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Algebraic Setup

Let L/K be a Galois extension of number fields with Galois group
G = Gal(L/K ):

I nL = [L : Q] and nK = [K : Q]

I �L = |disc(L/Q)| and �K = |disc(K/Q)|
I N := NK

Q
We use P to denote prime ideals in OK and P to denote prime
ideals in OL. Almost always in these notes, P and P will be related
as follows

P|POL () P \ OK = P .
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Associated with a prime ideal P in OL we recall the subgroups of
G given by

DP = {� 2 G : P� = P}

IP = {� 2 G : �(x) ⌘ x mod P for all x 2 L}

It is known that IP is a normal subgroup of DP and the quotient
group DP/IP is cyclic generated by the Frobenius automorphism
�P that satisfies

�P(x) ⌘ xN(P) mod P

G is well defined modulo Ip
if P Pa hi above P then G and Epa

are conjugates in G



The Artin Symbol

Notice that I Ipl e

so if P is unramified in L then e l

and Ip 1 and so op is well defined

We will denote by Op the conjugacy clan

of Op in G

We use the symbol GI op



Chebotarev Density Theorem (CDT)

Let C be a conjugacy class of G . Set

⇡C (x ; L/K ) =

����{P ⇢ OK : P unramified in L,


L/K

P

�
= C , N(P)  x}

���� .

Theorem (Chebotarev 1926)

As x ! 1, we have

⇡C (x ; L/K ) ⇠ |C |
|G |Li(x),

where Li(x) =

Z x

2

1

log t
dt. N Iot
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E↵ective CDT under GRH

Theorem (Lagarias-Odlyzko 1977)

Assume GRH for ⇣L(s). There exists e↵ectively computable
positive absolute constant c1 such that for every x > 2 we have
����⇡C (x ; L/K )� |C |

|G |Li(x)
����  c1

✓
|C |
|G |x

1
2 log(�Lx

nL) + log�L

◆
.
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Least Prime Ideal in CDT

Corollary (Lagarias-Odlyzko 1977)

Assume GRH for ⇣L(s). For every conjugacy class C of G , there
exists a prime ideal P ⇢ OK unramified in L such that
L/K

P

�
= C and

N(P)  c2(log�L)
2(log log�L)

4

for some e↵ectively computable positive absolute constant c2.

Theorem (Fiori 2019)

There exist infinitely many number fields L Galois over Q for which
the smallest prime p 2 Z which splits completely in L satisfies
p � (log�L)

2+✏.
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Unconditional E↵ective CDT

Theorem
There exists e↵ectively computable absolute positive constants
c3, c4 such that if log x > 10nL(log�L)

2, then

����⇡C (x ; L/K )� |C |
|G |Li(x)

���� 
|C |
|G |Li(x

�) + c3x exp

 
�c4

s
log x

nL

!
.

Here � is the possible exceptional zero of ⇣L(s) in the region

1� 1

4 log�L
 <(s)  1 |=(s)|  1

4 log�L
.



Idea of Lagarias-Odlyzko’s Proof of E↵ective CDT

Seek asymptotic for the prime counting function ⇡C (x ; L/K ).

We instead consider the prime power counting function

 C (x ; L/K )

Relate  C (x ; L/K ) to a contour integral involving the Dirichlet
series

Ich Lik I I
puffrafifiedint

YES C

I logNfp
PI'IFfed C JIC

I 2 outlyingm so PC OK
Punramifiedint

otherwise
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Define
FC (s) =

X

m�0

X

P⇢OK

✓(Pm) logN(P)N(P)�ms

with |✓(Pm)|  1 for ramified primes P .
a Ic lx T

Steph Nc x 4K ifI.ftFcstId
tRlX.T

step2 Use Dearing reduction to express

Fest as a hi ear combination of logarithm

derivatives of Hecke L functions

I Icg six
Fist I X adingid

Heffner



step3 consider

i fi I's x Ids
move the line of integration

to

the left apply Candy's
residue theorem and collect
residues of the integrand
at poles contained within

Some contour This will give

rise to a sum

sxlx.tl
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Hecke L-functions

Consider the finite extension K/Q. Let f be an integral ideal in OK .

