
AN INTRODUCTION TO LOG-FREE ZERO DENSITY ESTIMATES

ASIF ZAMAN

Abstract. Linnik proved his breakthrough result on the least prime in an arithmetic pro-
gression in 1944, and one of his pivotal innovations was a log-free zero density estimate.
In these notes for the 2023 IPENT summer school, I will introduce log-free zero density
estimates, skim some of their history and applications, and explore two essential questions.
First, why does “log-free” matter? Second, how can you prove this kind of result?
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1. Introduction

For q ≥ 1, T ≥ 3, and 0 < σ < 1, define

(1.1) Nq(σ, T ) :=
∑

χ (mod q)

#{ρ ∈ C : L(ρ, χ) = 0, σ < Re{ρ} < 1, |Im{ρ}| ≤ T}.

Zero density estimates often take the form

(1.2) Nq(σ, T )� (qT )A(1−σ)(log qT )B

for some constants A,B which may depend on σ. There is a vast literature on such results,
which we will not attempt to survey here. Efforts are usually spent on minimizing the
exponent A for a wide range of σ, while allowing B to be a large absolute constant. However,
our focus in this article will be when B = 0, namely log-free zero density estimates. These
take the shape

(1.3) Nq(σ, T )� (qT )C(1−σ)

These results have a rich history dating back to celebrated works of Linnik [Lin44b, Lin44a]
with many contributors since then, including Fogels [Fog65], Turan [Tur61], Bombieri [Bom87],
Jutila [Jut69, Jut70, Jut77], Gallagher [Gal70], Graham [Gra81], Heath-Brown [HB92], and
many more. In these informal notes, we aim to introduce the method at a high level omitting
many technical details while keeping the most essential ideas.

Date: July 6, 2023.
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2. Why log-free matters

When first reading these intricate arguments, you might ask:

What is so great about log-free density estimates?

We will explore two problems that demonstrate their greatness.

2.1. Counting zeros. Log-free zero density estimates are most advantageous near the line
Re(s) = 1 and close to the zero-free region. It is worthwhile to consider an explicit choice.

Let us compare counting zeros in the region

1− 100

log qT
< Re(s) < 1, |Im(s)| ≤ T.

with (1.2) versus (1.3). First, the zero density estimate (1.2) shows that

Nq(1− 100
log(qT )

, T )� e100A(σ)(log qT )B(σ)

so the number of such zeros is bounded by powers of log(qT ). Unfortunately, when T = 1
and B(σ) > 1, this count is worse than trivial. On the other hand, the log-free zero density
estimate (1.3) yields

Nq(1− 100
log(qT )

, T )� e100C

so the number of such zeros is absolutely bounded (in terms of the constant C). This sample
region is the prototypical situation where (1.3) supersedes (1.2).

Exercise 1 (Superiority complex). Determine precisely when (1.3) is superior to (1.2). Your
answer should be an inequality involving σ. Draw this region in the complex plane and
include the critical line, and the classical zero free-region.

2.2. Counting primes. Now, after this discussion, you might also justifiably retort:

Okay, I agree that you can sometimes save some logs when counting zeros
with a log-free zero density estimate. But who cares? This should be negligible
compared to the main contribution. A few logs never hurt anybody.

Surprisingly, every single log mattered for Linnik in 1944 when counting small primes in
arithmetic progressions. He famously proved that there exists an absolute constant L > 0
such that if gcd(a, q) = 1 then there exists a prime p ≡ a (mod q) and p ≤ qL. A log-free
density estimate was a critical new ingredient to establishing this spectacular result.

We will sketch a heuristic argument of Linnik’s proof to illustrate why a log-free estimate
was critical. For simplicity, we will ignore the existence of any Landau-Siegel zeros1. For
(a, q) = 1, fixed 0 < θ < 1, and arbitrary x ≥ q, an explicit formula roughly states that∑

p≤x
p≡a (mod q)

log p =
x

ϕ(q)
−

∑
χ (mod q)

χ(a)

ϕ(q)

∑
ρ=β+iγ
|Im(ρ)|≤xδ

xρ

ρ
+Oδ(x

1−δ(log x)2)

