Short intervals containing primes

Akshaa Vatwani
Indian Institute of Technology, Gandhinagar

July 6, 2023

BIRS at University of British Columbia-Okanagan Kelowna, BC, Canada

Introduction

- The prime number theorem (PNT):

$$
\pi(x):=\#\{\text { primes } p \leq x\} \sim \frac{x}{\log x}
$$

as $x \rightarrow \infty$.

- Expectation: For some $0<\theta<1$, we would like to have \#primes in

$$
\underset{\left(x, x+x^{\theta}\right]}{\text { primes in }}=\pi\left(x+x^{\theta}\right)-\pi(x) \sim \frac{x+x^{\theta}}{\log \left(x+x^{\theta}\right)}-\frac{x}{\log x}
$$

- Since

$$
\frac{x+x^{\theta}}{\log \left(x+x^{\theta}\right)}-\frac{x}{\log x}=(1+o(1)) \frac{x^{\theta}}{\log x}
$$

Question: How small can we make θ so that

$$
\begin{equation*}
\pi\left(x+x^{\theta}\right)-\pi(x) \sim \frac{x^{\theta}}{\log x} \tag{1}
\end{equation*}
$$

holds as $x \rightarrow \infty$?

Goal

- Let p_{n} denote the nth prime. If (1) holds for some θ, then we also have

$$
\begin{equation*}
p_{n+1}-p_{n} \ll p_{n}^{\theta} \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$.

- Hoheisel was the first to prove the existence of a $\theta<1$ such that (1) (and hence (2)) holds.
- Hoheisel: $\theta=32999 / 33000$, Heilbronn: $\theta=249 / 250$, Tchudakoff: $\theta=\frac{3}{4}+\epsilon$
- Our goal today is to prove Ingham's result ${ }^{1}$:

Theorem 1 (Ingham)
If there exists $c>0$ such that $\zeta\left(\frac{1}{2}+i t\right) \ll t^{c}$ as $t \rightarrow \infty$, then (1) holds for any θ satisfying

$$
\frac{4 c+1}{4 c+2}<\theta<1
$$

${ }^{1}$ On the difference between consecutive primes, The Quarterly Journal of Mathematics, 1937.

Some Remarks

- Even the classical value $c=\frac{1}{4}+\epsilon$ reduces θ to $\frac{2}{3}+\epsilon$.
- The Hardy-Littlewood value $c=\frac{1}{6}+\epsilon$ gives $\theta=\frac{5}{8}+\epsilon$.
- The Lindelöf hypothesis conjectures that $\zeta\left(\frac{1}{2}+i t\right) \ll t^{\epsilon}$ for any $\epsilon>0$. This would give $\theta=\frac{1}{2}+\epsilon$.
This is comparable to Cramer's result that

$$
p_{n+1}-p_{n} \ll p_{n}^{1 / 2} \log p_{n},
$$

under the Riemann hypothesis.

Step 1: Connecting θ to zeros of $\zeta(s)$

Consider the following hypotheses.
$(Z F)$ "Zero free region": $\zeta(s)$ has no zeros in a region of the type

$$
\sigma>1-A \frac{\log \log t}{\log t}, \quad t>t_{0}
$$

where $A>0, t_{0}>3$ are some parameters.
(ZD) "Zero-density result":
$N(\sigma, T):=\#\{$ zeros $\rho=\beta+i \gamma$ of $\zeta(s): \beta \geq \sigma, 0<\gamma \leq T\}$ satisfies

$$
N(\sigma, T) \ll T^{b(1-\sigma)}(\log T)^{B}
$$

uniformly for $\frac{1}{2} \leq \sigma \leq 1$ as $T \rightarrow \infty$ for some parameters $b>0, B \geq 0$.

Step 1: Connecting θ to zeros of $\zeta(s)$

Consider the following hypotheses.
$(Z F)$ "Zero free region": $\zeta(s)$ has no zeros in a region of the type

$$
\sigma>1-A \frac{\log \log t}{\log t}, \quad t>t_{0}
$$

where $A>0, t_{0}>3$ are some parameters.
(ZD) "Zero-density result":
$N(\sigma, T):=\#\{$ zeros $\rho=\beta+i \gamma$ of $\zeta(s): \beta \geq \sigma, 0<\gamma \leq T\}$ satisfies

$$
N(\sigma, T) \ll T^{b(1-\sigma)}(\log T)^{B}
$$

uniformly for $\frac{1}{2} \leq \sigma \leq 1$ as $T \rightarrow \infty$ for some parameters $b>0, B \geq 0$.

