) .
$$

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

There is an explicit isomorphism (Khovanov '04, Khovanov-Rozansky '08)

$$
H^{*}(\mathbf{F}(1,2, N)) \cong C_{N}\left(\uparrow^{2}\right) .
$$

There are two special line bundles over $\mathbf{F}(1,2, N)$

$\left\{\right.$ orthogonal lines Λ_{A}, Λ_{B} in \mathbf{C}^{N} \}

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

There is an explicit isomorphism (Khovanov '04, Khovanov-Rozansky '08)

$$
H^{*}(\mathbf{F}(1,2, N)) \cong C_{N}\left(\uparrow^{2}\right) .
$$

There are two special line bundles over $\mathbf{F}(1,2, N)$

\{orthogonal lines Λ_{A}, Λ_{B} in \mathbf{C}^{N} \}
Their first Chern classes $c_{1}\left(\mathcal{S}_{A}\right), c_{1}\left(\mathcal{S}_{B}\right)$ form a basis for $H^{2}(\mathbf{F}(1,2, N))$.

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

There is an explicit isomorphism (Khovanov '04, Khovanov-Rozansky '08)

$$
H^{*}(\mathbf{F}(1,2, N)) \cong C_{N}\left(\uparrow^{2}\right) .
$$

There are two special line bundles over $\mathbf{F}(1,2, N)$

$$
\left\{\text { orthogonal lines } \Lambda_{A}, \Lambda_{B} \text { in } \mathbf{C}^{N}\right\}
$$

Their first Chern classes $c_{1}\left(\mathcal{S}_{A}\right), c_{1}\left(\mathcal{S}_{B}\right)$ form a basis for $H^{2}(\mathbf{F}(1,2, N))$. The isomorphism intertwines the maps
cup with $c_{1}\left(\mathcal{S}_{A}\right) \leftrightarrow \square$ cup with $c_{1}\left(\mathcal{S}_{B}\right) \leftrightarrow \square$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplified three twist complex:

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplified three twist complex:

Khovanov-Rozansky complex of the trefoil:
$\mathrm{C}_{N}($ trefoil $) \simeq \mathrm{C}_{N}(\bigcirc)$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplified three twist complex:

Khovanov-Rozansky complex of the trefoil:

$$
\mathrm{C}_{N}(\text { trefoil }) \simeq \mathrm{C}_{N}(\bigcirc)
$$

$$
\simeq H^{*}\left(\mathbf{C P}^{N-1}\right) \quad H^{*}(\mathbf{F}(1,2, N)) \xrightarrow{c_{1}\left(\mathcal{S}_{A}\right)-c_{1}\left(\mathcal{S}_{B}\right)} H^{*}(\mathbf{F}(1,2, N))
$$

$\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Simplified three twist complex:

Khovanov-Rozansky complex of the trefoil:

$$
\mathrm{c}_{N}(\text { trefoil }) \simeq \mathrm{c}_{N}(\bigcirc)
$$

$$
\simeq H^{*}\left(\mathbf{C} \mathbf{P}^{N-1}\right) \quad H^{*}(\mathbf{F}(1,2, N)) \xrightarrow{c_{1}\left(\mathcal{S}_{A}\right)-c_{1}\left(\delta_{B}\right)} H^{*}(\mathbf{F}(1,2, N))
$$

$\mathscr{R}_{N}($ trefoil $)=\mathbf{C} \mathbf{P}^{N-1} \sqcup$ unit tangent bundle of $\mathbf{C} \mathbf{P}^{N-1}$

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(\mathrm{N})$ representations

It suffices to show that the homology of the complex

$$
H^{*}(\mathbf{F}(1,2, N)) \xrightarrow{c_{1}\left(\delta_{A}\right)-c_{1}\left(\delta_{B}\right)} H^{*}(\mathbf{F}(1,2, N))
$$

is isomorphic to $H^{*}(X)$ where $X=$ unit tangent bundle of $\mathbf{C} \mathbf{P}^{N-1}$.