Let I (f) be the group of fractional ideals of K relatively prime to f.
Let P(f) be the subgroup of principal ideals (↵) in I (f) such that
↵ ⌘ 1 mod f and ↵ is totally positive.

We set Cl(f) = I (f)/P(f), the ray class group of K modulo f.

Hecke characters are characters of Cl(f). For a subgroup A of I (f)
containing P(f), we use the notation � mod A for a character �
of Cl(f) such that �(A) = 1.

View � as a function on I (OK ) by setting �(a) = 0 for all
(a, f) 6= 1.



The L-function associated with a primitive character � mod f is
given by

L(s,�,K ) =
X

a⇢OK

�(a)

N(a)s
<(s) > 1.

We set

�(s,�) =
⇣
⇡�

s
2�
⇣ s
2

⌘⌘a(�)✓
⇡�

s+1
2 �

✓
s + 1

2

◆◆b(�)

,

where a(�), b(�) are non-negative integers with a(�) + b(�) = nK .
We also set

⇤(s,�,K ) = (s(s � 1))�(�)(�KN(f))
s
2 �(s,�)L(s,�,K )

= eA(�)+B(�)s
Y

⇢

(1� s

⇢
)e

s
⇢

⇤(s,�,K ) is entire and satisfies

⇤(s,�,K ) = W (�)⇤(1� s,�,K )

ato



The trivial zeros of L(s,�,K ) are denoted by ! with

ords=!L(s,�,K ) =

8
><

>:

a(�)� �(�) ! = 0

b(�) ! = �1,�3,�5, · · ·
a(�) ! = �2,�4,�6, · · ·

Finally, we have

�L0

L
(s,�,K ) = �(�)

✓
1

s
� 1

s � 1

◆
+

1

2
log (�KN(f))

+
�0

�
(s,�)� B(�)�

X

⇢

1

s � ⇢
� 1

⇢
.

If X primitive principal character then L IsXK 54

of 1 X To principal
O otherwise



Artin L-functions

Let L/K be a Galois extension with Galois group G = Gal(L/K ).
Let

� : G ! GLn(C)

be a representation of G whose character we denote by �.
The Artin L-function associated to � is given by

L(s,�, L/K ) =
Y

P⇢OK

LP(s,�, L/K )

with

LP(s,�, L/K ) =

8
<

:
det
�
In � �(�P)N(P)�s

��1
P is unramified in L

det
⇣
In � �(�P)|

V IP
N(P)�s

⌘�1
P is ramified in L

A underlying
rectorspae

Negi Tr Og

exam swelldefined



Artin Showed that

I L(s,�1 � �2, L/K ) = L(s,�1, L/K )L(s,�2, L/K )

I If H is a subgroup of G and ⌧ is representation of H, then

L(s, IndG
H ⌧, L/K ) = L(s, ⌧, L/LH)

Theorem (Brauer 1947)

If � is an irreducible character of G , then there exists subgroups Hi

of G , mi 2 Z and 1-dimensional characters  i of Hi such that
� =

X

i

mi Ind
G
Hi
 i

Brauer’s induction and Artin’s reciprocity theorems give

Corollary
L(s,�, L/K ) admits a meromorphic continuation.
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Artin’s Reciprocity

Let H be an Abelian subgroup of G = Gal(L/K ), and let � is a
1-dimensional character of H. Let E = LH .

There exist an integral ideal f attached to the extension L/E and a
subgroup A of I (f) such that I (f)/A ⇠= Gal(L/E ). We get

L(s,�, L/E ) = L(s, �̃⇤,E )

for some primitive Hecke L-function L(s, �̃⇤,E ).

Gal KH H
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Step 2

C conjugay of G

ge C
H g
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