Lemma

Suppose (ZF), (ZD) hold. Then (1) holds for any θ satisfying

$$
1-\frac{1}{b+A^{-1} B}<\theta<1 .
$$

Proof of Lemma

Let $\Psi(x)=\sum_{n \leq x} \Lambda(n)$. We use a truncated version of the Riemann-von Mangoldt explicit formula which connects ψ to non-trivial zeros ρ of $\zeta(s)$:

$$
\Psi(x)=x-\sum_{\substack{\rho=\beta+i \gamma \\|\gamma| \leq T}} \frac{x^{\rho}}{\rho}+O\left(\frac{x}{T}(\log x)^{2}\right),
$$

uniformly for $3 \leq T \leq x$ as $x \rightarrow \infty$.
This gives for $0<h \leq x$,

We have obtained

$$
\begin{equation*}
\frac{\Psi(x+h)-\Psi(x)}{h}=1+O\left(\sum_{|\gamma| \leq T} x^{\beta-1}\right)+O\left(\frac{x}{T h}(\log x)^{2}\right) . \tag{*}
\end{equation*}
$$

Goal: To show RHS ~ 1 for $h=x^{\theta}$, with $1-\left(b+A^{-1} B\right)^{-1}<\theta<1$ and T chosen suitably.
Next step: Connecting to $N(\sigma, T)$: We write

$$
\begin{align*}
& \sum_{\substack{\rho=\beta+i t \\
|\gamma| \leq T}} x^{\beta-1}=-2 \int_{0}^{1} x^{\sigma-1} d_{\sigma} N(\sigma, T) \tag{3}\\
& =2 \sum_{0<\beta<1} x^{\beta-1} \sum_{\substack{\rho: \operatorname{Res}=\beta \\
0 \leqslant \operatorname{Im} S \leq T}} 1 \\
& \quad \approx \lim _{\epsilon \rightarrow 0} N(\beta, T)-N(\beta+\epsilon, T) \approx-d_{\sigma} N(\sigma, T) \mid
\end{align*}
$$

We have obtained

$$
\begin{equation*}
\frac{\Psi(x+h)-\Psi(x)}{h}=1+O\left(\sum_{|\gamma| \leq T} x^{\beta-1}\right)+O\left(\frac{x}{T h}(\log x)^{2}\right) . \tag{*}
\end{equation*}
$$

Goal: To show RHS ~ 1 for $h=x^{\theta}$, with $1-\left(b+A^{-1} B\right)^{-1}<\theta<1$ and T chosen suitably.
Next step: Connecting to $N(\sigma, T)$: We write

$$
\begin{gather*}
\sum_{\substack{\rho=\beta+i t \\
|\gamma| \leq T}} x^{\beta-1}=-2 \int_{0}^{1} x^{\sigma-1} d_{\sigma} N(\sigma, T) \tag{3}\\
\underbrace{-\left.2 x^{\sigma-1} N(\sigma, T)\right|_{0} ^{1}}_{\left.2 x^{-1} N(O, T) T\right)}+2 \int_{0}^{1} N(\sigma, T) x^{\sigma-1}(\log x) d \sigma
\end{gather*}
$$

We have obtained

$$
\sum_{|\gamma| \leq T} x^{\beta-1}=2 x^{-1} N(0, T)+2 \int_{0}^{1} N(\sigma, T) x^{\sigma-1} \log x d \sigma
$$

We use:

1. The known estimate $N(0, T) \ll T \log T$.
2. Hypothesis (ZF): $\zeta(s) \neq 0$ for $\sigma>1-A \frac{\log \log t}{\log t}, \quad t>t_{0}>3$, which means that $\exists T_{0}>3$ such that

$$
N(\sigma, T)=0 \text { for } \sigma>1-\eta(T), T \geq T_{0}
$$

where $\eta(T)=A(\log \log T) / \log T$.

We have obtained

$$
\sum_{|\gamma| \leq T} x^{\beta-1}=2 x^{-1} N(0, T)+2 \int_{0}^{1} N(\sigma, T) x^{\sigma-1} \log x d \sigma
$$

We use:

1. The known estimate $N(0, T) \ll T \log T$.
2. Hypothesis (ZF): $\zeta(s) \neq 0$ for $\sigma>1-A \frac{\log \log t}{\log t}, \quad t>t_{0}>3$, which means that $\exists T_{0}>3$ such that

$$
N(\sigma, T)=0 \text { for } \sigma>1-\eta(T), T \geq T_{0}
$$

where $\eta(T)=A(\log \log T) / \log T$.
This gives, uniformly for $x \geq T \geq T_{0}$,

$$
\sum_{|\gamma| \leq T} x^{\beta-1} \ll \frac{T \log T}{x}+\int_{0}^{1-\eta(T)} N(\sigma, T) x^{\sigma-1} \log x d \sigma
$$

