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Introduction

A fundamental theme in number theory is is the interplay
between properties of prime numbers and the analytic
properties of L-functions.

These include

The Riemann zeta function ζ(s)
Dirichlet L-functions L(s, χ)
Dedekind zeta functions (analogues of the Riemann zeta
function for number fields)
Hecke L-functions (analogues of the Dirichlet L-functions) via
characters of the ideal class group of a number field
Artin L-functions: Dirichlet series associated to linear
representations of a Galois group G .

We review some notions from algebraic number theory needed
to state the Chebotarev density theorem.
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Algebraic integers

Our first goal is to generalize the study of the integral domain Z
and its quotient field Q.

Definition

If α ∈ C is a root of a monic, integral polynomial of degree d, that
is, a root of a polynomial of the form

f (x) =
d−1∑
j=0

ajx
j + xd ∈ Z[x ],

which is irreducible over Q, then α is called an algebraic integer
of degree d.
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a+ bi (a, b ∈ Z, b ̸= 0) is an algebraic integer of degree 2,
being a root of x2 − 2ax + a2 + b2. Since b ̸= 0, it is not a
root of an integral, monic polynomial of degree 1.

For a natural number m, let ζm denote a primitive m-th root
of unity, that is, a root of xm − 1, but not a root of xd − 1
for any natural number d < m. For example, ±i are primitive
4-th roots of unity.

−1±
√
3i

2

are primitive cube roots of unity.

Note (for later): numbers of the form

z0 + z1ζn + z2ζ
2
n + · · ·+ zn−1ζ

n−1
n , zj ∈ Z

are called cyclotomic integers of order n.
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Algebraic numbers and number fields

Definition

An algebraic number α of degree d ∈ N is a root of a polynomial
in Q[x ] of degree d and not the root of any polynomial in Q[x ] of
degree less than d. In other words, an algebraic number is the root
of an irreducible polynomial of degree d over Q.

For example,
√
2/3 is an algebraic number, being a root of

9x2 − 2, but it is not an algebraic integer.

Let D be a squarefree integer with |D| > 1. If 4|(D − 1), then
(−1±

√
D)/2 is an algebraic integer. It is a root of

x2 + x + (1− D)/4 = 0.

Let Q denote the set of all algebraic numbers, and let Z denote
the set of all algebraic integers.
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An algebraic number field, or a number field is a field of
the form

F = Q(α1, α2, . . . , αn) ⊂ C, αj ∈ Q for 1 ≤ j ≤ n.

If F is a simple extension, that is, if F = Q(α) for some α ∈ Q
of degree d , then F can be viewed as a vector space over Q
with basis {1, α, α2, . . . , αd−1}.
By the Primitive Element Theorem for number fields, any
number field F is a simple extension of Q. That is, any
number field F is of the form Q(α) for some α ∈ Q.

An algebraic number α of degree d over a number field F is
the root of an irreducible polynomial in F[x ] of degree d .

In fact, an algebraic number of degree d over a number field
F is the root of a unique, monic irreducible polynomial in F[x ]
of degree d , which we call the minimal polynomial of α over F
and denote as mα,F(x).
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More about algebraic integers

Z is a subring of Q.

For a number field F, F ∩ Z is a ring in F, and is called the
ring of algebraic integers of F. It is denoted as OF.

OQ = Z.
For any number field F, Q ∩ OF = Z.
The quotient field of OF is F.
OF is a Dedekind domain. That is,OF is an integral domain
such that

every ideal of OF is finitely generated,
every nonzero prime ideal of OF is maximal,
and OF is integrally closed in F. That is, if α ∈ F is a root of a
polynomial in OF[x ] of degree > 1, then α ∈ OF.
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Embeddings and conjugate fields

Let K = Q(θ) for some algebraic θ ∈ Q. That is, there exists
a minimal polynomial f (x) =

∑n
i=0 aix

i ∈ Q[x ] such that
f (θ) = 0.

Let σ : K → C be an embedding, that is, a function
satisfying, for all a, b ∈ K ,

σ(a+ b) = σ(a) + σ(b),
σ(ab) = σ(a)σ(b),
and σ(r) = r for all r ∈ Q.

