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Introduction

The prime number theorem (PNT):

⇡(x) := #{primes p  x} ⇠ x

log x
,

as x ! 1.

Expectation: For some 0 < ✓ < 1, we would like to have

⇡(x + x✓)� ⇡(x) ⇠ x + x✓

log(x + x✓)
� x

log x

Since
x + x✓

log(x + x✓)
� x

log x
= (1 + o(1))

x✓

log x
,

Question: How small can we make ✓ so that

⇡(x + x✓)� ⇡(x) ⇠ x✓

log x
(1)

holds as x ! 1?
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Goal

Let pn denote the nth prime. If (1) holds for some ✓, then we also
have

pn+1 � pn ⌧ p✓n, (2)

as n ! 1.

Hoheisel was the first to prove the existence of a ✓ < 1 such that (1)
(and hence (2)) holds.

Hoheisel: ✓ = 32999/33000, Heilbronn: ✓ = 249/250, Tchudako↵:
✓ = 3

4
+ ✏

Our goal today is to prove Ingham’s result 1:

Theorem 1 (Ingham)

If there exists c > 0 such that ⇣(1
2
+ it) ⌧ tc as t ! 1, then (1) holds

for any ✓ satisfying
4c + 1

4c + 2
< ✓ < 1.

1
On the di↵erence between consecutive primes, The Quarterly Journal of Mathematics, 1937.
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Some Remarks

Even the classical value c = 1

4
+ ✏ reduces ✓ to 2

3
+ ✏.

The Hardy-Littlewood value c = 1

6
+ ✏ gives ✓ = 5

8
+ ✏.

The Lindelöf hypothesis conjectures that ⇣(1
2
+ it) ⌧ t✏ for any

✏ > 0. This would give ✓ = 1

2
+ ✏.

This is comparable to Cramer’s result that

pn+1 � pn ⌧ p1/2n log pn,

under the Riemann hypothesis.
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Step 1: Connecting ✓ to zeros of ⇣(s)
Consider the following hypotheses.
(ZF) “Zero free region”: ⇣(s) has no zeros in a region of the type

� > 1� A
log log t

log t
, t > t0,

where A > 0, t0 > 3 are some parameters.
(ZD) “Zero-density result”:

N(�,T ) := #{zeros ⇢ = � + i� of ⇣(s) : � � �, 0 < �  T} satisfies

N(�,T ) ⌧ T b(1��)(logT )B

uniformly for 1

2
 �  1 as T ! 1 for some parameters

b > 0,B � 0.

Lemma

Suppose (ZF ), (ZD) hold. Then (1) holds for any ✓ satisfying

1� 1

b + A�1B
< ✓ < 1.
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Proof of Lemma

Let  (x) =
P

nx ⇤(n). We use a truncated version of the Riemann-von
Mangoldt explicit formula which connects  to non-trivial zeros ⇢ of ⇣(s):

 (x) = x �
X

⇢=�+i�
|�|T

x⇢

⇢
+ O

⇣ x

T
(log x)2

⌘
,

uniformly for 3  T  x as x ! 1.
This gives for 0 < h  x ,

 (x + h)� (x) = h �
X

⇢=�+i�
|�|T

(x + h)⇢ � x⇢

⇢
+ O

⇣ x

T
(log x)2

⌘
.
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We have obtained

 (x + h)� (x)
h

= 1 + O

✓ X

|�|T

x��1

◆
+ O

⇣ x

Th
(log x)2

⌘
. (⇤)

Goal: To show RHS ⇠ 1 for h = x✓, with 1� (b + A�1B)�1 < ✓ < 1 and
T chosen suitably.
Next step: Connecting to N(�,T ): We write

X

⇢=�+it
|�|T

x��1 = � 2

Z
1

0

x��1d�N(�,T ) (3)
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We have obtained

 (x + h)� (x)
h

= 1 + O

✓ X

|�|T

x��1

◆
+ O

⇣ x

Th
(log x)2

⌘
. (⇤)

Goal: To show RHS ⇠ 1 for h = x✓, with 1� (b + A�1B)�1 < ✓ < 1 and
T chosen suitably.
Next step: Connecting to N(�,T ): We write

X

⇢=�+it
|�|T

x��1 = � 2

Z
1

0

x��1d�N(�,T ) (3)
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We have obtained

X

|�|T

x��1 = 2x�1N(0,T ) + 2

Z
1

0

N(�,T )x��1 log x d�.