Using Hypothesis (ZD), i.e. $N(\sigma, T) \ll T^{b(1-\sigma)}(\log T)^{B}$, we have

$$
\begin{aligned}
& \sum_{|\gamma| \leq T} x^{\beta-1} \ll \frac{T \log T}{x}+\int_{0}^{1-\eta(T)}\left(\frac{T^{b}}{x}\right)^{1-\sigma}(\log T)^{B} \log x d \sigma . \\
& \text { Take } T=x^{\alpha}, \alpha<1 .
\end{aligned}
$$

$$
\ll(\log x)^{-\delta}
$$

Using Hypothesis (ZD), i.e. $N(\sigma, T) \ll T^{b(1-\sigma)}(\log T)^{B}$, we have

$$
\begin{aligned}
\sum_{|\gamma| \leq T} x^{\beta-1} & \ll \frac{T \log T}{x}+\int_{0}^{1-\eta(T)}\left(\frac{T^{b}}{x}\right)^{1-\sigma}(\log T)^{B} \log x d \sigma \\
& \ll x^{\alpha-1} \log x+(\log x)^{B}\left[x^{(\alpha b-1)(1-\sigma)}\right]_{0}^{1-\eta\left(x^{\alpha}\right)} \\
& \ll(\log x)^{-\delta}
\end{aligned}
$$

with $\delta=A\left(\alpha^{-1}-b\right)-B$.
To ensure $\delta>0$, we take $\alpha<\frac{1}{b+B A^{-1}}$.

Putting this into (*), we have

$$
\begin{equation*}
\frac{\Psi(x+h)-\Psi(x)}{h}=1+O\left((\log x)^{-\delta}\right)+O\left(\frac{x}{T h}(\log x)^{2}\right) . \tag{*}
\end{equation*}
$$

Put $h=x^{\theta}, T=x^{\alpha}$ where α can be any number satisfying

$$
0<\alpha<\frac{1}{b-B A^{-1}}
$$

Then

provided $\theta>1-\alpha$, that is, for any for θ satisfying

Putting this into (*), we have

$$
\begin{equation*}
\frac{\Psi(x+h)-\Psi(x)}{h}=1+O\left((\log x)^{-\delta}\right)+O\left(\frac{x}{T h}(\log x)^{2}\right) . \tag{*}
\end{equation*}
$$

Put $h=x^{\theta}, T=x^{\alpha}$ where α can be any number satisfying

$$
0<\alpha<\frac{1}{b-B A^{-1}}
$$

Then

$$
\begin{equation*}
\Psi\left(x+x^{\theta}\right)-\Psi(x) \sim x^{\theta} \tag{4}
\end{equation*}
$$

provided $\theta>1-\alpha$, that is, for any for θ satisfying

$$
1-\frac{1}{b-B A^{-1}}<\theta<1
$$

(4) implies $\pi\left(x+x^{\theta}\right)-\pi(x) \sim \frac{x^{\theta}}{\log x}$.

Step 2: Improving the value of b in (ZD)

- Recall (ZD): $N(\sigma, T) \ll T^{b(1-\sigma)}(\log T)^{B}$, uniformly for $\frac{1}{2} \leq \sigma \leq 1$.
- Previously known values of b ?
- Hoheisel: $b=4 \sigma$.
- Titchmarsh: $b=4 /(3-2 \sigma)$.

Step 2: Improving the value of b in (ZD)

- Recall (ZD): $N(\sigma, T) \ll T^{b(1-\sigma)}(\log T)^{B}$, uniformly for $\frac{1}{2} \leq \sigma \leq 1$.
- Previously known values of b ?
- Hoheisel: $b=4 \sigma$.
- Titchmarsh: $b=4 /(3-2 \sigma)$.

Ingham proves the following.
Theorem 2
If

$$
\zeta\left(\frac{1}{2}+i t\right) \ll t^{c}
$$

for some absolute constant $c>0$, then

$$
N(\sigma, T) \ll T^{2(1+2 c)(1-\sigma)}(\log T)^{5}
$$

as $T \rightarrow \infty$, uniformly for $\frac{1}{2} \leq \sigma \leq 1$.

Obtaining an improved range of θ from Theorem 2

Recall:
Lemma
Suppose (ZF), (ZD) hold. Then (1) holds for any θ satisfying

$$
1-\frac{1}{b+A^{-1} B}<\theta<1
$$

Theorem 2 gives (ZD) with $b=4 c+2$.
The zero-free region hypothesis (ZF) $\zeta(s) \neq 0$ in $\sigma>1-A \frac{\log \log t}{\log t}$ for $t>t_{0}$ is known with A arbitrarily large.
Taking $A \rightarrow \infty$ and $b=4 c+2$ in the Lemma, we obtain

$$
\frac{4 c+1}{4 c+2}<\theta<1
$$

as needed.

