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Khovanov homology and SU(2) representations

Given a link L ⊂ S3, consider the space

ℛ2(L) =
{
𝜌 : 𝜋1(S3 \ L) → SU(2)

�� 𝜌 (meridian) is traceless
}

Examples:

• ℛ2(unknot) = S2

• ℛ2(two-component unlink) = S2 × S2

• ℛ2(Hopf link) = S2 t S2

• ℛ2(trefoil) = S2 t SO(3)

Observation (Kronheimer–Mrowka ’08, Jacobsson–Rubinsztein ’08)
If L is a (2, n)-torus knot or link, then Kh(L) � H∗(ℛ2(L)) as abelian groups.

• ℛ2((2,4)-torus link) = S2 t S2 t SO(3) Kh = Z6 ⊕ Z/2
• ℛ2(cinquefoil) = S2 t SO(3) t SO(3) Kh = Z6 ⊕ (Z/2)2
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Khovanov homology and SU(2) representations

An explicit view ofℛ2(L) from a link diagram D:

• Associate to each arc A a point ΛA ∈ S2 ⊂ R3.

• Require that for each crossing
AB

C

180◦ rotation about the axis passing through ΛA swaps ΛB and ΛC .

ΛA

ΛA

ΛB

ΛC

ℛ2(L) = set of all such configurations of points on S2.
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Khovanov homology and SU(2) representations

A B

ΛA = ΛB ΛA

ΛB

ℛ2(Hopf link) = S2 t S2 = {ΛA = ΛB} t {ΛA = −ΛB}

A B

C

ΛA = ΛB = ΛC ΛA

ΛB

ΛC
ℛ2(trefoil) = S2 t SO(3)

= {ΛA = ΛB = ΛC} t {ΛA,ΛB,ΛC equidistant on a great circle}

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 5 / 24



Khovanov homology and SU(2) representations

A B

ΛA = ΛB ΛA

ΛB

ℛ2(Hopf link) = S2 t S2 = {ΛA = ΛB} t {ΛA = −ΛB}

A B

C

ΛA = ΛB = ΛC ΛA

ΛB

ΛC
ℛ2(trefoil) = S2 t SO(3)

= {ΛA = ΛB = ΛC} t {ΛA,ΛB,ΛC equidistant on a great circle}

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 5 / 24



Khovanov homology and SU(2) representations

A B

ΛA = ΛB ΛA

ΛB

ℛ2(Hopf link) = S2 t S2 = {ΛA = ΛB} t {ΛA = −ΛB}

A B

C

ΛA = ΛB = ΛC ΛA

ΛB

ΛC

ℛ2(trefoil) = S2 t SO(3)
= {ΛA = ΛB = ΛC} t {ΛA,ΛB,ΛC equidistant on a great circle}

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 5 / 24



Khovanov homology and SU(2) representations

A B

ΛA = ΛB ΛA

ΛB

ℛ2(Hopf link) = S2 t S2 = {ΛA = ΛB} t {ΛA = −ΛB}

A B

C

ΛA = ΛB = ΛC ΛA

ΛB

ΛC
ℛ2(trefoil) = S2 t SO(3)

= {ΛA = ΛB = ΛC} t {ΛA,ΛB,ΛC equidistant on a great circle}

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 5 / 24



Khovanov homology and SU(2) representations

Given a particular arc A in our diagram, we obtain a fiber bundle

{ΛB}B an arc ℛ2(L) ℛ2(L)

ΛA S2

• a “reduced” spaceℛ2(L) of meridian-traceless SU(2) representations.
• a ring map H∗(S2) → H∗(ℛ2(L)), giving H∗(ℛ2(L)) the structure of a
Z[X ]/X 2-module.

Observation
If L is a (2, n)-torus knot or link, then Kh(L) � H∗(ℛ2(L)) as modules over
Z[X ]/X 2 and Kh(L) � H∗(ℛ2(L)).

Also true when L is a rational link (Lewallen ’09 + Shumakovitch ’10), but
there are alternating 3-bridge counterexamples (Zentner ’11).
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Khovanov homology and SU(2) representations

Kronheimer–Mrowka ’11 define an SU(2) instanton homology for links I♯ (L),
together with a spectral sequence Kh(L) =⇒ I♯ (L).

Kh(L)

I♯ (L)

I♯ is defined by a version of Morse homology for the Chern-Simons
functional CS. The spaceℛ2(L) is the set of critical points of CS. If CS is
Morse–Bo, there is a spectral sequence H∗(ℛ2(L)) =⇒ I♯ (L).