We use:

1. The known estimate N(0,T ) ⌧ T logT .

2. Hypothesis (ZF): ⇣(s) 6= 0 for � > 1� A log log t
log t , t > t0 > 3, which

means that 9T0 > 3 such that

N(�,T ) = 0 for � > 1� ⌘(T ),T � T0,

where ⌘(T ) = A(log logT )/ logT .

This gives, uniformly for x � T � T0,

X

|�|T

x��1 ⌧ T logT

x
+

Z
1�⌘(T )

0

N(�,T )x��1 log x d�.
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Using Hypothesis (ZD), i.e. N(�,T ) ⌧ T b(1��)(logT )B , we have

X

|�|T

x��1 ⌧ T logT

x
+

Z
1�⌘(T )

0

✓
T b

x

◆1��

(logT )B log x d�.

⌧ x↵�1 log x + (log x)B

x (↵b�1)(1��)

�1�⌘(x↵)

0

⌧ (log x)��

with � = A(↵�1 � b)� B .
To ensure � > 0, we take ↵ < 1

b+BA�1 .
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Using Hypothesis (ZD), i.e. N(�,T ) ⌧ T b(1��)(logT )B , we have

X

|�|T

x��1 ⌧ T logT

x
+

Z
1�⌘(T )

0

✓
T b

x

◆1��

(logT )B log x d�.

⌧ x↵�1 log x + (log x)B

x (↵b�1)(1��)

�1�⌘(x↵)

0

⌧ (log x)��

with � = A(↵�1 � b)� B .
To ensure � > 0, we take ↵ < 1

b+BA�1 .
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Putting this into (⇤), we have

 (x + h)� (x)
h

= 1 + O
�
(log x)��

�
+ O

⇣ x

Th
(log x)2

⌘
. (⇤)

Put h = x✓, T = x↵ where ↵ can be any number satisfying

0 < ↵ <
1

b � BA�1
.

Then

 (x + x✓)� (x) ⇠ x✓, (4)

provided ✓ > 1� ↵, that is, for any for ✓ satisfying

1� 1

b � BA�1
< ✓ < 1.

(4) implies ⇡(x + x✓)� ⇡(x) ⇠ x✓

log x .
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Putting this into (⇤), we have

 (x + h)� (x)
h

= 1 + O
�
(log x)��

�
+ O

⇣ x

Th
(log x)2

⌘
. (⇤)

Put h = x✓, T = x↵ where ↵ can be any number satisfying

0 < ↵ <
1

b � BA�1
.

Then

 (x + x✓)� (x) ⇠ x✓, (4)

provided ✓ > 1� ↵, that is, for any for ✓ satisfying

1� 1

b � BA�1
< ✓ < 1.

(4) implies ⇡(x + x✓)� ⇡(x) ⇠ x✓

log x .

Akshaa Vatwani (IPENT) Short intervals containing primes July 6, 2023 10 / 32



Step 2: Improving the value of b in (ZD)

Recall (ZD): N(�,T ) ⌧ T b(1��)(logT )B , uniformly for 1

2
 �  1.

Previously known values of b?

Hoheisel: b = 4�.

Titchmarsh: b = 4/(3� 2�).

Ingham proves the following.

Theorem 2

If

⇣
⇣1
2
+ it

⌘
⌧ tc (†)

for some absolute constant c > 0, then

N(�,T ) ⌧ T 2(1+2c)(1��)(logT )5,

as T ! 1, uniformly for 1

2
 �  1.
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Obtaining an improved range of ✓ from Theorem 2

Recall:

Lemma

Suppose (ZF ), (ZD) hold. Then (1) holds for any ✓ satisfying

1� 1

b + A�1B
< ✓ < 1.

Theorem 2 gives (ZD) with b = 4c + 2.
The zero-free region hypothesis (ZF) ⇣(s) 6= 0 in � > 1� A log log t

log t for
t > t0 is known with A arbitrarily large.
Taking A ! 1 and b = 4c + 2 in the Lemma, we obtain

4c + 1

4c + 2
< ✓ < 1

as needed.
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Strategy of the proof of Theorem 2

Let fX (s) = ⇣(s)MX (s)� 1 where MX (s) =
P

n<X
µ(n)
ns .