Strategy of the proof of Theorem 2
Mollified function
zero detection Method: Logarithmic.
Let $f_{X}(s)=\zeta(s) \overline{M_{X}(s)}-1$ where $M_{X}(s)=\sum_{n<X} \frac{\mu(n)}{n^{s}}$. $=1-\left(3 M_{x}-1\right)^{2}$

$$
\left.=\sum_{n=1}^{\infty} \frac{1}{n^{s}}\left(\sum_{d i n}^{n} \mu(d)\right)-1 \quad \text { (for } \operatorname{Re}(s)>1\right)
$$

Observations about $f_{X}(s)$:

- For $\sigma>1$, we have

$$
f_{X}(s)=\sum_{n \geq X} \frac{a_{X}(n)}{n^{s}}
$$

$$
\begin{aligned}
& a_{x}(1)=0 \\
& a_{x}(n)=0
\end{aligned}
$$

for $1<n<x$
with $a_{X}(n)=\sum_{\substack{d \mid n \\ d<x}} \mu(d), \quad\left|a_{x}(n)\right| \leq d(n)$

- For $\sigma \geq 2$,

$$
\left|f_{X}(s)\right|^{2} \leq\left(\sum_{n \geq X} \frac{d(n)}{n^{2}}\right)^{2} \ll \frac{1}{X}
$$

as $X \rightarrow \infty$.

Strategy of the proof of Theorem 2

$$
\begin{aligned}
h(s) & =1-\left(3 M_{x}-1\right)^{2 R} \\
& =3 \cdot \mathrm{~g} \text { for } \\
& \text { some } \mathrm{g} .
\end{aligned}
$$

- To 'pull out' a ζ from f_{X}, we consider

$$
\begin{aligned}
h(s) & =1-f_{X}^{2}(s) \\
& =\left(1-f_{X}(s)\right)\left(1+f_{X}(s)\right) \\
& =\zeta(s) g(s)
\end{aligned}
$$

where $g=M_{X}\left(2-\zeta M_{X}\right)$.

- Observe that $N_{\zeta}(\sigma, T) \leq N_{h}(\sigma, T)$.
- We use a result of Littlewood which relates $N_{h}(\sigma, T)$ for $\alpha \leq \sigma \leq \beta$, to integrals of the form $\int_{0}^{T} \log |h(\alpha+i t)|, \quad \int_{0}^{T} \log |h(\beta+i t)|$. More precisely:

$$
\begin{aligned}
2 \pi \int_{\alpha}^{\beta} N_{h}(\sigma, T) d \sigma & =\int_{\alpha}^{\beta}(\arg h(\sigma+i T)-\arg h(\sigma)) d \sigma \\
& +\int_{0}^{T}(\log |h(\alpha+i t)|-\log |h(\beta+i t)|) d t
\end{aligned}
$$

where $\arg h(s)=0$ at $s=\beta$ and varies continuously along the segments $[\beta, \beta+i T]$ and $[\beta+i T, \alpha+i T]$.

Strategy continued

$$
h=1-f_{x}^{2}
$$

- Since $\log |h| \leq \log \left(1+\left|f_{X}\right|^{2}\right) \leq\left|f_{X}\right|^{2}$, we get an upper bound for $N_{\zeta}(\sigma, T)$ in terms of second moments of f_{X}, more precisely in terms of the integrals

$$
\left.\int_{1}^{T}\left|f_{X}(\alpha+i t)\right|^{2} d t, \quad \int_{1}^{1 / 2 \leqslant \alpha \leqslant 1 .}\left|f_{X}\right| \beta+i t\right)\left.\right|^{2} d t .
$$

- To deal with the second moments, we use

Claim

If $\zeta\left(\frac{1}{2}+i t\right) \ll t^{c}$ for some absolute constant $c>0$, then

$$
\int_{1}^{T}\left|f_{X}(\sigma+i t)\right|^{2} d t \ll \frac{T^{4 c(1-\sigma)}}{X^{2 \sigma-1}}(T+X)(\log (T+X))^{4}
$$

uniformly for $\frac{1}{2} \leq \sigma \leq 1, T>1, X>1$.
For now, we assume this Claim.

Proof of Theorem 2

Define $h=1-f_{X}^{2}=\zeta g$.

Let $\alpha \in\left[\frac{1}{2}, 1\right], \beta=2$. Let $T_{1} \in(3,4), T_{2} \in(T, T+1)$ be such that $h(s)$ has no zeros on the segments $\left[\alpha+i T_{j}, \beta+i T_{j}\right], \forall j=1,2$.