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

It suffices to show that the homology of the complex

$$
H^{*}(\mathbf{F}(1,2, N)) \xrightarrow{c_{1}\left(\delta_{A}\right)-c_{1}\left(\delta_{B}\right)} H^{*}(\mathbf{F}(1,2, N))
$$

is isomorphic to $H^{*}(X)$ where $X=$ unit tangent bundle of $\mathbf{C} \mathbf{P}^{N-1}$. It turns out X is a circle bundle

$$
\mathbf{F}(1,2, N)
$$

with Euler class $e=c_{1}\left(\mathcal{S}_{A}\right)-c_{1}\left(\mathcal{S}_{B}\right)$.

$\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

It suffices to show that the homology of the complex

$$
H^{*}(\mathbf{F}(1,2, N)) \xrightarrow{c_{1}\left(\delta_{A}\right)-c_{1}\left(\delta_{B}\right)} H^{*}(\mathbf{F}(1,2, N))
$$

is isomorphic to $H^{*}(X)$ where $X=$ unit tangent bundle of $\mathbf{C} \mathbf{P}^{N-1}$. It turns out X is a circle bundle

$$
\mathbf{F}(1,2, N)
$$

with Euler class $e=c_{1}\left(\mathcal{S}_{A}\right)-c_{1}\left(\mathcal{S}_{B}\right)$. There is a Gysin exact sequence

$$
H^{*}(\mathbf{F}(1,2, N)) \xrightarrow{e} H^{*}(\mathbf{F}(1,2, N))
$$

Colored $\mathfrak{s l}(N)$ link homology

Colored $\mathfrak{s l}(N)$ homology $\mathrm{KR}_{N}(L)$ of a labeled oriented link L : every component is labeled by an integer k satisfying $0 \leq k \leq N$.

Colored $\mathfrak{s l}(N)$ link homology

Colored $\mathfrak{s l}(N)$ homology $\mathrm{KR}_{N}(L)$ of a labeled oriented link L: every component is labeled by an integer k satisfying $0 \leq k \leq N$. Ordinary $\mathfrak{s l}(N)$ homology is when all labels are 1.

Colored $\mathfrak{s l}(N)$ link homology

Colored $\mathfrak{s l}(N)$ homology $\mathrm{KR}_{N}(L)$ of a labeled oriented link L: every component is labeled by an integer k satisfying $0 \leq k \leq N$. Ordinary $\mathfrak{s l}(N)$ homology is when all labels are 1.

- First defined by Wu ' 14 over \mathbf{Q}

Colored $\mathfrak{s l}(N)$ link homology

Colored $\mathfrak{s l}(N)$ homology $\mathrm{KR}_{N}(L)$ of a labeled oriented link L : every component is labeled by an integer k satisfying $0 \leq k \leq N$. Ordinary $\mathfrak{s l}(N)$ homology is when all labels are 1.

- First defined by Wu '14 over \mathbf{Q}
- Defined by Queffelec-Rose '18, Robert-Wagner '20 over Z.

Colored $\mathfrak{s l}(N)$ link homology

Colored $\mathfrak{s l}(N)$ homology $\mathrm{KR}_{N}(L)$ of a labeled oriented link L: every component is labeled by an integer k satisfying $0 \leq k \leq N$. Ordinary $\mathfrak{s l}(N)$ homology is when all labels are 1.

- First defined by Wu ' 14 over \mathbf{Q}
- Defined by Queffelec-Rose '18, Robert-Wagner '20 over Z.

Instead of a cube of resolutions, there is a rectangular prism of resolutions:

Colored $\mathfrak{s l}(N)$ link homology

Colored $\mathfrak{s l}(N)$ homology $\mathrm{KR}_{N}(L)$ of a labeled oriented link L: every component is labeled by an integer k satisfying $0 \leq k \leq N$. Ordinary $\mathfrak{s l}(N)$ homology is when all labels are 1.

- First defined by Wu ' 14 over \mathbf{Q}
- Defined by Queffelec-Rose '18, Robert-Wagner '20 over Z.