Now, the goal is to show that the lefthand side is strictly positive when x = qL and L is a
sufficiently large absolute constant. Dividing both sides by x

ϕ(q)
, rearranging the main term,

1Dealing with Landau-Siegel zeros to count such primes was also a remarkable innovation of Linnik.
However, that aspect is not the focus of this article so we have opted to ignore it.
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and taking absolute values, it follows that

(2.1)
∣∣∣ϕ(q)

x

∑
p≤x

p≡a (mod q)

log p− 1
∣∣∣ ≤ ∑

χ (mod q)

∑
ρ=β+iγ
|Im(ρ)|≤xδ

x−(1−β)

|ρ|
+Oε

(q(log x)2

xδ

)
.

To show that the sum over primes is non-zero, it suffices to prove that the RHS is < 1
2

once

L = log x
log q

is sufficiently large. Our attention will be entirely on the sum of zeros.

Roughly speaking, for 0 < σ < 1 and T ≥ 1, the subsum of zeros ρ = β + iγ with β ≈ σ
and |ρ| ≈ T contributes

(2.2)
∑

χ (mod q)

∑
β≈σ
|γ|≈T

x−(1−β)

|ρ|
≈ Nq(σ, T )

x−(1−σ)

T
� 1

T

((qT )C

x

)1−σ
by the log-free zero density estimate (1.3). Since x = qL and T ≤ xδ ≤ qLδ, the above is

≤ 1

T
(qC+CLδ−L)1−σ =

1

T
q(C+1−L)(1−σ)

upon choosing δ = 1
CL

. These contributions can be heuristically totaled by summing over

σ = σj := 1 − j
200 log(qT )

and T = Tk := ek with with 1 ≤ j ≤ J := d100 log(qT )e and

1 ≤ k ≤ K := dlog(xδ)e. Notice these choices roughly correspond to

1

2
≤ σ ≤ 1− 1

200 log(qT )
, T ≤ xδ

Due to the classical zero-free region and the symmetry of the zeros, this covers all the relevant
zeros in the critical strip contributing to the sum over zeros in (2.1).

Overall, this process roughly gives

∑
χ (mod q)

∑
ρ=β+iγ
|Im(ρ)|≤xδ

x−(1−β)

|ρ|
≈

J∑
j=1

K∑
k=1

 ∑
χ (mod q)

∑
β≈σj
|γ|≈Tk

x−(1−β)

|ρ|

 dσ

�
J∑
j=1

K∑
k=1

(
e(C+1−L)j

ek

)
� eC+1−L

provided L > C + 1. Thus, taking L as a sufficiently large absolute constant ensures that
the RHS of (2.1) is < 1/2 when x = qL.

This brings us to the crucial point. If there was a single extra log q from (2.2), then this
excess would have propagated to this final estimate. This would force you to take L as a
function of q, instead of taking L as a large absolute constant. The proof only succeeds
because of a log-free zero density estimate. Hallelujah!

Remark 2.1. Notice the terms x−(1−β)/|ρ| in (2.1) are largest when β is close to 1 and |γ| is
small. This corresponds precisely to the ideal scenario described in Section 2.1 for counting
zeros with a log-free zero density estimate. We want as few of these large terms as possible.
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Exercise 2 (Background check). Prove that (2.1) follows from Theorem 12.10 of Montgomery
and Vaughan.

Exercise 3 (Annoying details). The heuristic in (2.2) fails when |ρ| < 1/4. Estimate the
contribution from these zeros separately. Hint: The real parts are very small, and |ρ| cannot
be too small.

Exercise 4 (Another crucial ingredient). The classical zero-free region is also essential to
Linnik’s proof. Explain how the heuristic argument would fail if you did not have any
zero-free region. Hint: Look at the summation indices.

Exercise 5 (Release the rigour). Use the heuristic argument following (2.1) to formulate a
rigorous and complete proof of Linnik’s theorem assuming Landau-Siegel zeros do not exist.
Hint: First divide the region into horizontal strips. On each piece, apply (1.3) using partial
summation.

3. Basic strategy

The core ideas behind a log-free zero density estimate are mostly the same as standard
zero density estimates. The distinctions are in the details so, before we dive into the novelty,
let us do a high-level abstract recap of the two steps towards proving a density estimate. For
simplicity, our exposition will assume henceforth

T = 100.

