Artin L-functions and the proof of the Chebotarev Density Theorem

Alia Hamieh
University of Northern British Columbia
Inclusive Paths in Explicit Number Theory
July 7, 2023

This lecture is based on material found in

- J. Lagarias and A. Odlyzko. Effective versions of the Chebotarev density theorem. In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 409-464. Academic Press, London, 1977
- M. R. Murty and V. K. Murty. Non-vanishing of L-functions and applications, volume 157 of Progress in Mathematics. Birkhauser Verlag, Basel, 1997.
- A. Zaman, Analytic estimates for the Chebotarev Density Theorem and their applications, Ph.D. thesis, University of Toronto, 2017

Algebraic Setup

Let L / K be a Galois extension of number fields with Galois group $G=G a l(L / K):$

- $n_{L}=[L: \mathbb{Q}]$ and $n_{K}=[K: \mathbb{Q}]$
- $\Delta_{L}=|\operatorname{disc}(L / \mathbb{Q})|$ and $\Delta_{K}=|\operatorname{disc}(K / \mathbb{Q})|$
- $N:=N_{\mathbb{Q}}^{K}$

We use P to denote prime ideals in O_{K} and \mathcal{P} to denote prime ideals in O_{L}. Almost always in these notes, P and \mathcal{P} will be related as follows

$$
\begin{gathered}
\mathcal{P} \mid P O_{L} \Longleftrightarrow \mathcal{P} \cap O_{K}=P . \\
P O_{L}=P_{1}^{e} P_{2}^{e} \ldots P_{r}^{e}
\end{gathered}
$$

Associated with a prime ideal \mathcal{P} in O_{L} we recall the subgroups of G given by

$$
\begin{gathered}
D_{\mathcal{P}}=\left\{\sigma \in G: \mathcal{P}^{\sigma}=\mathcal{P}\right\} \\
I_{\mathcal{P}}=\{\sigma \in G: \sigma(x) \equiv x \quad \bmod \mathcal{P} \text { for all } x \in L\}
\end{gathered}
$$

It is known that $I_{\mathcal{P}}$ is a normal subgroup of $D_{\mathcal{P}}$ and the quotient group $D_{\mathcal{P}} / I_{\mathcal{P}}$ is cyclic generated by the Frobenius automorphism $\sigma_{\mathcal{P}}$ that satisfies

$$
\sigma_{\mathcal{P}}(x) \equiv x^{N(P)} \quad \bmod \mathcal{P}
$$

σ_{P} is will. defined modulo I_{D}
if P_{1}, ∇_{2} hi above P, then ${ }_{P_{P}}$ and $\sigma_{\nabla_{2}}$ are wnjigates in G.

The Artin Symbol
Notice that $\left|I_{P}\right|=e$
so if P is unramified in L then $e=1$
and $I_{\rho}=1$ and so σ_{ρ} is well-difind.
We mill denote by σ_{P} the congingany class of σ_{P} in G.

We use the syrubol! $\left[\frac{L / K}{P}\right]=\sigma_{P}$

Chebotarev Density Theorem (CDT)

Let C be a conjugacy class of G. Set
$\left.\pi_{C}(x ; L / K)=\left\lvert\,\left\{P \subset O_{K}: P\right.$ unramified in $\left.L,\left[\frac{L / K}{P}\right]=C, N(P) \leq x\right\}\right. \right\rvert\,$
Theorem (Chebotarev 1926)
As $x \rightarrow \infty$, we have

$$
\pi_{C}(x ; L / K) \sim \frac{|C|}{|G|} L i(x)
$$

where $\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\log t} d t . \sim \frac{x}{\log x}$
let $L=K$

$$
\begin{aligned}
\pi(x) & =\left|\left\{p \subset O_{k} ; N(P) \leqslant x\right\}\right| \\
& \sim L_{i}(x)
\end{aligned}
$$

PNT for number field s

$$
\left.\begin{array}{rl}
L=Q\left(e^{\frac{2 \pi i}{q}}\right) & K=Q . \\
(a, q)=1 & \\
C D T=D & \{p \equiv \operatorname{amod} f ; \\
N(p) \leq x\}
\end{array}\right)
$$

Effective CDT under GRH

$$
L / K \quad G=G \operatorname{Gel}(L / K)
$$

Theorem (Lagarias-Odlyzko 1977)
Assume GRH for $\zeta_{L}(s)$. There exists effectively computable positive absolute constant c_{1} such that for every $x>2$ we have

$$
\left|\pi_{C}(x ; L / K)-\frac{|C|}{|G|} L i(x)\right| \leq c_{1}\left(\frac{|C|}{|G|} x^{\frac{1}{2}} \log \left(\Delta_{L} x^{n_{L}}\right)+\log \Delta_{L}\right) .
$$