For rational links, both spectral sequences immediately degenerate.
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𝔰𝔩(N) link homology

The 𝔰𝔩(N) link polynomial PN (L) ∈ Z[q, q−1] is defined by the skein relation

qNPN
( )

− q−NPN
( )

= (q + q−1)PN
( )

and PN (unknot) = qN−1 + qN−3 + · · · + q−(N−1) . P2 is the Jones polynomial.

Khovanov–Rozansky homology (𝔰𝔩(N) link homology), denoted KRN (L), is a
bigraded homological invariant categorifying PN . Note: KR2(L) � Kh(L).

• First defined by Khovanov–Rozansky ’08 over Q.
• Defined byeelec–Rose ’18, Robert–Wagner ’20 over Z.

PN extends to certain trivalent graphs in the plane (MOY graphs) so that

PN
( )

= qPN
( )

− PN
(

2

)
PN

( )
= q−1PN

( )
− PN

(
2

)
(+ a global shi)
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𝔰𝔩(N) link homology

The 𝔰𝔩(N) chain complex of a link diagram is defined by a cube of resolutions.
Associated to each MOY graph Γ is a state space CN (Γ) that is functorial for
foams.

CN (Γ) is a Z-graded free abelian group with graded rank PN (Γ).

CN

( )
= h−1qCN

( )
CN

(
2

)CN

©«
ª®®®®®®¬

CN

( )
= CN

(
2

)
hq−1 CN

( )CN
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ª®®®®®®¬
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𝔰𝔩(N) link homology and SU(N) representations

Associate to L the space

ℛN (L) =
{
𝜌 : 𝜋1(S3 \ L) → SU(N)

�� 𝜌 (meridian) ∈ C1
}

where C1 ⊂ SU(N) is the conjugacy class of

e𝜋 i/Ndiag(−1, 1, . . . , 1).

Each A ∈ C1 determines an orthogonal decomposition of CN

CN = ΛA ⊕ (ΛA)⊥ ΛA = (−e𝜋 i/N )-eigenspace of A
(ΛA)⊥ = e𝜋 i/N -eigenspace of A

There is an identification C1 = CPN−1 given by A ↦→ ΛA.

Given a diagram of L, we can think of a point inℛN (L) as a choice of
ΛA ∈ CPN−1 for each arc A, subject to a constraint for each crossing.

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 10 / 24



𝔰𝔩(N) link homology and SU(N) representations

Associate to L the space

ℛN (L) =
{
𝜌 : 𝜋1(S3 \ L) → SU(N)

�� 𝜌 (meridian) ∈ C1
}

where C1 ⊂ SU(N) is the conjugacy class of

e𝜋 i/Ndiag(−1, 1, . . . , 1).

Each A ∈ C1 determines an orthogonal decomposition of CN

CN = ΛA ⊕ (ΛA)⊥ ΛA = (−e𝜋 i/N )-eigenspace of A
(ΛA)⊥ = e𝜋 i/N -eigenspace of A

There is an identification C1 = CPN−1 given by A ↦→ ΛA.

Given a diagram of L, we can think of a point inℛN (L) as a choice of
ΛA ∈ CPN−1 for each arc A, subject to a constraint for each crossing.

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 10 / 24



𝔰𝔩(N) link homology and SU(N) representations

Associate to L the space

ℛN (L) =
{
𝜌 : 𝜋1(S3 \ L) → SU(N)

�� 𝜌 (meridian) ∈ C1
}

where C1 ⊂ SU(N) is the conjugacy class of

e𝜋 i/Ndiag(−1, 1, . . . , 1).

Each A ∈ C1 determines an orthogonal decomposition of CN

CN = ΛA ⊕ (ΛA)⊥ ΛA = (−e𝜋 i/N )-eigenspace of A
(ΛA)⊥ = e𝜋 i/N -eigenspace of A

There is an identification C1 = CPN−1 given by A ↦→ ΛA.

Given a diagram of L, we can think of a point inℛN (L) as a choice of
ΛA ∈ CPN−1 for each arc A, subject to a constraint for each crossing.

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 10 / 24



𝔰𝔩(N) link homology and SU(N) representations

Associate to L the space

ℛN (L) =
{
𝜌 : 𝜋1(S3 \ L) → SU(N)

�� 𝜌 (meridian) ∈ C1
}

where C1 ⊂ SU(N) is the conjugacy class of

e𝜋 i/Ndiag(−1, 1, . . . , 1).

Each A ∈ C1 determines an orthogonal decomposition of CN

CN = ΛA ⊕ (ΛA)⊥ ΛA = (−e𝜋 i/N )-eigenspace of A
(ΛA)⊥ = e𝜋 i/N -eigenspace of A

There is an identification C1 = CPN−1 given by A ↦→ ΛA.

Given a diagram of L, we can think of a point inℛN (L) as a choice of
ΛA ∈ CPN−1 for each arc A, subject to a constraint for each crossing.