Instead of a cube of resolutions, there is a rectangular prism of resolutions:

A crossing between strands labeled i, j is given a complex of $\min (i, j)+1$ resolutions.

Colored $\mathfrak{s l}(N)$ link homology

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

For a labeled link L,

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \left\lvert\, \rho\binom{\text { meridian of a }}{\text { component labeled } k} \in C_{k}\right.\right\}
$$

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

For a labeled link L,

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \left\lvert\, \rho\binom{\text { meridian of a }}{\text { component labeled } k} \in C_{k}\right.\right\}
$$

where $C_{k} \subset \operatorname{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{k \pi i / N}\left(\begin{array}{cc}
-\operatorname{Id}_{k} & 0 \\
0 & \operatorname{Id}_{N-k}
\end{array}\right)
$$

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

For a labeled link L,

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \left\lvert\, \rho\binom{\text { meridian of a }}{\text { component labeled } k} \in C_{k}\right.\right\}
$$

where $C_{k} \subset \operatorname{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{k \pi i / N}\left(\begin{array}{cc}
-\mathrm{Id}_{k} & 0 \\
0 & \mathrm{Id}_{N-k}
\end{array}\right)
$$

We identify $C_{k}=\mathbf{G}(k, N)$ by sending $A \in C_{k}$ to its ($-\mathrm{e}^{k \pi i / N}$)-eigenspace Λ_{A}.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

For a labeled link L,

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \left\lvert\, \rho\binom{\text { meridian of a }}{\text { component labeled } k} \in C_{k}\right.\right\}
$$

where $C_{k} \subset \operatorname{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{k \pi i / N}\left(\begin{array}{cc}
-\mathrm{Id}_{k} & 0 \\
0 & \mathrm{Id}_{N-k}
\end{array}\right)
$$

We identify $C_{k}=\mathbf{G}(k, N)$ by sending $A \in C_{k}$ to its ($\left.-\mathrm{e}^{k \pi i / N}\right)$-eigenspace Λ_{A}. Examples:

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

For a labeled link L,

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \left\lvert\, \rho\binom{\text { meridian of a }}{\text { component labeled } k} \in C_{k}\right.\right\}
$$

where $C_{k} \subset \operatorname{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{k \pi i / N}\left(\begin{array}{cc}
-\mathrm{Id}_{k} & 0 \\
0 & \mathrm{Id}_{N-k}
\end{array}\right)
$$

We identify $C_{k}=\mathbf{G}(k, N)$ by sending $A \in C_{k}$ to its ($\left.-\mathrm{e}^{k \pi i / N}\right)$-eigenspace Λ_{A}. Examples:

- $\mathscr{R}_{4}($ Hopf link labeled 2,2$)=\mathbf{G}(2,4) \sqcup \mathbf{F}(1,2,3,4) \sqcup \mathbf{G}(2,4)$

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

For a labeled link L,

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \left\lvert\, \rho\binom{\text { meridian of a }}{\text { component labeled } k} \in C_{k}\right.\right\}
$$

where $C_{k} \subset \mathrm{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{k \pi i / N}\left(\begin{array}{cc}
-\mathrm{Id}_{k} & 0 \\
0 & \mathrm{Id}_{N-k}
\end{array}\right)
$$

We identify $C_{k}=\mathbf{G}(k, N)$ by sending $A \in C_{k}$ to its ($\left.-\mathrm{e}^{k \pi i / N}\right)$-eigenspace Λ_{A}. Examples:

- $\mathscr{R}_{4}($ Hopf link labeled 2,2$)=\mathbf{G}(2,4) \sqcup \mathbf{F}(1,2,3,4) \sqcup \mathbf{G}(2,4)$
- $\mathscr{R}_{N}($ Hopf link labeled 2,2$)=\mathbf{G}(2, N) \sqcup \mathbf{F}(1,2,3, N) \sqcup \mathbf{F}(2,4, N)$