Observations about fX (s):

For � > 1, we have

fX (s) =
X

n�X

aX (n)

ns
,

with aX (n) =
P

d |n
d<X

µ(d).

For � � 2,

|fX (s)|2 
 
X

n�X

d(n)

n2

!2

⌧ 1

X

as X ! 1.
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Mollified function

Zero deletion Method : Logarithmic . = I - (314×-172

= ¥?nts(¥nM'd)) -1.

(for Recs) > 1)
d-×

9×117=0

ax (n) = 0

for l
- n - ×

> laxcn)1≤ dcn)



Strategy of the proof of Theorem 2

To ‘pull out’ a ⇣ from fX , we consider

h(s) = 1� f 2X (s)

= (1� fX (s))(1 + fX (s))

= ⇣(s)g(s),

where g = MX (2� ⇣MX ).

Observe that N⇣(�,T )  Nh(�,T ).
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hcs) = I - (314×-1FR
= 3. g for
some g.



We use a result of Littlewood which relates Nh(�,T ) for ↵  �  �,

to integrals of the form
R T
0

log |h(↵+ it)|,
R T
0

log |h(� + it)|.
More precisely:

2⇡

Z �

↵
Nh(�,T )d� =

Z �

↵

�
arg h(� + iT )� arg h(�)

�
d�

+

Z T

0

�
log |h(↵+ it)|� log |h(� + it)|

�
dt

where arg h(s) = 0 at s = � and varies continuously along the
segments [�,� + iT ] and [� + iT ,↵+ iT ].
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Strategy continued

Since log |h|  log(1 + |fX |2)  |fX |2,
we get an upper bound for N⇣(�,T ) in terms of second moments of
fX , more precisely in terms of the integrals

Z T

1

|fX (↵+ it)|2dt,
Z T

1

|fX (� + it)|2dt.

To deal with the second moments, we use

Claim

If ⇣(1
2
+ it) ⌧ tc for some absolute constant c > 0, then

Z T

1

|fX (� + it)|2 dt ⌧ T 4c(1��)

X 2��1
(T + X )(log(T + X ))4

uniformly for 1

2
 �  1, T > 1, X > 1.

For now, we assume this Claim.
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h = I - f×2

← ↳ 13>1 .
Use

Yz≤✗ ≤ 1. Dirichlet series



Proof of Theorem 2

Define h = 1� f 2X = ⇣g .

Let ↵ 2 [1
2
, 1],� = 2. Let T1 2 (3, 4),T2 2 (T ,T + 1) be such that h(s)

has no zeros on the segments [↵+ iTj ,� + iTj ], 8j = 1, 2.

Writing Nh(�;T1,T2) = Nh(�,T2)� Nh(�,T1), from the previous
exercise, we get

2⇡

Z �

↵
Nh(�;T1,T2)d� =

Z �

↵

�
arg h(� + iT2)� arg h(� + iT1)

�
d�

+

Z T2

T1

�
log |h(↵+ it)|� log |h(� + it)|

�
dt

= I1 + I2 (say)
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Proof (contd.): Upper bound for I2

We use log |h(s)|  log(1 + |fX (s)|2)  |fX (s)|2 for
s = ↵+ it,� + it = 2 + it.
For the latter, the second observation on fX (s) yields log |h(2 + it)| ⌧ 1

X .
Hence,

|I2| ⌧
Z T2

T1

|fX (↵+ it)|2dt +
Z T2

T1

1

X
dt

⌧ T 4c(1�↵)

X 2↵�1
(T + X )(log(T + X ))4 +

T

X
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Using Eai
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yet to be proved



Proof (contd.): Upper bound for arg h(� + iTj)

Claim

For any � 2 [↵,�], and j = 1, 2, arg h(� + iTj)  (mj + 1)⇡, where mj is
the number of points at which h is purely imaginary on
[2, 2 + iTj ] [ [2 + iTj ,↵+ iTj ].
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Proof (contd.): Upper bound for arg h(� + iTj)