The letter T might still appear but this assumption of estimating bounded zeros will remain.
While some important issues will be ignored, most of the core ideas will be illuminated with
this choice alone.

3.1. Detecting zeros. The first step is to detect zeros. For each Dirichlet character χ
(mod q), construct a Dirichlet series

(3.1) F (s, χ) =
∞∑
n=1

fn(s, χ)

such that, for a suitably smooth non-negative weight φ : R>0 → [0,∞), we have

(3.2)
∣∣∣∑

n

fn(ρ, χ)φ(n)
∣∣∣ ≥ 1

2

whenever ρ is a non-trivial zero of χ. This initial choice is pivotal and possesses the key
ideas, but it might be somewhat mysterious until proceeding through the calculations.

Now, we will take advantage of our simplifying assumption that T = 100. By a classical
lemma of Linnik, each Dirichlet L-function has � (1− σ) log q zeros in the rectangle

(3.3) σ < Re(s) < 1, |Im(s)| ≤ 100.

Let S = Sq(σ, T ) be the set of characters χ (mod q) which have at least one zero ρ in (3.3).
Thus, totaling our zero detectors for each character, it follows that

(3.4) Nq(σ, 100)� (1− σ) log q
∑
χ∈S

∣∣∣ ∞∑
n=1

fn(ρ, χ)φ(n)
∣∣∣2.

All the zeros have therefore been detected.
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3.2. Applying a large sieve. Expanding out the RHS of (3.4) and swapping sums, we get

(3.5)
∑
χ

∣∣∣ ∞∑
n=1

fn(ρ, χ)φ(n)
∣∣∣2 =

∞∑
m=1

∞∑
n=1

φ(m)φ(n)
∑
χ

fm(ρ, χ)fn(ρ, χ).

We must average over all of these characters and zeros. In an ideal world, the inner double
sum over (ρ, χ) will act like an indicator function for whether m = n or not. This wishful

thinking comes from the belief that, for fixed m 6= n, the values (fm(ρ, χ)fn(ρ, χ))χ will be
randomly distributed in a complex disk.

Assuming this ideal world occurs, the size of the LHS of (3.5) is roughly the same as only
the diagonal terms of the RHS, i.e. when m = n. More formally, we hope to prove that

(3.6)
∑
χ

∣∣∣ ∞∑
n=1

fn(ρ, χ)φ(n)
∣∣∣2 ≤ B

∞∑
n=1

|φ(n)|2

for some constant B = Bq(σ, T ) > 0.
This averaging process is a kind of a “large sieve”. As we shall see, our large sieve must

primarily rely on the distribution of character values (χ(n))χ for any fixed n ∈ Z. These
are “well-spaced” by orthogonality of characters. We cannot rely much on the vertical
distribution of zeros ρ = β + iγ since our knowledge is not robust enough. That said, we
will need to rely on distinguishing zeros ρ1, ρ2 when |γ1 − γ2| is somewhat big.

3.3. Complete the proof. Combining (3.4) and (3.6), we will get that

(3.7) Nq(σ, T ) ≤ 4B
∞∑
n=1

|φ(n)|2

where B = Bq(σ, T ) is some positive constant. This last sum is usually straightforward to
calculate for the given choice of φ(n). This means we are finished!

Now, you may dispute this conclusion with a natural question.

How are we finished? We do not know anything about the RHS of (3.7).

Indeed, this concern is precisely where all the details come into play. The quantityB
∑

n |φ(n)|
may depend on σ, q, or T but we have not yet indicated how. Based on (1.3), our goal will
be to establish that

(3.8) B

∞∑
n=1

|φ(n)|2 � (qT )C(1−σ)

for some positive absolute constant C. Reviewing our 2-step strategy from Sections 3.1
and 3.2, this observation leads to a couple of core questions.

A) How do we choose the zero detector (2.1) to achieve (3.8)?

Broadly speaking, there are two fundamental methods.
• The mollifier2 method. The key tools are arithmetic in nature, inspired by

sieve theory and cancellation of partial sums of the Mobius function. Most
importantly, the coefficients fn(s, χ) are supported on sifted3 integers n ∈ Z.