Also, 0 = σ(f (θ)) = f (σ(θ)). That is, σ(θ) is a root of f for
any embedding σ : K → C.
Thus, there are only n choices for σ(θ), namely the distinct
roots θ(1), θ(2), . . . , θ(n) of f (x). We denote each embedding
as σ(i). The fields K (i) := Q(θ(i)) are called the conjugate
fields of K .
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Note that {1, θ, θ2, . . . , θn−1} is a Q-basis of K . If
σ : K → C is an embedding, then

σ

(
n−1∑
i=0

biθ
i

)
=

n−1∑
i=0

biσ (θ)i .

If θ(i) is real, we say that K (i) is a real embedding of K .
Otherwise, K (i) is called a complex embedding of K .

For example, consider Q(
√
D). The embeddings are

σ(a+ b
√
D) = a± b

√
D. Also, the conjugate field of Q(

√
D)

is Q(
√
D).

We call K a Galois extension of Q if all the conjugate fields
of K are identical to K . Thus, any quadratic extension of Q is
a Galois extension. Exercise: Q(3

√
2) is not a Galois extension

of Q.

We can study the above notions for extensions K of an
arbitrary number field F, and define conjugate fields relative
to F accordingly.
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Norms and traces

Let [K : F] = n. We define Trace K/F(α) to be the sum of the
conjugates of α. That is,

Trace K/F(α) =
n∑

i=1

σi (α).

We define Norm K/F(α) to be the product of the conjugates of α.
That is,

Trace K/F(α) =
n∏

i=1

σi (α).

For example, TraceQ(
√
D)/Q(a+ b

√
D) = 2a,

NormQ(
√
D)/Q(a+ b

√
D) = a2 − Db2.

We often denote Trace K/Q(α) and Norm K/Q(α) as Trace (α) and

Norm (α).
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Structure of OK

If K = Q(
√
D), what is OK?

OK =

{
Z[
√
D] if D ≡ 2, 3 (mod 4)

Z
[
1+

√
D

2

]
if D ≡ 1 (mod 4).

More generally, if [K : Q] = n, then there exist
ω1, ω2, . . . , ωn ∈ OK such that

OK = Zω1 + Zω2 + . . .Zωn.

That is, {ω1, ω2, . . . , ωn} forms an integral basis of OK .

Let ζ denote a primitive p-th root of unity and K = Q(ζ). Then,
1, ζ, . . . , ζp−2 forms an integral basis of K .
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Discriminant of a number field

Definition

Let [K : Q] = n and suppose {ω1, ω2, . . . , ωn} is an integral basis
of OK . The discriminant of K, dK is defined as

dK := det(σj(ωi ))
2.

The discriminant is well-defined. That is, the discriminant is
independent of the choice of integral basis of K .
If K = Q(

√
D) and D ≡ 1 (mod 4), consider the integral basis

{1, 1+
√
D

2 }. Then,

dK =

(
det

[
1 (1 +

√
D)/2

1 (1−
√
D)/2

])2

= D.

Also, dK = 4D if D ̸≡ 1 (mod 4).
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We can generalize the notion of a discriminant for arbitrary
elements of K . Suppose {a1, a2, . . . , an} ⊂ K . We define

dK/Q(a1, a2, . . . , an) := det(σj(ai ))
2.

It can be shown that

dK/Q(a) := dK/Q(1, a, a
2, . . . , an−1) =

∏
1≤j<k≤n

(σj(a)−σk(a))
2.

In particular, let K = Q(ζm). Then, {1, ζm, . . . , ζϕ(m)−1
m } is an

integral basis of OK . By applying the above formula,

dK =
(−1)ϕ(m)/2mϕ(m)∏

p|m pϕ(m)/(p−1)
.

Let K be an algebraic number field. If dK/Q(θ) is squarefree,
then OK = Z[θ].
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Ideals in OK

So far, we have seen how OK can be seen as a generalization
of Z.
To draw a meaningful generalization of the unique
factorization of integers into prime powers in Z, we have to
treat ideals in OK and discuss the factorization of ideals into
prime ideals of OK .