Refinement by Sore 1984

Least Prime Ideal in CDT

Corollary (Lagarias-Odlyzko 1977)

Assume GRH for $\zeta_{L}(s)$. For every conjugacy class C of G, there exists a prime ideal $P \subset O_{K}$ unratified in L such that $\left[\frac{L / K}{P}\right]=C$ and

$$
N(P) \leq c_{2}\left(\log \Delta_{L}\right)^{2}\left(\log \log \Delta_{L}\right)^{4}
$$

for some effectively computable positive absolute constant c_{2}.
Theorem (Fiori 2019)
There exist infinitely many number fields L Galois over \mathbb{Q} for which the smallest prime $p \in \mathbb{Z}$ which splits completely in L satisfies $p \geq\left(\log \Delta_{L}\right)^{2+\theta^{(1)}}$

Unconditional Effective CDT

Theorem

There exists effectively computable absolute positive constants c_{3}, c_{4} such that if $\log x>10 n_{L}\left(\log \Delta_{L}\right)^{2}$, then

$$
\left|\pi_{C}(x ; L / K)-\frac{|C|}{|G|} L i(x)\right| \leq \frac{|C|}{|G|} L i\left(x^{\beta}\right)+c_{3} x \exp \left(-c_{4} \sqrt{\frac{\log x}{n_{L}}}\right) .
$$

Here β is the possible exceptional zero of $\zeta_{L}(s)$ in the region

$$
1-\frac{1}{4 \log \Delta_{L}} \leq \Re(s) \leq 1 \quad|\Im(s)| \leq \frac{1}{4 \log \Delta_{L}}
$$

Idea of Lagarias-Odlyzko's Proof of Effective CDT

$$
\begin{array}{r}
\pi_{C}(x ; L / k)=\sum_{P-1}^{\substack{P \subset O_{k} \\
\text { umramifiedinL }}} \mid \\
{\left[\frac{L /}{P}\right]=C}
\end{array}
$$

Seek asymptotic for the prime counting function $\pi_{C}(x ; L / K)$.
We instead consider the prime power counting function

$$
\psi_{C}(x ; L / K)=\sum_{\substack{m, P_{C} \text { uramikid }^{\prime}}} \log N(P)
$$

Relate $\psi_{C}(x ; L / K)$ to a contour integral involving the Dirichlet series

$P \subset O_{k .} . \quad \begin{cases}1 & {\left[\frac{(/ K}{P}\right]^{m}=C} \\ 0 & \text { otherwise. }\end{cases}$

Classical PN 7

$$
\begin{aligned}
& Y(x)=\sum_{n \leq x} \Delta \cdot(n) \\
&=\sum_{p^{\prime \prime} \leq x} \log \beta \\
& \nabla>1 \quad-\frac{\rho^{\prime}(s)}{\rho} \\
& \forall(x)=\int_{\sigma=i T}^{\sigma+i T} \sum_{i=1}^{\infty} \frac{\Lambda_{-(n)}^{s}}{n^{s}} \frac{x^{j}}{s} d s \\
&+R(x, T)
\end{aligned}
$$

$$
g \in C .
$$

Define

$$
F_{C}(s)=\sum_{m \geq} \sum_{P \subset O_{K}} \theta\left(P^{m}\right) \log N(P) N(P)^{-m s} \quad I_{c}(x, T)
$$

with $\left|\theta\left(P^{m}\right)\right| \leq 1$ for ramified primes P.
Step 1:

Step 2: Use Deuring reductori to express
$F_{C}(s)$ as a linear combination of logarithmic derivatives of Heck 1 -functosis;

Step 3 : consider

$$
\frac{1}{2 \pi i} \int_{\sigma_{\gamma}-i \tau}^{\sigma_{0}+i T} \frac{L^{\prime}}{L}(s, x) \frac{x^{s}}{s} d s .
$$

move the line of inkgratoon to the lift, apply Carchy's residue theorem and collect residues of the integrand. at pols costanid within. some contour. This mill give rise to a sum

$$
S_{x}(x, T)=\sum_{\substack{\rho \\|\gamma|<T}} \frac{x^{\rho}}{\rho}+\sum_{|p|<\frac{1}{2}} \frac{1}{p}
$$

Step 4 : Eshinath $S_{x}(x, T)$ with or without $G R+1$.