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

For a labeled link L,

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \left\lvert\, \rho\binom{\text { meridian of a }}{\text { component labeled } k} \in C_{k}\right.\right\}
$$

where $C_{k} \subset \mathrm{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{k \pi i / N}\left(\begin{array}{cc}
-\operatorname{Id}_{k} & 0 \\
0 & \operatorname{Id}_{N-k}
\end{array}\right)
$$

We identify $C_{k}=\mathbf{G}(k, N)$ by sending $A \in C_{k}$ to its ($\left.-\mathrm{e}^{k \pi i / N}\right)$-eigenspace Λ_{A}. Examples:

- $\mathscr{R}_{4}($ Hopf link labeled 2,2$)=\mathbf{G}(2,4) \sqcup \mathbf{F}(1,2,3,4) \sqcup \mathbf{G}(2,4)$
- $\mathscr{R}_{N}($ Hopf link labeled 2,2$)=\mathbf{G}(2, N) \sqcup \mathbf{F}(1,2,3, N) \sqcup \mathbf{F}(2,4, N)$
- $\mathscr{R}_{N}($ Hopf link labeled $i \leq j)=\bigsqcup_{k=0}^{i} \mathbf{F}(k, i, i+j-k, N)$

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

For a labeled link L,

$$
\mathscr{R}_{N}(L)=\left\{\rho: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow \mathrm{SU}(N) \left\lvert\, \rho\binom{\text { meridian of a }}{\text { component labeled } k} \in C_{k}\right.\right\}
$$

where $C_{k} \subset \mathrm{SU}(N)$ is the conjugacy class of

$$
\mathrm{e}^{k \pi i / N}\left(\begin{array}{cc}
-\operatorname{Id}_{k} & 0 \\
0 & \operatorname{Id}_{N-k}
\end{array}\right)
$$

We identify $C_{k}=\mathbf{G}(k, N)$ by sending $A \in C_{k}$ to its ($-\mathrm{e}^{k \pi i / N}$)-eigenspace Λ_{A}. Examples:

- $\mathscr{R}_{4}($ Hopf link labeled 2,2$)=\mathbf{G}(2,4) \sqcup \mathbf{F}(1,2,3,4) \sqcup \mathbf{G}(2,4)$
- $\mathscr{R}_{N}($ Hopf link labeled 2,2$)=\mathbf{G}(2, N) \sqcup \mathbf{F}(1,2,3, N) \sqcup \mathbf{F}(2,4, N)$
- $\mathscr{R}_{N}($ Hopf link labeled $i \leq j)=\bigsqcup_{k=0}^{i} \mathbf{F}(k, i, i+j-k, N)$
- $\mathscr{R}_{4}($ trefoil labeled 2$)=\mathbf{G}(2,4) \sqcup \frac{\mathrm{U}(4)}{\mathrm{U}(1) \times \Delta \mathrm{U}(1) \times \mathrm{U}(1)} \sqcup \frac{\mathrm{U}(4)}{\Delta \mathrm{U}(2)}$

Colored $\mathfrak{s l}(N)$ link homology and $\mathrm{SU}(N)$ representations

Very few computations appear in the literature.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Very few computations appear in the literature.

- $\mathrm{KR}_{N}($ unknot labeled $k)=H^{*}(\mathbf{G}(k, N))$ where $\mathbf{G}(k, N)$ is the complex Grassmannian.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Very few computations appear in the literature.

- $\mathrm{KR}_{N}($ unknot labeled $k)=H^{*}(\mathbf{G}(k, N))$ where $\mathbf{G}(k, N)$ is the complex Grassmannian.
- Hopf link labeled $1, i$ computed by Yonezawa ' 11 over \mathbf{Q}.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Very few computations appear in the literature.

