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Let L/K be a Galois extension of number fields with Galois group
G = Gal(L/K):

» np=[L:Q] and ngx = [K : Q]

» A; = |disc(L/Q)| and Ak = |disc(K/Q)|

> N := N§
We use P to denote prime ideals in Ok and P to denote prime

ideals in O;. Almost always in these notes, P and P will be related

as follows
P|PO, <— PNOk=P.
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Associated with a prime ideal P in O; we recall the subgroups of
G given by
Dp={0c€ G:P° =P}
Ip ={0c€ G:0o(x)=x mod P forall x € L}

It is known that /p is a normal subgroup of Dp and the quotient
group Dp/Ip is cyclic generated by the Frobenius automorphism

op that satisfies
op(x) = x"P) mod P
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Chebotarev Density Theorem (CDT)

Let C be a conjugacy class of G. Set

mc(x; L/K) = |{P C Ok : P unramified in L, [L/TK] = C, N(P) < x}|.

Theorem (Chebotarev 1926)

As x — o0, we have

we(x; L/K) ~ %Li(x),

* 1
where Li(x) = — dt. *

> logt /erx






Effective CDT under GRH
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Theorem (Lagarias-Odlyzko 1977)

Assume GRH for (;(s). There exists effectively computable
positive absolute constant c; such that for every x > 2 we have
€]

i (:g}x log (A, X”L)+@4§ >
_—
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wc(x; L/K) — —Li(x)| <




Least Prime Ideal in CDT

Corollary (Lagarias-Odlyzko 1977)

Assume GRH for (;(s). For every conjugacy class C of G, there
exists a prime ideal P C Ok unramified in L such that

CLij

Co ~ be_
& femored
N(P) < cx(log A,)(log IBATT™

for some effectively computable positive absolute constant c>.

Theorem (Fiori 2019)

There exist infinitely many number fields L Galois over Q for which
the smallest prime p € 7 which splits completely in L satisfies
p > (log A )T



Unconditional Effective CDT

Theorem
There exists effectively computable absolute positive constants
c3, ¢4 such that if logx > 10n,(log AL)z, then

I€]

wc(x; L/K) — G|

C |
—Li(x)| < ;G} Li(x”) + czx exp <c4 OngLX> .

Here [ is the possible exceptional zero of (;(s) in the region

1 1
1 — < R <1 R < .
Tog A, = Ws) < S6) < Toe s




ldea of Lagarias-Odlyzko's Proof of Effective CDT
TTC(‘X,' L/e) = 2 1
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Seek asymptotic for the prime counting function w¢(x; L/K).

We instead consider the prime power counting function

beltfi) = M

m, PCO&
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Relate ¢ ¢(x; L/K) to a contour integral involving the Dirichlet

series oo
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Fe(s)=_ > 6(P™)log N(P)N(P)~™ —

m>f§ PC Ok
with |#(P™)| < 1 for ramified primes P.
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Hecke L-functions

Consider the finite extension K /Q. Let f be an integral ideal in Ok.

Let /(f) be the group of fractional ideals of K relatively prime to f.
Let P(f) be the subgroup of principal ideals (a) in /(f) such that
a =1 mod f and « is totally positive.

We set CI(f) = I(f)/P(f), the ray class group of K modulo f.

Hecke characters are characters of C/(f). For a subgroup A of /(f)
containing P(f), we use the notation x mod A for a character x
of CI(f) such that x(A) = 1.

View x as a function on /(Ok) by setting x(a) = 0 for all
(a,f) # 1.



The L-function associated with a primitive character Y mod § is

given by
x(a)
L R 1.
(oK)= 3 e B>
aC Ok
We set a40

Y(s,x) = (w T (2))3(X) (w”zlr (5;1))"007

where a(x), b(x) are non-negative integers with a(x) + b(x) = nk.
We also set

/\(57X7 K) (5(5 1))5(X)(AKN(f))%’7(57X)L(57X7 K)
_ AC)+B(X)s 2 V\er
=e 1 — —)er
|p|( p)
A(s, x, K) is entire and satisfies

A(s, x, K) = WML = s, X, K)
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The trivial zeros of L(s, x, K) are denoted by w with

(a(x) —6(x) w=0
ords—, L(s,x, K) = < b(x) w=-1,-3-5,--
La(v) o= 2,46,

Finally, we have

~Dsek) =500 (- 17 ) + 5 o8 (Bw()
/ 1 1
+%(s,x)—5(x)—zp:5_p—;



Artin L-functions

Let L/K be a Galois extension with Galois group G = Ga/(L/K) Fosons
a7 g T\//‘S

¢:G— GL,(C)
’ij) :TT(QS(})\

be a representation of G whose character we denote by Y.
The Artin L-function associated to ¢ is given by

L(s,0,L/K) = ]] Le(s,0,L/K)

PCOK
with
det (I, — ¢p(ap)N(P)~®) " P is unramified in L
~1
det (ln P(op) i N(P)_S) P is ramified in L

SN /unm O\%r\fw’k

LP(Sa QS, L/K) = 4




Artin Showed that

> L(s,¢1 @ @2, L/K) = L(s, ¢1, L/K)L(s, p2, L/K)
» |If H is a subgroup of G and 7 is representation of H, then

L(s,IndST,L/K) = L(s,7,L/L")

Theorem (Brauer 1947)

If x is an irreducible character of G, then there exists subgroups H;
of G, m; € Z and 1-dimensional characters ; of H; such that

G
X = Z mjIndg ;
i
Brauer's induction and Artin’s reciprocity theorems give

Corollary

L(s,x,L/K) admits a meromorphic continuation.






Artin’s Reciprocity

Let H be an Abelian subgroup of G = Gal(L/K), and let x is a
1-dimensional character of H. Let E = L".

There exist an integral ideal f attached to the extension L/E and a

subgroup A of I(f) such that /(f)/A = Gal(L/E). We get
L(s,x,L/E) = L(s,X", E)

for some primitive Hecke L-function L(s, X, E).
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