Step S: Chroox T to minimize enos term

Sty 6 : partial Summatoi is go from

$$
\psi_{c} \quad \text { tr } \quad \pi_{c}
$$

Hecke L-functions

Consider the finite extension K / \mathbb{Q}. Let \mathfrak{f} be an integral ideal in O_{K}. Let $I(\mathfrak{f})$ be the group of fractional ideals of K relatively prime to \mathfrak{f}. Let $P(\mathfrak{f})$ be the subgroup of principal ideals (α) in $I(\mathfrak{f})$ such that $\alpha \equiv 1 \bmod \mathfrak{f}$ and α is totally positive.

We set $C I(\mathfrak{f})=I(\mathfrak{f}) / P(\mathfrak{f})$, the ray class group of K modulo \mathfrak{f}.
Hecke characters are characters of $C I(\mathfrak{f})$. For a subgroup A of $I(\mathfrak{f})$ containing $P(\mathfrak{f})$, we use the notation $\chi \bmod A$ for a character χ of $C l(\mathfrak{f})$ such that $\chi(A)=1$.
View χ as a function on $I\left(O_{K}\right)$ by setting $\chi(\mathfrak{a})=0$ for all $(\mathfrak{a}, \mathfrak{f}) \neq 1$.

The L-function associated with a primitive character $\chi \bmod \mathfrak{f}$ is given by

We set

$$
L(s, \chi, K)=\sum_{\substack{\mathfrak{a} \subset O_{K} \\ \mathfrak{a} \neq 0}} \frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^{s}} \quad \Re(s)>1 .
$$

$$
\gamma(s, \chi)=\left(\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)\right)^{a(\chi)}\left(\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right)\right)^{b(\chi)}
$$

where $a(\chi), b(\chi)$ are non-negative integers with $a(\chi)+b(\chi)=n_{K}$. We also set

$$
\begin{aligned}
\Lambda(s, \chi, K) & =(s(s-1))^{\delta(\chi)}\left(\Delta_{K} N(\mathfrak{f})\right)^{\frac{s}{2}} \gamma(s, \chi) L(s, \chi, K) \\
& =e^{A(\chi)+B(\chi) s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{\frac{s}{\rho}}
\end{aligned}
$$

$\Lambda(s, \chi, K)$ is entire and satisfies

$$
\Lambda(s, \chi, K)=W(\chi) \wedge(1-s, \bar{\chi}, K)
$$

If X primehoi principal character, then $L(S, X, k)=S_{k}(s)$.
The trivial zeros of $L(s, \chi, K)$ are denoted by ω with

$$
\operatorname{ord}_{s=\omega} L(s, \chi, K)= \begin{cases}a(\chi)-\delta(\chi) & \omega=0 \\ b(\chi) & \omega=-1,-3,-5, \cdots \\ a(\chi) & \omega=-2,-4,-6, \cdots\end{cases}
$$

Finally, we have

$$
\begin{array}{r}
-\frac{L^{\prime}}{L}(s, \chi, K)=\delta(\chi)\left(\frac{1}{s}-\frac{1}{s-1}\right)+\frac{1}{2} \log \left(\Delta_{K} N(\mathfrak{f})\right) \\
\begin{cases}1 & X=\chi_{0} \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

Artin L-functions

Let L / K be a Galois extension with Galois group $G=G a l(L / K)$.
Let

$$
\phi: G \rightarrow G L_{n}(\mathbb{C}) \text { ans in in }
$$

be a representation of G whose character we denote by χ. $\chi(g)=\operatorname{Tr}(\phi(g))$ The Artin L-function associated to ϕ is given by

$$
L(s, \phi, L / K)=\prod_{P \subset O_{K}} L_{P}(s, \phi, L / K)
$$

with

$$
L_{P}(s, \phi, L / K)= \begin{cases}\operatorname{det}\left(I_{n}-\phi\left(\sigma_{P}\right) N(P)^{-s}\right)^{-1} & P \text { is unramified in } L \\ \operatorname{det}\left(I_{n}-\phi\left(\sigma_{\mathcal{P}}\right)_{V^{\prime} \mathcal{P}} N(P)^{-s}\right)^{-1} & P \text { is ramified in } L\end{cases}
$$

Artin Showed that

- $L\left(s, \phi_{1} \oplus \phi_{2}, L / K\right)=L\left(s, \phi_{1}, L / K\right) L\left(s, \phi_{2}, L / K\right)$
- If H is a subgroup of G and τ is representation of H, then

$$
L\left(s, \operatorname{Ind}_{H}^{G} \tau, L / K\right)=L\left(s, \tau, L / L^{H}\right)
$$