Writing $N_{h}\left(\sigma ; T_{1}, T_{2}\right)=N_{h}\left(\sigma, T_{2}\right)-N_{h}\left(\sigma, T_{1}\right)$, from the previous exercise, we get

$$
\begin{aligned}
2 \pi \int_{\alpha}^{\beta} N_{h}\left(\sigma ; T_{1}, T_{2}\right) d \sigma & =\int_{\alpha}^{\beta}\left(\arg h\left(\sigma+i T_{2}\right)-\arg h\left(\sigma+i T_{1}\right)\right) d \sigma \\
& +\int_{T_{1}}^{T_{2}}(\log |h(\alpha+i t)|-\log |h(\beta+i t)|) d t \\
& =I_{1}+I_{2} \quad \text { (say) }
\end{aligned}
$$

Proof (contd.): Upper bound for I_{2}

$$
\begin{aligned}
\left|f_{x}(2+i t)\right|^{2} & \left.\leq\left(\sum_{n>x}^{\infty} d(n)\right)^{2}\right)^{n^{2}} \\
& \ll \frac{1}{x}
\end{aligned}
$$

We use $\log |h(s)| \leq \log \left(1+\left|f_{X}(s)\right|^{2}\right) \leq\left|f_{X}(s)\right|^{2}$ for $s=\alpha+i t, \beta+i t=2+i t$.
For the latter, the second observation on $f_{X}(s)$ yields $\log |h(2+i t)| \ll \frac{1}{X}$. Hence,

$$
\begin{aligned}
&\left|I_{2}\right| \ll \int_{T_{1}}^{T_{2}}\left|f_{X}(\alpha+i t)\right|^{2} d t+\int_{T_{1}}^{T_{2}} \frac{1}{X} d t \\
& \ll \frac{T^{4 c(1-\alpha)}}{X^{2 \alpha-1}}(T+X)(\log (T+X))^{4}+\frac{T}{X} \\
& \downarrow \\
& \text { using Claim .yet to be proved }
\end{aligned}
$$

Proof (contd.): Upper bound for $\arg h\left(\sigma+i T_{j}\right)$

Claim

For any $\sigma \in[\alpha, \beta]$, and $j=1,2$, arg $h\left(\sigma+i T_{j}\right) \leq\left(m_{j}+1\right) \pi$, where m_{j} is the number of points at which h is purely imaginary on $\left[2,2+i T_{j}\right] \cup\left[2+i T_{j}, \alpha+i T_{j}\right]$.

Proof (contd.): Upper bound for $\arg h\left(\sigma+i T_{j}\right)$
Claim
For any $\sigma \in[\alpha, \beta]$, and $j=1,2$, $\arg h\left(\sigma+i T_{j}\right) \leq\left(m_{j}+1\right) \pi$, where m_{j} is the number of points at which h is purely imaginary on the segment $\left[2+i T_{j}, \alpha+i T_{j}\right]$.
on $\sigma=2$ line

$$
\begin{aligned}
\operatorname{Re} h(s) & =\operatorname{Re}\left(1-f_{x}^{2}(s)\right) \\
& \geqslant 1-\left(\sum_{n>x} \frac{d(n)}{n^{2}}\right)^{2}
\end{aligned}
$$

$$
>\frac{1}{2} \text { for all } x
$$ cuff large

But

$$
\begin{aligned}
m_{j} & =\#\left\{\sigma \in[\alpha, 2]: \operatorname{Re} h\left(\sigma+i T_{j}\right)=0\right\} \\
& \leq \#\left\{\sigma \in\left[\frac{1}{2}, 2\right]: \frac{1}{2}\left(h\left(\sigma+i T_{j}\right)+h\left(\sigma-i T_{j}\right)\right)=0\right\}
\end{aligned}
$$

Writing $H_{j}(s)=\frac{1}{2}\left(h\left(\sigma+i T_{j}\right)+h\left(\sigma-i T_{j}\right)\right)$, we see that

$$
m_{j} \leq \#\left\{\text { zeros of } H_{j}(s) \text { in the disc }|s-2| \leq \frac{3}{2}\right\}
$$

We use an application of Jensen's formula: If $f(z)$ is analytic on the open disc $D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$ and $|f(z)| \leq M$ on the boundary of D, then the number of zeros of f in $\left|z-z_{0}\right|<\underset{\rightarrow=2}{r}$ is at most

$$
\frac{3.5}{2}
$$

$$
\left.\frac{1}{\log (R / r)} \log \left(\frac{M}{\left|f\left(z_{0}\right)\right|}\right)\right)_{\substack{=2 / 2} \max _{\substack{\sigma \geqslant 1 / 2 \\ 1 \leqslant t \leq T}}|h(s)|}^{\substack{ \\\hline j \\(Q) \geqslant 1 / 2}} \mid
$$

$$
\begin{aligned}
& h=1-f_{x}^{2} \\
& f_{x}=3 M_{x}-1
\end{aligned}
$$

We obtain

$$
m_{\dot{y}} \ll \log \left(\max _{\sigma \geq \frac{1}{2}, 1 \leq t \leq T}|h(s)|\right) \ll \log (T+X)
$$

using known bounds on $\zeta(s)$.
Thus

$$
\begin{aligned}
\left|I_{1}\right| & :=\left|\int_{\alpha}^{\beta}\left(\arg h\left(\sigma+i T_{2}\right)-\arg h\left(\sigma+i T_{1}\right)\right) d \sigma\right| \\
& \ll(\beta-\alpha) \pi\left(m_{2}+m_{1}\right) \ll \log (T+X)
\end{aligned}
$$