We recall the following fundamental facts:

Any ideal in OK has an integral basis.
Any nonzero ideal a in OK has finite index |OK/a| in OK . We
define the norm of a nonzero ideal in OK to be its index
|OK/a| and denote it as N(a).

If α ∈ OK , then N(⟨α⟩) = |N(α)|.
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Prime ideals in OK

Exercise: For any nonzero ideal a in OK , a∩Z must contain a
nonzero integer.

By the definition of a prime ideal p, if ab ∈ p, then either
a ∈ p or b ∈ p.

Thus, p must contain some rational prime. But, if p contains
two rational primes p and q, then it would contain their
greatest common divisor 1. This contradicts the nontriviality
of p. Thus, p can contain exactly one rational prime p. We
say that p lies below p.

In this case, ⟨p⟩ = pq for an integral ideal q of OK . Thus,
N(p) must divide N(⟨p⟩) = |N(p)|. As p(i) = p for each i ,
|N(p)| = p[K :Q]. Thus, N(p) = pf for some 1 ≤ f ≤ [K : Q].

f is called the inertial degree of p in OK .
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Factoring primes in a number field

Theorem (Unique factorization of ideals in OK )

Every proper nonzero ideal a in OK is uniquely representable as a
product of prime ideals.

That is,

a = pa11 pa22 . . . pall ,

where pl ’s are the distinct prime ideals of OK containing a, and
al ∈ N. This factorization is unique up to the order of the factors.

Let [K : Q] = n. Suppose, for a rational prime p,

⟨p⟩ = pe11 pe22 . . . pell .

Suppose fi is the inertial degree of pi . Then,
∑l

i=1 ei fi = n. Note
that ei is called the ramification index of pi in K (that is, peii |⟨p⟩,
and pei+1

i ∤ ⟨p⟩).
Also, l is called the decomposition number of p in K and it can
be shown that l ≤ n.
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Ramification

Definition

Let [K : Q] = n, and let p be a rational prime. Let p1, p2, . . . , pl
be the prime ideals in OK lying above p. That is,

⟨p⟩ = pe11 pe22 . . . pell .

If ei > 1 for some 1 ≤ i ≤ l , then p is said to ramify in K. If
ei = 1 for all i , then p is said to be unramified in K.

Theorem (Dedekind)

A rational prime p ramifies in K if and only if p|d(K ).
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Factoring primes in a quadratic field

Theorem

Let K = Q(
√
D), and let p ∈ Z be a prime. Then,

1 ⟨p⟩ = p1p2 if p > 2, (D/p) = 1. Here, N(p1) = N(p2) = p.

2 ⟨p⟩ = p if p > 2, and (D/p) = −1. Here, N(p) = p2.

3 ⟨p⟩ = p2 if p > 2, and p|D. Here, N(p) = p.

4 ⟨p⟩ = p1p2 if p = 2 and D ≡ 1(mod 8). Here,
N(p1) = N(p2) = p.

5 ⟨p⟩ = p if p = 2 and D ≡ 5(mod 8). Here, N(p) = p2.

6 ⟨p⟩ = p2 if p = 2 and D ≡ 2, 3(mod 4). Here, N(p) = p.

In Cases 1 and 4, we say that p splits in K . In Cases 2 and 5, we
say that p is inert in K . In Cases 3 and 6, we say that p ramifies in
K .
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Factoring primes in a monogenic number field

An algebraic number field K of degree n is said to be
monogenic if there exists θ ∈ OK such that

OK = Z+ Zθ + · · ·+ Zθn−1.

Let f (x) ∈ Z[x ] be an irreducible polynomial such that
f (θ) = 0.

Let p be a rational prime and let g1(x), g2(x), . . . , gl(x) be
distinct monic irreducible polynomials in Zp[x ] such that

f (x) ≡ g1(x)
e1g2(x)

e2 . . . gl(x)
el (mod p).

For each i , let fi (x) ∈ Z[x ] such that fi (x) ≡ gi (x) (mod p),
and define pi = ⟨p, fi (θ)⟩.
Then, ⟨p⟩ = pe11 pe22 . . . pell .
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Factoring primes in K/F

If K/F is an extension of number fields (that is, [K : F] and
[F : Q] are finite), we call K a relative extension of F. If
F = Q, we say that K is an absolute extension.