Theorem (Brauer 1947)
If χ is an irreducible character of G, then there exists subgroups H_{i} of $G, m_{i} \in \mathbb{Z}$ and 1-dimensional characters ψ_{i} of H_{i} such that $\chi=\sum_{i} m_{i} \operatorname{lnd} d_{H_{i}}^{G} \psi_{i}$
Brauer's induction and Artin's reciprocity theorems give
Corollary
$L(s, \chi, L / K)$ admits a meromorphic continuation.

$$
\begin{aligned}
& X=\sum_{i} m_{i} \operatorname{Ind}_{H_{i}}^{G}\left(\psi_{i}\right) \\
& L(s, X, L / k)=\prod_{i} L\left(s, \operatorname{Ind}_{H_{i}}^{G}\left(\Psi_{i}\right), y_{k}\right) \\
& =\prod_{i} L\left(s, \psi_{i}, L / L^{H}\right)^{m_{i}} \\
& =\prod_{i} l\left(s, \pi_{\psi_{i},} L^{H}\right)^{m} \\
& \text { Heche } \\
& \text { L- functain }
\end{aligned}
$$

Artin Conjective: $\$$ iredrdulu. not the trinial representain then $L(S, Q, L / K)$ is en hine.

Artin's Reciprocity

Let H be an Abelian subgroup of $G=G a l(L / K)$, and let χ is a 1-dimensional character of H. Let $E=L^{H}$.
There exist an integral ideal \mathfrak{f} attached to the extension L / E and a subgroup A of $I(\mathfrak{f})$ such that $I(\mathfrak{f}) / A \cong \operatorname{Gal}(L / E)$. We get

$$
L(s, \chi, L / E)=L\left(s, \tilde{\chi}^{*}, E\right)
$$

$$
\operatorname{Cal}\left(L / L^{H}\right)=+1
$$

for some primitive Hecke L-function $L\left(s, \tilde{\chi}^{*}, E\right)$.

Step 1: L1k $G=\operatorname{Gal}(4 k)$
Q irceducill rep of G with charedu X
Define $X_{k}\left(P^{m}\right)=\frac{1}{\left|I_{P}\right|} \sum_{\alpha \in I_{\beta}} X\left(\sigma_{\rho}^{m} \alpha\right)$
if P is uriramified in L, then $I_{\rho}=1$

$$
\begin{aligned}
& X_{k}\left(P^{m}\right)=X\left(\sigma_{P}^{m}\right) \\
& L_{\text {unramificed. }}(s, X, L / K)=\overline{\prod 1} \operatorname{det}\left(I_{n}-\phi\left(\sigma_{p}\right) N(p)^{-)^{-}}\right) \\
& \operatorname{bog} L_{\text {unramified }}=-\sum_{P_{\text {unvaminad. }}} \operatorname{bog}\left(\operatorname{det}\left(I_{n}-\phi\left(\sigma_{p}\right) N(P)^{-j}\right)\right) \\
& =-\sum_{P_{\text {unraminid }}} \log \left(\operatorname{dt}\left(I_{n}-\sigma D\left(\sigma_{p}\right) \sigma^{-1} N(P)^{-s}\right)\right) \\
& =-\sum_{P_{\text {unramiv }} \text { fied }} \log \left(1-\lambda_{1} N(\theta)^{5}\right) \cdots\left(\left(1-\lambda_{n} N()^{5}\right)\right. \\
& =-\sum_{\text {Purramified }} \sum_{i} \frac{\left.\log \left(1-\lambda_{i} \cdot N(P)\right)^{-s}\right)}{\sum_{i=1}^{\infty} \lambda_{i}^{m} N(P)^{-m s}} \\
& =\sum_{p \text { unramifi }}^{\text {Punramifiel }} \sum_{i} \sum_{i=1}^{\infty} \frac{\lambda_{i}^{m} N(\rho)^{-m s}}{m}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{P_{\text {unrampiod }}} \sum_{m=1}^{\infty} \frac{1}{m} N(p)^{-m s} T_{r}\left(Q\left(\sigma_{p}^{-r}\right)\right. \\
& =\sum_{\text {Punramified. }}^{\infty} \sum_{m=1}^{\infty} \frac{1}{m} N(p)^{-m s} X\left(\sigma_{p}^{m}\right) \\
& \left.=\sum_{\text {Punram.hied }} \sum_{m=1}^{\infty} \frac{1}{m} N i p\right)^{-m s} X\left(p^{m}\right)
\end{aligned}
$$

be moe coreful with ramifud primis is gt $\log L(s, x, L / k)=$

$$
\sum_{p} \sum_{m=1}^{\infty} \chi_{k}\left(P^{m}\right) \frac{f^{m} N(P)}{N(P)^{-s}}
$$