Proof (contd.): An upper bound for $\int_{\alpha}^{\beta} N_{h}\left(\sigma ; T_{1}, T_{2}\right) d \sigma$

Putting together the upper bounds for $\left|I_{1}\right|$ and $\left|I_{2}\right|$, we have obtained for any $\alpha \in\left[\frac{1}{2}, 1\right]$,

$$
\begin{aligned}
\int_{\alpha}^{2} N_{h}\left(\sigma ; T_{1}, T_{2}\right) d \sigma & \ll \frac{T^{4 c(1-\alpha)}}{X^{2 \alpha-1}}(T+X)(\log (T+X))^{4}+\frac{T(\log \mathcal{X}) \neq y}{X} \\
& +\log (T+X)
\end{aligned}
$$

Now, for any $0<\delta<1$, we have

Proof (contd.): An upper bound for $\int_{\alpha}^{\beta} N_{h}\left(\sigma ; T_{1}, T_{2}\right) d \sigma$

Putting together the upper bounds for $\left|\Lambda_{1}\right|$ and $\left|I_{2}\right|$, we have obtained for any $\alpha \in\left[\frac{1}{2}, 1\right]$,

$$
\begin{aligned}
\int_{\alpha}^{2} N_{h}\left(\sigma ; T_{1}, T_{2}\right) d \sigma & \ll \frac{T^{4 c(1-\alpha)}}{X^{2 \alpha-1}}(T+X)(\log (T+X))^{4}+\frac{T(\log X)^{2}}{X} \\
& +\log (T+X) \\
& \ll \frac{T^{4 c(1-\alpha)}}{X^{2 \alpha-1}}(T+X)(\log (T+X))^{4}
\end{aligned}
$$

Now, for any $0<\delta<1$, we have $\left(\delta=\frac{1}{\log T}\right)$

$$
\int_{\alpha}^{2} N_{h}\left(\sigma ; T_{1}, T_{2}\right) d \sigma \geq \int_{\alpha}^{\alpha+\delta} N_{\zeta}\left(\sigma ; T_{1}, T_{2}\right) d \sigma \gg \delta N_{\zeta}(\alpha+\delta ; T),
$$

since $T_{1} \asymp 1, T_{2} \asymp T$.

Proof (contd.): An upper bound for $N(\sigma ; T)$

Putting $\alpha+\delta=\sigma$, we have obtained for $\sigma \in\left[\frac{1}{2}+\delta, 1\right]$,

$$
\begin{aligned}
N_{\zeta}(\sigma, T) & \ll \frac{1}{\delta} \frac{T^{4 c(1-\sigma+\delta)}}{X^{2 \sigma-1-2 \delta}}(T+X)(\log (T+X))^{4} \\
& \ll T^{4 c(1-\sigma)+2(1-\sigma)}(\log T)^{5},
\end{aligned}
$$

taking $T=X$ and $\delta=(\log T)^{-1}$. For the 'missing' region $\sigma \in\left[\frac{1}{2}, \frac{1}{2}+\frac{1}{\log T}\right]$, we use the known bound

$$
\begin{aligned}
N(\sigma, T) & \ll T \log T \\
& \ll T^{2(1-\sigma)}(\log T)^{5}
\end{aligned}
$$

to complete the proof.

Recall that we used an estimate for the second moment of f_{X} :

$$
f_{x}=3 M_{x}-1
$$

Claim
If $\zeta\left(\frac{1}{2}+i t\right) \ll t^{c}$ for some absolute constant $c>0$, then

$$
\int_{1}^{T}\left|f_{X}(\sigma+i t)\right|^{2} d t \ll \frac{T^{4 c(1-\sigma)}}{X^{2 \sigma-1}}(T+X)(\log (T+X))^{4}
$$

uniformly for $\frac{1}{2} \leq \sigma \leq 1, T>1, X>1$.
Ideas to prove this:

- Get an estimate for the moment when $\sigma=1+\delta$ where $0<\delta<1$:

$$
\int_{0}^{T}\left|f_{X}(1+\delta+i t)\right|^{2} d t \ll\left(\frac{T}{X}+1\right) \frac{1}{\delta^{4}}
$$