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 10 / 24



𝔰𝔩(N) link homology and SU(N) representations

Associate to L the space

ℛN (L) =
{
𝜌 : 𝜋1(S3 \ L) → SU(N)

�� 𝜌 (meridian) ∈ C1
}

where C1 ⊂ SU(N) is the conjugacy class of

e𝜋 i/Ndiag(−1, 1, . . . , 1).

Each A ∈ C1 determines an orthogonal decomposition of CN

CN = ΛA ⊕ (ΛA)⊥ ΛA = (−e𝜋 i/N )-eigenspace of A
(ΛA)⊥ = e𝜋 i/N -eigenspace of A

There is an identification C1 = CPN−1 given by A ↦→ ΛA.

Given a diagram of L, we can think of a point inℛN (L) as a choice of
ΛA ∈ CPN−1 for each arc A, subject to a constraint for each crossing.

Joshua Wang 𝔰𝔩 (N) homology and SU(N) representations March 8, 2022 10 / 24



𝔰𝔩(N) link homology and SU(N) representations

Examples:

• ℛN (unknot) = CPN−1

• ℛN (two-component unlink) = CPN−1 × CPN−1

• ℛN (Hopf link) = CPN−1 t F(1, 2,N)
• ℛN (trefoil) = CPN−1 t X where X = unit tangent bundle of CPN−1.

• ℛN ((2,4)-torus link) = CPN−1 t F(1, 2,N) t X

• ℛN (cinquefoil) = CPN−1 t X t X

F(1, 2,N) is the partial flag manifold:

F(1, 2,N) =
{
Λ1 ⊂ Λ2 ⊂ CN

�� dimΛi = i
}

=
{
ΛA,ΛB ∈ CPN−1 �� ΛA,ΛB are orthogonal in CN }
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𝔰𝔩(N) link homology and SU(N) representations

ℛ2(L) was first studied by X.S. Lin ’92, andℛN (L) was introduced by
Kronheimer–Mrowka ’11. Lobb–Zentner ’14 and Grant ’13 studied the
analogue ofℛN for MOY graphs Γ, in relation to PN (Γ).

Expected: an SU(N) instanton homology for links IN (L), defined by a version
of Morse theory for a function whose critical set isℛN (L), together with
spectral sequences

KRN (L) H∗(ℛN (L))

IN (L)

The rank of the SU(N) instanton homology of Kronheimer–Mrowka ’11 turns
out to be invariant under crossing change. Maybe related to a Lee-type
deformation of KRN (L)?
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𝔰𝔩(N) link homology and SU(N) representations

Observation
If L is a (2, n) torus knot or link, then KRN (L) � H∗(ℛN (L)) as abelian groups.

In fact, they are isomorphic as Z[X ]/XN -modules, and KRN (L) � H∗(ℛN (L)).

A basepoint on the diagram determines:

• a reduced 𝔰𝔩(N) homology group KRN (L)
• a module structure on KRN (L) over KRN (unknot) = Z[X ]/XN

• a fiber bundle
ℛN (L) ℛN (L)

CPN−1

◦ a “reduced” spaceℛN (L) of SU(N) representations.
◦ H∗(ℛN (L)) becomes a module over H∗(CPN−1) = Z[X ]/XN .
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𝔰𝔩(N) link homology and SU(N) representations

Simplification of the full twist complex (e.g. Krasner ’09)

=

h−2q2 h−1q

h−1q ◦

CN ' CN CN 2 CN 2z
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𝔰𝔩(N) link homology and SU(N) representations

Khovanov–Rozansky complex of the Hopf link:

CN ' CN CN 2 CN 2z

' CN CN 2

Khovanov–Rozansky homology of the Hopf link:

KRN

( )
� CN

( )
⊕ CN

(
2

)

� H∗(CPN−1) ⊕ H∗(F(1, 2,N))

� H∗
ℛN

( )
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𝔰𝔩(N) link homology and SU(N) representations

There is an explicit isomorphism (Khovanov ’04, Khovanov–Rozansky ’08)

H∗(F(1, 2,N)) � CN

(
2

)
.