- $\mathrm{KR}_{N}($ unknot labeled $k)=H^{*}(\mathbf{G}(k, N))$ where $\mathbf{G}(k, N)$ is the complex Grassmannian.
- Hopf link labeled $1, i$ computed by Yonezawa ' 11 over \mathbf{Q}.
- Computations from physics for the Hopf link labeled i, j over \mathbf{Q} (Gukov-lqbal-Kozçaz-Vafa '10 and Awata-Kanno '13) before rigorous mathematical constructions of KR_{N}.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Very few computations appear in the literature.

- $\mathrm{KR}_{N}($ unknot labeled $k)=H^{*}(\mathbf{G}(k, N))$ where $\mathbf{G}(k, N)$ is the complex Grassmannian.
- Hopf link labeled 1, i computed by Yonezawa '11 over Q.
- Computations from physics for the Hopf link labeled i, j over \mathbf{Q} (Gukov-Iqbal-Kozçaz-Vafa '10 and Awata-Kanno '13) before rigorous mathematical constructions of KR_{N}.
The complex associated to the Hopf link labeled $i \leq j$ has $(i+1)^{2}$ terms.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Very few computations appear in the literature.

- $\mathrm{KR}_{N}($ unknot labeled $k)=H^{*}(\mathbf{G}(k, N))$ where $\mathbf{G}(k, N)$ is the complex Grassmannian.
- Hopf link labeled $1, i$ computed by Yonezawa ' 11 over \mathbf{Q}.
- Computations from physics for the Hopf link labeled i, j over \mathbf{Q} (Gukov-Iqbal-Kozçaz-Vafa '10 and Awata-Kanno '13) before rigorous mathematical constructions of KR_{N}.
The complex associated to the Hopf link labeled $i \leq j$ has $(i+1)^{2}$ terms.
Theorem (W. in-progress)
If H is a Hopf link with components labeled i, j, then $\operatorname{KR}_{N}(H) \cong H^{*}\left(\mathscr{R}_{N}(H)\right)$.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Very few computations appear in the literature.

- $\mathrm{KR}_{N}($ unknot labeled $k)=H^{*}(\mathbf{G}(k, N))$ where $\mathbf{G}(k, N)$ is the complex Grassmannian.
- Hopf link labeled $1, i$ computed by Yonezawa ' 11 over \mathbf{Q}.
- Computations from physics for the Hopf link labeled i, j over \mathbf{Q} (Gukov-Iqbal-Kozçaz-Vafa '10 and Awata-Kanno '13) before rigorous mathematical constructions of KR_{N}.
The complex associated to the Hopf link labeled $i \leq j$ has $(i+1)^{2}$ terms.
Theorem (W. in-progress)
If H is a Hopf link with components labeled i, j, then $\operatorname{KR}_{N}(H) \cong H^{*}\left(\mathscr{R}_{N}(H)\right)$. Futhermore, module structures and reduced theories also agree.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Very few computations appear in the literature.

- $\mathrm{KR}_{N}($ unknot labeled $k)=H^{*}(\mathbf{G}(k, N))$ where $\mathbf{G}(k, N)$ is the complex Grassmannian.
- Hopf link labeled 1, i computed by Yonezawa '11 over Q.
- Computations from physics for the Hopf link labeled i, j over \mathbf{Q} (Gukov-Iqbal-Kozçaz-Vafa '10 and Awata-Kanno '13) before rigorous mathematical constructions of KR_{N}.
The complex associated to the Hopf link labeled $i \leq j$ has $(i+1)^{2}$ terms.

Theorem (W. in-progress)

If H is a Hopf link with components labeled i, j, then $\operatorname{KR}_{N}(H) \cong H^{*}\left(\mathscr{R}_{N}(H)\right)$. Futhermore, module structures and reduced theories also agree.
$\mathrm{KR}_{N}(H)$ is supported only in even homological degrees and has no torsion.

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

Colored $\mathfrak{s l}(N)$ link homology and $\operatorname{SU}(N)$ representations

$$
\begin{array}{ll}
=h^{-4} C_{N} C_{2} \\
=H^{*}(\mathbf{G}(2, N)) & h^{-2} C_{N}
\end{array}
$$

Thanks!

Thanks for listening!