- Using $\zeta\left(\frac{1}{2}+i t\right) \ll t^{c}$, obtain an estimate when $\sigma=1 / 2$:

$$
\int_{0}^{T}\left|f_{X}\left(\frac{1}{2}+i t\right)\right|^{2} d t \ll T^{2 c}(T+X) \log X
$$

Bound for $\int_{0}^{T}\left|f_{X}(1+\delta+i t)\right|^{2} d t$

$$
\begin{aligned}
\int_{0}^{T}\left|f_{X}(1+\delta+i t)\right|^{2} d t & =\sum_{n, m \geq X} \frac{a_{X}(n) a_{X}(m)}{(n m)^{1+\delta}} \int_{0}^{T}(m / n)^{i t} d t \\
& \leq T \sum_{m=n \geq X} \frac{d(n)^{2}}{n^{2+2 \delta}}+4 \sum_{n>m \geq X} \frac{d(m) d(n)}{(n m)^{1+\delta} \log (n / m)}
\end{aligned}
$$

Using the inequality $(\log \lambda)^{-1}<1+\lambda^{-1}(\log \lambda)^{-1}<1+\lambda^{-1 / 2}(\log \lambda)^{-1}$ for $\lambda>1$ and the known bound

$$
\sum_{m<n \leq t} \frac{d(m) d(n)}{\sqrt{m n} \log (n / m)} \ll t(\log t)^{3}
$$

one gets

$$
\int_{0}^{T}\left|f_{X}(1+\delta+i t)\right|^{2} d t \ll \frac{1}{\delta^{4}}\left(1+\frac{T}{X}\right)
$$

Bound for $\int_{0}^{T}\left|f_{X}\left(\frac{1}{2}+i t\right)\right|^{2} d t \quad f_{X}=3 M_{x}-1$
Using the inequality $(\log \lambda)^{-1}<\lambda(\lambda-1)^{-1}<1+\sqrt{\lambda}(\lambda-1)^{-1}$ for $\lambda>1$, one can obtain

$$
\begin{aligned}
\int_{0}^{T}\left|M_{X}\left(\frac{1}{2}+i t\right)\right|^{2} d t & \leq T \sum_{n<X} \frac{\mu^{2}(n)}{n}+4 \sum_{m<n<x} \frac{|\mu(n)||\mu(m)|}{(m n)^{1 / 2} \log (n / m)} \\
& \ll T \log X+\sum_{m<n<X}\left(\frac{1}{\sqrt{m n}}+\frac{1}{n-m}\right) \\
& \ll(T+X) \log X
\end{aligned}
$$

Assuming $\zeta\left(\frac{1}{2}+i t\right) \ll t^{c}$, one deduces that

$$
\int_{0}^{T}\left|f_{X}\left(\frac{1}{2}+i t\right)\right|^{2} d t \ll T^{2 c}(T+X) \log X
$$

- Use a convexity result for integrals, by Hardy, Ingham and Polya ${ }^{2}$

Theorem

Suppose that in some strip $S: \alpha<\operatorname{Re}(s)<\beta$,
(1) $f(z)$ is analytic
(2) $f(z) \ll \exp \left(e^{k|\operatorname{lm} z|}\right)$, for some $0<k<\pi /(\beta-\alpha)$, uniformly in S
(3) $|f(z)|$ is continuous in any compact subset of the closed strip $\alpha \leq \operatorname{Re}(s) \leq \beta$
(9) The integral $J(x)=\int_{-\infty}^{\infty}|f(x+i y)|^{p} d y$ is convergent when $x=\alpha$ or $x=\beta$. Then $\log J(x)$ is a convex function of x, so that

$$
J(x) \leq(J(\alpha))^{\frac{\beta-x}{\beta-\alpha}}(J(\beta))^{\frac{x-\alpha}{\beta-\alpha}}
$$

Let $\Phi(s)=\frac{s-1}{s \cos (s / 2 \tau)} f_{x}(s) \quad(\tau>3 / \pi) \quad$ Put $\quad J(\sigma)=\int_{-\infty}^{\infty}|\Phi(\sigma+i t)|^{2} d t$.