2This method is also known as the “large values approach”.
3The phrase “sifted integers” means “integers without small prime factors”
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• The power sum method. The key tools are spectral in nature, inspired by
harmonic analysis and Diophantine questions. Most importantly, the coefficients
fn(s, χ) are supported only on prime powers n ∈ Z.

B) How can we apply a large sieve (3.6) to achieve (3.8)?

There are many variations of the large sieve that succeed, but we will focus on a
common thread for some of the best modern expositions: the duality principle. This
will allow us to exchange a sum over χ with a dual sum over integers n ∈ Z. This
exchange is critical because sums over non-trivial zeros are mysterious whereas sums
over sifted integers are much better understood.

For the sake of brevity, we will focus on the mollifier method. For examples of the power
sum method, we refer the reader to [Tur61], [Bom87], or [TZ22]. In either case, the log-free
requirement will force us to be ultra-efficient.

4. Mollifier method

Variants of the mollifier method4 were applied to establish log-free zero density estimates
by many authors, including Selberg, Motohashi, Jutila, Graham, and Heath-Brown. Our
exposition is modeled after the elegant treatments of Graham and Heath-Brown. We do not
aim to provide a fully rigorous proof, but instead outline the key steps and intuition.

4.1. Motivating the mollifier. We want to define the Dirichlet series in (3.1) as a product
of Dirichlet series, namely

(4.1) F (s, χ) = L(s, χ)M(s, χ)

where the “mollifier” M(s, χ) is chosen to intuitively satisfy

M(s, χ) ≈ 1

L(s, χ)
=
∞∑
n=1

µ(n)χ(n)n−s.

Abstractly speaking, we therefore want M(s, χ) to be of the form

M(s, χ) =
∞∑
n=1

mχ(n)χ(n)n−s,

where mχ(n) should approximate µ(n) in some way. A natural choice would be to define
mχ(n) as a truncated version of the Mobius function but instead. However, the precise choice
of mχ(n) is actually much more complicated. To motivate its origin, we shift perspective.

The product of Dirichlet series L(s, χ)M(s, χ) can be expressed as

L(s, χ)M(s, χ) =
∞∑
n=1

(∑
n=de

mχ(d)χ(d)χ(e)
)
n−s =

∞∑
n=1

(∑
d|n

mχ(d)
)
χ(n)n−s.

This reveals the source of the key idea. Indeed, if mχ(d) ≈ µ(d) then∑
d|n

mχ(d) ≈
∑
d|n

µ(d) =

{
1 n = 1

0 n 6= 1
,

4The approach of “pseudocharacters” pioneered by Selberg can be viewed as a type of mollifier method.
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so, since F (s, χ) =
∑

n fn(s, χ) must satisfy (4.1), we should aim for

(4.2) fn(s, χ) ≈
(∑

d|n

µ(d)
)
χ(n).

Based on (4.2), we might guess that fn(s, χ) could be of the form

(4.3)
(∑

d|n

ψd

)
χ(n)

where (ψd)d are some coefficients approximating µ(d). This will barely fail by a logarithm.
Instead, we will ultimately make a more clever choice:

(4.4) fn(s, χ) :=
(∑

d|n

ψd

)(∑
d|n

θd

)
χ(n)

where (ψd)d and (θd)d are coefficients approximating µ(d) in different ways. This delicate
line between success and failure will only be apparent when applying the large sieve. Before
proceeding with the proof, we digress on how to approximate the Mobius function.

4.2. Choosing sieve weights. Arithmetic approximations for
∑

d|n µ(d) are at the heart

of sieve theory, so there are many plausible choices. Our choice of coefficients (λd)d approx-
imating (µ(d))d will be motivated by some desirable analytic and arithmetic properties.

(i) The quantity
∑

d|n λd sifts out small prime factors of n.
In other words, the quantity vanishes if n has a small prime factor. This can be
achieved by assuming λd = µ(d) for d ≤ z for a suitably chosen z > 0. The value of
λd for d > z can still be specified in many different ways.

(ii) The coefficients λd smoothly decay to zero as d grows.
This at least requires λd = 0 for d > y for a suitably chosen y > z. The value of λd
for z < d < y can still be specified in many different ways.