$$
\begin{aligned}
& -\frac{L^{\prime}}{L}(s, x, L / k) \\
& =\sum_{P} \sum_{m=1}^{\infty} x_{k}\left(P^{m}\right) \frac{\lg M(P)}{N(P)^{m s}}
\end{aligned}
$$

let C be a conjingay lows and bet

$$
\begin{aligned}
& g \in C \text {. } \\
& f_{c}=\sum_{x \in \operatorname{Ir}(G)} \bar{x}(g) \chi \quad f_{c}: G \rightarrow \mathbb{C} \\
& f_{c}(y)= \begin{cases}\frac{|G|}{|C|} & \text { if } y \in C \\
0 & \text { otherwise }\end{cases} \\
& \text { Consign } F_{c}(s)=\frac{-|c|}{|G|} \sum_{X \in \operatorname{I},(g)} \bar{X}(g) \frac{L^{\prime}}{L}\left(s, X, L_{f}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{c}(s)=\frac{-|c|}{|G|} \sum_{X \in I_{r}(G)} \bar{X}_{(g)} \frac{L^{\prime}}{L}\left(s, X_{1}, y_{f}\right) \\
& =\frac{|c|}{|G|} \sum_{X} \bar{X}(g) \sum_{p, m} X_{K}\left(p^{m}\right) \frac{\lg (N \mid)}{N(p)^{n s}} \\
& =\frac{|c|}{|G| p, m} \sum_{N(p)^{m s}} \frac{\log N(p)}{X} \sum_{\chi} \bar{X}_{(g)} X_{k}\left(p^{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{P, m} \frac{\log N(P)}{N(P)^{m-s}} \theta\left(P^{m}\right)^{f} c^{f}\left(\sigma_{\sigma^{n}}^{n} \alpha\right)
\end{aligned}
$$

Perron's fomita

$$
\sigma_{0}>1, \quad x \geqslant 2 .
$$

Define $I_{C}(x, T)=\frac{1}{2 \pi i} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} F_{c}(s) \frac{x}{s} d s$
Perron =D

$$
\begin{aligned}
& \left|I_{C}(x, T)-\sum_{p, m}^{N\left(p^{m}\right) \leqslant x .}\right| ~ \theta\left(p^{m}\right) \lg N(P) \mid \\
& \leqslant R_{0}(x, T) \\
& \left|\sum_{P_{\text {ramifad }}} \theta\left(P^{m}\right) \lg N(p)\right| \leq \sum_{P_{\text {raminel }}} \lg N(p) \\
& N\left(P^{n}\right) \leq x \text {. } \\
& N\left(p^{m}\right) \leq X \\
& \leq \log x \lg D \text {. }
\end{aligned}
$$

Step 2
C conjugay of G

$$
\begin{aligned}
& g \in C \\
& H=\langle g\rangle \subset G
\end{aligned}
$$

$E=L^{H} \quad H$ is cyli \Rightarrow its irred. rep are

$$
\operatorname{llam} \sum_{X \in \operatorname{Irr}(G)} \bar{x}_{(g)} x^{1-\operatorname{dim}} \sum_{\psi \in \operatorname{Irr}(H)} \bar{\psi}(g) \psi^{*}
$$

whou $\psi^{*}=I_{I d_{H}}^{G} \psi$
Excercise: ver.fy this.

$$
F_{c}(s)=-\frac{|c|}{|G|} \sum_{x \in I_{r r}(G)} \bar{x}(g) \frac{L^{\prime}}{L}(s, x, y / k)
$$

$$
\begin{aligned}
& F_{c}(s)=-\frac{|c|}{|G|} \sum_{\chi_{\mathcal{E}} I_{r r}(G)} \bar{X}(g) \frac{L^{\prime}}{L}(s, x, 4 / k) \\
& =\frac{|c|}{|G|} \sum_{X \in I_{r r}(\sigma)} \bar{X}(g) \sum_{p, m} \frac{\log N(p) X_{k}\left(p^{*}\right)}{N(p)^{m s}} \\
& \left.=\frac{|C|}{|G|} \sum_{p, m} \frac{\log N(p)}{N(P)^{m s}} \frac{1}{\left|I_{\theta}\right|} \sum_{\alpha \in I} \sum_{\alpha} \bar{x}_{(g)}\right)\left(N_{p}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1 C 1}{1 G 1} \sum_{\psi \in I r r(H)} \bar{\psi}(g) \frac{L^{\prime}}{L}\left(5, \psi^{*}, L / k\right) \\
& =-\frac{101}{101} \sum_{\psi \in I_{r r}(H)} \tilde{\psi}(g) \frac{L^{\prime}}{L}\left(s, \psi, L_{E}\right.
\end{aligned}
$$