We can generalize the notions that we learnt in previous slides
and ask how a prime ideal p in OF factors in OK .

Let P be a prime ideal in OK . There exists exactly one prime
ideal p of OF lying below P, that is, P can contain exactly
one prime ideal p of F.
The inertial degree of Pi in OK is defined as

fK/F(Pi ) := [OK/Pi : OF/p].

The fields OK/Pi and OF/p are called the residue fields at Pi

and p respectively.

Thus, the inertial degree fK/F(Pi ) is the degree of the
extension of these finite fields.
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Suppose

pOK =
l∏

i=1

Pei
j , ei ∈ N,

where Pi are distinct prime ideals in OK .

The number ei is called the ramification index of Pi in OK ,
and is denoted as eK/F(Pi ).

p is said to ramify in K if eK/F(Pi ) > 1 for some i .
Otherwise, p is said to be unramified in K .

l = lK/F(p) is said to be the decomposition number of p in
OK .
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Inert, completely split and ramified

Suppose K/F is a finite extension of number fields, and let p
be a prime ideal in OF such that pOK =

∏l
i=1P

ei
i , ei ∈ N,

where Pi are distinct prime ideals in OK .

Then
∑l

i=1 eK/F(Pi )fK/F(Pi ) = [K : F].
Then p is said to be completely ramified or totally ramified
in OK whenever

ei := eK/F(Pi ) = [K : F]

for some 1 ≤ i ≤ l . In this case, l = 1 and fK/F(Pi ) = 1.

We say that p is said to split completely in OK if
l = lK/F(p) = [K : F]. In this case, eK/F(Pi ) = fK/F(Pi ) = 1
for each 1 ≤ i ≤ l .

If fK/F(Pi ) = [K : F] for some i , then
lK/F(p) = 1 = eK/F(Pi ). That is, p = Pi . In this case, we say
that p is inert in OK .
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Galois extensions, ramification and inertia

Theorem

Let K/F be a Galois extension of number fields, that is, all the
F-conjugate fields of K are identical.
Let p be a prime ideal in OF such that pOK =

∏l
i=1P

ei
i , ei ∈ N,

where Pi are distinct prime ideals in OK , with ei = eK/F(Pi ),
fi = fK/F(Pi ) and l = lK/F(p).
Then,

eK/F(Pi ) = eK/F(Pj), fK/F(Pi ) = fK/F(Pj) for all 1 ≤ i , j ≤ l .

Since the above values are equal, we may respectively denote them
as eK/F(p) and fK/F(p). Thus,

eK/F(p)fK/F(p)lK/F(p) = [K : F].
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Decomposition group and inertia group

The set of all F-embeddings of K forms a group called the
Galois group of K over F and denoted Gal(K/F).
Suppose K is a Galois extension of F. Then, for any
σ ∈ Gal(K/F), σ : K → K and σ(F) = F. In fact, F is the
fixed field of Gal(K/F).
Let p be a fixed prime ideal in OF. Then, Gal(K/F)
transitively permutes the prime ideals of OK lying above p.

That is, let

pOK =
l∏

i=1

Pei
i .

Then, for each 1 ≤ i , j ≤ l , σ(Pi ) = Pj for some
σ ∈ Gal(K/F).
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For a prime ideal P of OK , the decomposition group of P
in K is defined as

DP(K/F) := {σ ∈ Gal(K/F) : σ(P) = P}.

For any ρ ∈ Gal(K/F),

ρ−1DP(K/F)ρ = Dρ(P)(K/F).

If P lies over a prime p in OF, then
|DP(K/F)| = eK/F(p)fK/F(p).
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For a prime ideal P of OK , the inertia group of P in K is
defined as

TP(K/F) := {σ ∈ Gal(K/F) : σ(α)− α ∈ P for all α ∈ OK}.

For any ρ ∈ Gal(K/F),

ρ−1TP(K/F)ρ = Tρ(P)(K/F).

If P lies over a prime p in OF, then
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