There are two special line bundles over F(1, 2,N)

𝒮A 𝒮B

{orthogonal lines ΛA,ΛB in CN }

Their first Chern classes c1(𝒮A), c1(𝒮B) form a basis for H2(F(1, 2,N)). The
isomorphism intertwines the maps

cup with c1(𝒮A) ↔ cup with c1(𝒮B) ↔
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𝔰𝔩(N) link homology and SU(N) representations

Simplified three twist complex:

' h−3q3 h−2q2 h−1 q−2z
− −

Khovanov–Rozansky complex of the trefoil:

CN (trefoil) ' CN

( ) CN

(
2

)
CN

(
2

)−

' H∗(CPN−1) H∗(F(1, 2,N)) H∗(F(1, 2,N))c1 (𝒮A)−c1 (𝒮B)

ℛN (trefoil) = CPN−1 t unit tangent bundle of CPN−1
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𝔰𝔩(N) link homology and SU(N) representations
It suices to show that the homology of the complex

H∗(F(1, 2,N)) H∗(F(1, 2,N))c1 (𝒮A)−c1 (𝒮B)

is isomorphic to H∗(X ) where X = unit tangent bundle of CPN−1.

It turns out
X is a circle bundle

X S1

F(1, 2,N)

with Euler class e = c1(𝒮A) − c1(𝒮B). There is a Gysin exact sequence

H∗(F(1, 2,N)) H∗(F(1, 2,N))

H∗(X )

e
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Colored 𝔰𝔩(N) link homology

Colored 𝔰𝔩(N) homology KRN (L) of a labeled oriented link L: every
component is labeled by an integer k satisfying 0 ≤ k ≤ N .

Ordinary 𝔰𝔩(N)
homology is when all labels are 1.

• First defined by Wu ’14 over Q
• Defined byeelec–Rose ’18, Robert–Wagner ’20 over Z.

Instead of a cube of resolutions, there is a rectangular prism of resolutions:

2 2 2 2 2

3 1

1

1
2 2

2 2

2

4

2

2

A crossing between strands labeled i, j is given a complex of min(i, j) + 1
resolutions.
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Colored 𝔰𝔩(N) link homology

2 2
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Colored 𝔰𝔩(N) link homology and SU(N) representations

For a labeled link L,

ℛN (L) =
{
𝜌 : 𝜋1(S3 \ L) → SU(N)

��� 𝜌 (
meridian of a

component labeled k

)
∈ Ck

}

where Ck ⊂ SU(N) is the conjugacy class of

ek𝜋 i/N
(
− Idk 0
0 IdN−k

)
We identify Ck = G(k,N) by sending A ∈ Ck to its (−ek𝜋 i/N )-eigenspace ΛA.

Examples:

• ℛ4(Hopf link labeled 2,2) = G(2, 4) t F(1, 2, 3, 4) tG(2, 4)
• ℛN (Hopf link labeled 2,2) = G(2,N) t F(1, 2, 3,N) t F(2, 4,N)
• ℛN (Hopf link labeled i ≤ j) = ⊔i

k=0 F(k, i, i + j − k,N)

• ℛ4(trefoil labeled 2) = G(2, 4) t U(4)
U(1) × ΔU(1) × U(1) t

U(4)
ΔU(2)
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ek𝜋 i/N
(
− Idk 0
0 IdN−k

)
We identify Ck = G(k,N) by sending A ∈ Ck to its (−ek𝜋 i/N )-eigenspace ΛA.

Examples:

• ℛ4(Hopf link labeled 2,2) = G(2, 4) t F(1, 2, 3, 4) tG(2, 4)
• ℛN (Hopf link labeled 2,2) = G(2,N) t F(1, 2, 3,N) t F(2, 4,N)

• ℛN (Hopf link labeled i ≤ j) = ⊔i
k=0 F(k, i, i + j − k,N)

• ℛ4(trefoil labeled 2) = G(2, 4) t U(4)
U(1) × ΔU(1) × U(1) t

U(4)
ΔU(2)
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Colored 𝔰𝔩(N) link homology and SU(N) representations

Very few computations appear in the literature.

• KRN (unknot labeled k) = H∗(G(k,N)) where G(k,N) is the complex
Grassmannian.

• Hopf link labeled 1, i computed by Yonezawa ’11 over Q.

• Computations from physics for the Hopf link labeled i, j over Q
(Gukov–Iqbal–Kozçaz–Vafa ’10 and Awata–Kanno ’13) before rigorous
mathematical constructions of KRN .

The complex associated to the Hopf link labeled i ≤ j has (i + 1)2 terms.

Theorem (W. in-progress)
If H is a Hopf link with components labeled i, j, then KRN (H) � H∗(ℛN (H)).

Futhermore, module structures and reduced theories also agree.

KRN (H) is supported only in even homological degrees and has no torsion.
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Colored 𝔰𝔩(N) link homology and SU(N) representations

CN 2 2

= h−2 CN
2

h−1 CN

2 23 1
1

1 CN

2 24

' h−4 CN
2

h−2 CN

2

3
2

1

1

1

CN 42 2

= H∗(G(2,N)) H∗(F(1, 2, 3,N)) H∗(F(2, 4,N))
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Thanks!

Thanks for listening!
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