(iii) The density of
(∑

d|n λd
)2

is at most the density of primes for a long range of n ∈ N.
Somewhat more formally, we want a suitably chosen x ≥ y to satisfy that∑

n≤N

(∑
d|n

λd
)2 � N

logN

for 2 ≤ N ≤ x.

These three properties are essentially encapsulated by a beautiful asymptotic result of Gra-
ham [Gra78] on the sieve weights of Barban and Vehov [BV68].

Theorem 4.1 (Graham). Fix 0 < z ≤ y. Define (λd)d≥1 by

(4.5) λd =


µ(d) 1 ≤ d ≤ z,

µ(d) log(y/d)
log(y/z)

z < d ≤ y,

0 d > y,

then for N ≥ 1, ∑
n≤N

(∑
d|n

λd

)2
=

N

log(y/z)
+O

( N

(log(y/z))2

)
.

Exercise 6 (Choices). Explain why properties (i) to (iii) are fulfilled with the choice y = z2.
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Equipped with our sieve weights, we return to the main argument.

4.3. Constructing zero detectors. We are ready to formally define our zero detector.
Define our universal parameter for measurement:

L := log(qT ).

Take parameters U = (qT )u, V = (qT )v,W = (qT )w, X = (qT )x where 0 < u < v and
w, x > 0 are suitably chosen positive constants. Define (ψd)d and (θd)d by

(4.6) ψd =


µ(d) 1 ≤ d ≤ U,

µ(d) log(V/d)
log(V/U)

U < d ≤ V,

0 d > V,

θd =

{
µ(d) log(W/d)

logW
1 ≤ d ≤ W,

0 d > W,

so both of them are examples of Barban-Vehov weights from (4.5). Define

F (s, χ) :=
∞∑
n=1

(∑
d|n

ψd

)(∑
d|n

θd

)
χ(n)n−s

so indeed the coefficients fn(s, χ) are of the form given by (4.4). Due to the choice of weights
in (4.6), the mollifier M(s, χ) can be expressed as a finite Dirichlet polynomial.

Exercise 7 (Dirichlet series game). Show that F (s, χ) = L(s, χ)M(s, χ) where

M(s, χ) =
∑
v≤V

∑
w≤W

ψvθwχ([v, w])[v, w]−s.

Define the smooth weight φ : R>0 → [0,∞) by

φ(t) = e−t/X − e−tL 2/U

so that, crudely speaking, φ(t) ≈ 0 for 0 < t < U and t > X, and φ(t) ≈ 1 for U < t < X.
It remains to verify that these choices detect zeros as in (3.2).

Lemma 4.2 (Zero detector). If ρ is a non-trivial zero of χ with Re(ρ) > 1/2, then

∞∑
n=1

(∑
d|n

ψd

)(∑
d|n

θd

)
χ(n)n−ρ(e−n/X − e−nL 2/U) = 1 +O(L −1).

provided x > v + w + 1
4
.

Proof. (Sketch) First, notice that

∞∑
n=1

(∑
d|n

ψd

)(∑
d|n

θd

)
χ(n)n−ρe−n/X =

∫ 1+i∞

1−i∞
L(s+ ρ, χ)M(s+ ρ, χ)Γ(s)Xsds

Shift this contour to the line Re(s) = 1
2
− β. No poles are picked up as the integrand

is holomorphic for Re(s) > −1. Estimate the new integral using standard divisor bounds

d(n)�ε n
ε, the convexity bound for Dirichlet L-functions |L(1

2
+ it, χ)| � (q(1 + |t|))

1
4 , and

Stirling’s estimate |Γ(1
2

+it)| � e−|t|. The final error term will be much better than O(L −1).
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Second, show that
∞∑
n=1

(∑
d|n

ψd

)(∑
d|n

θd

)
χ(n)n−ρe−nL 2/U = e−L 2/U +

∑
n>U

(
· · ·
)

= 1 +O(L −1)

Again, the error term can be much better than O(L −1). Finally, combine these two items
to deduce the result. �

Exercise 8 (Zero to a hundred). Prove Lemma 4.2 by following the provided outline.