Claim

For any � 2 [↵,�], and j = 1, 2, arg h(� + iTj)  (mj + 1)⇡, where mj is
the number of points at which h is purely imaginary on the segment
[2 + iTj ,↵+ iTj ].
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On -0=2 line T2 %"} p a ztitz
Re his) = Re ( I - fits))

≥ ' - ⇐×ᵈ¥J
>£ for all ✗

suff large. T, z+i+
,

• 21-1-11
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But

mj = #{� 2 [↵, 2] : Re h(� + iTj) = 0}

 #
n
� 2 [1

2
, 2] :

1

2

⇣
h(� + iTj) + h(� � iTj)

⌘
= 0
o

Writing Hj(s) =
1

2

⇣
h(� + iTj) + h(� � iTj)

⌘
, we see that

mj  #{zeros of Hj(s) in the disc |s � 2|  3

2
}

We use an application of Jensen’s formula: If f (z) is analytic on the open
disc D = {z 2 C : |z � z0| < R} and |f (z)|  M on the boundary of D,
then the number of zeros of f in |z � z0| < r is at most

1

log(R/r)
log

✓
M

|f (z0)|

◆
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✓ ↳
= 2
↳ 312

3¥ → a Max this> I
-0≥ '12

I ≤ +≤ T

↳ Hj (2) ≥ 42



We obtain

mr ⌧ log

✓
max

��1

2
,1tT

|h(s)|
◆

⌧ log(T + X ),

using known bounds on ⇣(s).
Thus

|I1| :=
����
Z �

↵

�
arg h(� + iT2)� arg h(� + iT1)

�
d�

����

⌧ (� � ↵)⇡(m2 +m1) ⌧ log(T + X ).
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✗
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Proof (contd.): An upper bound for
R �
↵ Nh(�;T1,T2)d�

Putting together the upper bounds for |I1| and |I2|, we have obtained for
any ↵ 2 [1

2
, 1],

Z
2

↵
Nh(�;T1,T2)d� ⌧ T 4c(1�↵)

X 2↵�1
(T + X )(log(T + X ))4 +

T (logX )2

X

+ log(T + X )

⌧ T 4c(1�↵)

X 2↵�1
(T + X )(log(T + X ))4

Now, for any 0 < � < 1, we have

Z
2

↵
Nh(�;T1,T2)d� �

Z ↵+�

↵
N⇣(�;T1,T2)d� � �N⇣(↵+ �;T ),

since T1 ⇣ 1,T2 ⇣ T .
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2
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Z
2

↵
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T (logX )2

X

+ log(T + X )

⌧ T 4c(1�↵)
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(T + X )(log(T + X ))4
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Z
2

↵
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Proof (contd.): An upper bound for N(�;T )

Putting ↵+ � = �, we have obtained for � 2 [1
2
+ �, 1],

N⇣(�,T ) ⌧ 1

�

T 4c(1��+�)

X 2��1�2�
(T + X )(log(T + X ))4

⌧ T 4c(1��)+2(1��)(logT )5,

taking T = X and � = (logT )�1. For the ‘missing’ region
� 2 [1

2
, 1
2
+ 1

logT ], we use the known bound

N(�,T ) ⌧ T logT

⌧ T 2(1��)(logT )5,

to complete the proof.
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Recall that we used an estimate for the second moment of fX :

Claim

If ⇣(1
2
+ it) ⌧ tc for some absolute constant c > 0, then

Z T

1

|fX (� + it)|2 dt ⌧ T 4c(1��)

X 2��1
(T + X )(log(T + X ))4

uniformly for 1

2
 �  1, T > 1, X > 1.