[^0]
Primes between consecutive large powers

- Legendre conjectured that there exists a prime between every pair of consecutive squares n^{2} and $(n+1)^{2}$. This is unresolved even under RH.
- An easier question: Does there exist a prime between every pair of consecutive cubes?
This is easier because the interval $\left(x^{3},(x+1)^{3}\right)$ contains the interval $\left(y^{2},(y+1)^{2}\right)$ if we take $y=x^{3 / 2}$.
- In general, the existence of primes between consecutive m-th powers implies the existence of primes between consecutive $(m+1)$ th powers.
- To obtain a prime between n^{m} and $(n+1)^{m}$ for all sufficiently large n, it is sufficient to show that there exists a prime p in the interval

Primes between consecutive large powers

- Legendre conjectured that there exists a prime between every pair of consecutive squares n^{2} and $(n+1)^{2}$. This is unresolved even under RH.
- An easier question: Does there exist a prime between every pair of consecutive cubes?
This is easier because the interval $\left(x^{3},(x+1)^{3}\right)$ contains the interval $\left(y^{2},(y+1)^{2}\right)$ if we take $y=x^{3 / 2}$.
- In general, the existence of primes between consecutive m-th powers implies the existence of primes between consecutive $(m+1)$ th powers.
n, it is sufficient to show that there exists a prime p in the interval

Primes between consecutive large powers

- Legendre conjectured that there exists a prime between every pair of consecutive squares n^{2} and $(n+1)^{2}$. This is unresolved even under RH.
- An easier question: Does there exist a prime between every pair of consecutive cubes?
This is easier because the interval $\left(x^{3},(x+1)^{3}\right)$ contains the interval $\left(y^{2},(y+1)^{2}\right)$ if we take $y=x^{3 / 2}$.
- In general, the existence of primes between consecutive m-th powers implies the existence of primes between consecutive $(m+1)$ th powers.
- To obtain a prime between n^{m} and $(n+1)^{m}$ for all sufficiently large n, it is sufficient to show that there exists a prime p in the interval

$$
\begin{array}{lc}
x=n^{m} & \left(x,\left(x^{1 / m}+1\right)^{m}\right) \\
& \left(x, x+m x^{\frac{m-1}{m}}+\cdots+m x^{1 / m}+1\right) \\
& \left(x, x+m x^{\frac{m-1}{m}}\right) \text { for all } x \text { sufficiently large }
\end{array}
$$

To get primes between consecutive cubes n^{3} and $(n+1)^{3}$ with n sufficiently large, we need

$$
\pi\left(x+3 x^{2 / 3}\right)-\pi(x)>0
$$

for all x sufficiently large.
Ingham's result gives

$$
\zeta\left(\frac{1}{2}+i t\right) \ll t^{c} \Longrightarrow \pi\left(x+x^{\theta}\right)-\pi(x)>0
$$

for all x sufficiently large, with $\theta=\frac{4 c+1}{4 c+2}$.
Let's use the known exponent $c=\frac{1}{6}+\epsilon$ to get $\theta=\frac{5}{8}+\epsilon$.
Since $\left(x, x+3 x^{2 / 3}\right] \subseteq\left(x, x+x^{5 / 8+\epsilon}\right]$, this gives primes between consecutive cubes for all sufficiently large cubes.

Explicit short-interval results

- Dudek (2016): There exists at least one prime between n^{3} and $(n+1)^{3}$ for all $n \geq \exp \left(e^{33.3}\right)$.
There is at least one prime between n^{m} and $(n+1)^{m}$ for all $n \geq 1$ with $m=5 \cdot 10^{9}$.
- Cully-Hugill (2023): There exists at least one prime between n^{3} and $(n+1)^{3}$ for all $n \geq \exp \left(e^{32.537}\right)$.
- Cully-Hugill and Johnston (2023): There is at least one prime between n^{140} and $(n+1)^{140}$ for all $n \geq 1$.

Explicit short-interval results

- Dudek (2016): There exists at least one prime between n^{3} and $(n+1)^{3}$ for all $n \geq \exp \left(e^{33.3}\right)$.
There is at least one prime between n^{m} and $(n+1)^{m}$ for all $n \geq 1$ with $m=5 \cdot 10^{9}$.
- Cully-Hugill (2023): There exists at least one prime between n^{3} and $(n+1)^{3}$ for all $n \geq \exp \left(e^{32.537}\right)$.
- Cully-Hugill and Johnston (2023): There is at least one prime between n^{140} and $(n+1)^{140}$ for all $n \geq 1$.

Explicit short-interval results

- Dudek (2016): There exists at least one prime between n^{3} and $(n+1)^{3}$ for all $n \geq \exp \left(e^{33.3}\right)$.
There is at least one prime between n^{m} and $(n+1)^{m}$ for all $n \geq 1$ with $m=5 \cdot 10^{9}$.
- Cully-Hugill (2023): There exists at least one prime between n^{3} and $(n+1)^{3}$ for all $n \geq \exp \left(e^{32.537}\right)$.
- Cully-Hugill and Johnston (2023): There is at least one prime between n^{140} and $(n+1)^{140}$ for all $n \geq 1$.

Thank You

[^0]: ${ }^{2}$ Theorems concerning mean values of analytic functions, Proc. Royal Soc. A, 1927a