Let S = Sq(σ, T ) be the set of characters χ (mod q) which have at least one zero ρ in
(3.3). By (3.4) and Lemma 4.2, we have that

(4.7) Nq(σ, T )� ((1− σ) log q) |S| and |S| ≤ 4
∑
χ

∣∣∣ ∞∑
n=1

aχ,nbn

∣∣∣2,
where

aχ,n =
(∑

d|n

θd

)
χ(n)n

1
2
−ρ(e−n/X − e−nL 2/U)1/2,

bn =
(∑

d|n

ψd

)
n−

1
2 (e−n/X − e−nL 2/U)1/2.

All zeros have been detected, so we are ready for the next step.

4.4. Applying a large sieve via the duality principle. In our case of (4.7), the duality
principle implies: if there exists B > 0 such that

(4.8)
∑
n

∣∣∣∑
χ

aχ,ncχ

∣∣∣2 ≤ B
∑
χ

|cχ|2

for all choices of coefficients cχ, then∑
χ

∣∣∣∑
n

aχ,nbn

∣∣∣2 ≤ B
∑
n

|bn|2

for all choices of coefficients bn.

Exercise 9 (Dual dualities). The duality principle is a statement about linear operators on
Banach spaces. Namely, if x 7→ Ax is a linear operator between Banach spaces X → Y , then
the norm of A is equal to the norm of its adjoint A∗. Show that this formulation implies the
above formulation.

Assuming (4.8) holds, we will obtain from Lemma 4.2 and partial summation that

(4.9)
∑
χ

∣∣∣∑
n

aχ,nbn

∣∣∣2 ≤ B
∞∑
n=1

(∑
d|n

ψd

)2
n−1(e−n/X − e−nL 2/U)� B

since x > v according to Lemma 4.2.

Exercise 10 (Warm up). Verify the calculations justifying (4.9).
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Exercise 11 (Missing you). What would happen if the term (
∑

d|n ψd)
2 were missing from

the expression in (4.9)? Estimate
∑∞

n=1 n
−1(e−n/X − e−nL 2/U) with partial summation.

It suffices to establish (4.8) with some constant B. Expanding the LHS of (4.8), all terms
of the form

cχcχ′

∞∑
n=1

(∑
d|n

θd

)2
χ(n)χ′(n)n1−ρ−ρ′(e−n/X − e−nL 2/U).

For the non-diagonal terms where χ 6= χ′, the same ideas from Lemma 4.2 show that

∞∑
n=1

(∑
d|n

θd

)2
χ(n)χ′(n)n1−ρ−ρ′(e−n/X − e−nL 2/U)� L −1

provided u > 2w + 1
4
. The total contribution of non-diagonal terms is therefore

�
∑
χ

∑
χ′

|cχ||cχ′ |L −1 ≤ 1

2
L
∑
χ

∑
χ′

(
|cχ|2 + |cχ′|2

)
= |S|L −1

(∑
χ

|cχ|2
)

For the diagonal terms, partial summation and Theorem 4.1 imply that

∞∑
n=1

(∑
d|n

θd

)2
χ0(n)n1−2β(e−n/X − e−nL 2/U)� |cχ|2

X2−2β

(2− 2β) logW
� X2−2β

(2− 2β) logW

The total contribution of all diagonal terms will therefore be

�
∑
χ

|cχ|2
X2−2β

(2− 2β) logW
� X2−2σ

(2− 2σ) logW

(∑
χ

|cχ|2
)
.

Thus, the choice

B =
X2−2σ

(2− 2σ) logW
+
|S|
L

may be taken in (4.8).
Overall, by (4.7) and (4.9), this shows that

Nq(σ, T )� (1− σ) log q|S| � (1− σ) log q
X2−2σ

(2− 2σ) logW
� qC(1−σ)

for some absolute positive constant C > 0. That was a long and complicated story!

Remark 4.3. Many details were omitted at various steps, especially due to the assump-
tion that T = 100. If you are interested in a more detailed, complete, and self-contained
exposition, see Iwaniec and Kowalski [IK04] for example.

Exercise 12 (Nitpicking). Confirm the estimates in the final step.

Exercise 13 (A big challenge). Identify what goes wrong when you remove the assumption
that T = 100, especially near the end of the proof. There is more than one thing. How
might you try to resolve these issues?
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