Ideas to prove this:

Get an estimate for the moment when � = 1 + � where 0 < � < 1:
Z T

0

|fX (1 + � + it)|2dt ⌧
✓
T

X
+ 1

◆
1

�4

Using ⇣(1
2
+ it) ⌧ tc , obtain an estimate when � = 1/2:

Z T

0

|fX (12 + it)|2dt ⌧ T 2c(T + X ) logX
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Bound for
R T
0 |fX (1 + � + it)|2dt

Z T

0

|fX (1 + � + it)|2dt =
X

n,m�X

aX (n)aX (m)

(nm)1+�

Z T

0

(m/n)itdt

 T
X

m=n�X

d(n)2

n2+2�
+ 4

X

n>m�X

d(m)d(n)

(nm)1+� log(n/m)

Using the inequality (log �)�1 < 1 + ��1(log �)�1 < 1 + ��1/2(log �)�1

for � > 1 and the known bound

X

m<nt

d(m)d(n)p
mn log(n/m)

⌧ t(log t)3,

one gets Z T

0

|fX (1 + � + it)|2dt ⌧ 1

�4

✓
1 +

T

X

◆
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-1×67=-2 a×n¥
Recs)>I



Bound for
R T
0 |fX (12 + it)|2dt

Using the inequality (log �)�1 < �(�� 1)�1 < 1+
p
�(�� 1)�1 for � > 1,

one can obtain
Z T

0

|MX (
1

2
+ it)|2dt  T

X

n<X

µ2(n)

n
+ 4

X

m<n<X

|µ(n)||µ(m)|
(mn)1/2 log(n/m)

⌧ T logX +
X

m<n<X

✓
1p
mn

+
1

n �m

◆

⌧ (T + X ) logX

Assuming ⇣(1
2
+ it) ⌧ tc , one deduces that

Z T

0

|fX (12 + it)|2dt ⌧ T 2c(T + X ) logX
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f-✗ = 31×1×-1



Use a convexity result for integrals, by Hardy, Ingham and Polya 2

Theorem

Suppose that in some strip S : ↵ < Re(s) < �,

1 f (z) is analytic

2 f (z) ⌧ exp(ek| Im z|), for some 0 < k < ⇡/(� � ↵), uniformly in S

3 |f (z)| is continuous in any compact subset of the closed strip ↵  Re(s)  �

4 The integral J(x) =
R1
�1 |f (x + iy)|pdy is convergent when x = ↵ or x = �.

Then log J(x) is a convex function of x , so that

J(x)  (J(↵))
��x
��↵ (J(�))

x�↵
��↵

2
Theorems concerning mean values of analytic functions, Proc. Royal Soc. A, 1927
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Let €1s> = fxcs) ( z > 311T) Put

scos(%z) Jt)=fÑI(-+ it) /Zdf
- as



Primes between consecutive large powers

Legendre conjectured that there exists a prime between every pair of
consecutive squares n2 and (n + 1)2. This is unresolved even under
RH.

An easier question: Does there exist a prime between every pair of
consecutive cubes?
This is easier because the interval (x3, (x + 1)3) contains the interval
(y2, (y + 1)2) if we take y = x3/2.

In general, the existence of primes between consecutive m-th powers
implies the existence of primes between consecutive (m+1)th powers.

To obtain a prime between nm and (n + 1)m for all su�ciently large
n, it is su�cient to show that there exists a prime p in the interval

(x , x +mx
m�1

m ) for all x su�ciently large
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[
✗= nm (×

, @
"m -117m)

( ×
, ✗+ mxFn -1 - -

. + mx"m+1)



To get primes between consecutive cubes n3 and (n + 1)3 with n
su�ciently large, we need

⇡(x + 3x2/3)� ⇡(x) > 0

for all x su�ciently large.
Ingham’s result gives

⇣(1
2
+ it) ⌧ tc =) ⇡(x + x✓)� ⇡(x) > 0

for all x su�ciently large, with ✓ = 4c+1

4c+2
.

Let’s use the known exponent c = 1

6
+ ✏ to get ✓ = 5

8
+ ✏.

Since (x , x + 3x2/3] ✓ (x , x + x5/8+✏], this gives primes between
consecutive cubes for all su�ciently large cubes.

Akshaa Vatwani (IPENT) Short intervals containing primes July 6, 2023 30 / 32



Explicit short-interval results

Dudek (2016): There exists at least one prime between n3 and
(n + 1)3 for all n � exp(e33.3).
There is at least one prime between nm and (n + 1)m for all n � 1
with m = 5 · 109.
Cully-Hugill (2023): There exists at least one prime between n3 and
(n + 1)3 for all n � exp(e32.537).

Cully-Hugill and Johnston (2023): There is at least one prime
between n140 and (n + 1)140 for all n � 1.
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Thank You
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