Review of algebraic number theory

Inclusive paths in explicit number theory

July 04, 2023

Review of algebraic number theory

Introduction

Review of algebraic number theory

< ロ > < 部 > < き > < き > ...

æ

• A fundamental theme in number theory is is the interplay between properties of prime numbers and the analytic properties of *L*-functions.

→ < ∃ →</p>

- A fundamental theme in number theory is is the interplay between properties of prime numbers and the analytic properties of *L*-functions.
- These include
 - The Riemann zeta function $\zeta(s)$

- A fundamental theme in number theory is is the interplay between properties of prime numbers and the analytic properties of *L*-functions.
- These include
 - The Riemann zeta function $\zeta(s)$
 - Dirichlet *L*-functions $L(s, \chi)$

- A fundamental theme in number theory is is the interplay between properties of prime numbers and the analytic properties of *L*-functions.
- These include
 - The Riemann zeta function $\zeta(s)$
 - Dirichlet *L*-functions $L(s, \chi)$
 - Dedekind zeta functions (analogues of the Riemann zeta function for number fields)

- A fundamental theme in number theory is is the interplay between properties of prime numbers and the analytic properties of *L*-functions.
- These include
 - The Riemann zeta function $\zeta(s)$
 - Dirichlet *L*-functions $L(s, \chi)$
 - Dedekind zeta functions (analogues of the Riemann zeta function for number fields)
 - Hecke *L*-functions (analogues of the Dirichlet *L*-functions) via characters of the ideal class group of a number field

- A fundamental theme in number theory is is the interplay between properties of prime numbers and the analytic properties of *L*-functions.
- These include
 - The Riemann zeta function $\zeta(s)$
 - Dirichlet *L*-functions $L(s, \chi)$
 - Dedekind zeta functions (analogues of the Riemann zeta function for number fields)
 - Hecke *L*-functions (analogues of the Dirichlet *L*-functions) via characters of the ideal class group of a number field
 - Artin *L*-functions: Dirichlet series associated to linear representations of a Galois group *G*.

- A fundamental theme in number theory is is the interplay between properties of prime numbers and the analytic properties of *L*-functions.
- These include
 - The Riemann zeta function $\zeta(s)$
 - Dirichlet *L*-functions $L(s, \chi)$
 - Dedekind zeta functions (analogues of the Riemann zeta function for number fields)
 - Hecke *L*-functions (analogues of the Dirichlet *L*-functions) via characters of the ideal class group of a number field
 - Artin *L*-functions: Dirichlet series associated to linear representations of a Galois group *G*.
- We review some notions from algebraic number theory needed to state the Chebotarev density theorem.

Review of algebraic number theory

イロト イ団ト イヨト イヨト

æ

Our first goal is to generalize the study of the integral domain $\mathbb Z$ and its quotient field $\mathbb Q.$

★ ∃ → ★

Our first goal is to generalize the study of the integral domain $\mathbb Z$ and its quotient field $\mathbb Q.$

Definition

If $\alpha \in \mathbb{C}$ is a root of a monic, integral polynomial of degree d, that is, a root of a polynomial of the form

$$f(x) = \sum_{j=0}^{d-1} a_j x^j + x^d \in \mathbb{Z}[x],$$

which is irreducible over \mathbb{Q} , then α is called an algebraic integer of degree d.

Review of algebraic number theory

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

a + bi (a, b ∈ Z, b ≠ 0) is an algebraic integer of degree 2, being a root of x² - 2ax + a² + b². Since b ≠ 0, it is not a root of an integral, monic polynomial of degree 1.

• • • • • • • •

э

- a + bi (a, b ∈ Z, b ≠ 0) is an algebraic integer of degree 2, being a root of x² 2ax + a² + b². Since b ≠ 0, it is not a root of an integral, monic polynomial of degree 1.
- For a natural number m, let ζ_m denote a **primitive** m-**th root** of unity,

- a + bi (a, b ∈ Z, b ≠ 0) is an algebraic integer of degree 2, being a root of x² 2ax + a² + b². Since b ≠ 0, it is not a root of an integral, monic polynomial of degree 1.
- For a natural number m, let ζ_m denote a primitive m-th root of unity, that is, a root of x^m − 1, but not a root of x^d − 1 for any natural number d < m.

- a + bi (a, b ∈ Z, b ≠ 0) is an algebraic integer of degree 2, being a root of x² 2ax + a² + b². Since b ≠ 0, it is not a root of an integral, monic polynomial of degree 1.
- For a natural number m, let ζ_m denote a primitive m-th root of unity, that is, a root of x^m − 1, but not a root of x^d − 1 for any natural number d < m. For example, ±i are primitive 4-th roots of unity.

- a + bi (a, b ∈ Z, b ≠ 0) is an algebraic integer of degree 2, being a root of x² 2ax + a² + b². Since b ≠ 0, it is not a root of an integral, monic polynomial of degree 1.
- For a natural number m, let ζ_m denote a primitive m-th root of unity, that is, a root of x^m − 1, but not a root of x^d − 1 for any natural number d < m. For example, ±i are primitive 4-th roots of unity.

$$\frac{-1\pm\sqrt{3}i}{2}$$

are primitive cube roots of unity.

- a + bi (a, b ∈ Z, b ≠ 0) is an algebraic integer of degree 2, being a root of x² 2ax + a² + b². Since b ≠ 0, it is not a root of an integral, monic polynomial of degree 1.
- For a natural number m, let ζ_m denote a primitive m-th root of unity, that is, a root of x^m − 1, but not a root of x^d − 1 for any natural number d < m. For example, ±i are primitive 4-th roots of unity.

$$\frac{-1\pm\sqrt{3}i}{2}$$

are primitive cube roots of unity.

• Note (for later): numbers of the form

$$z_0 + z_1\zeta_n + z_2\zeta_n^2 + \cdots + z_{n-1}\zeta_n^{n-1}, z_j \in \mathbb{Z}$$

are called cyclotomic integers of order n.

Review of algebraic number theory

→ < ∃ →

æ

∃ >

An algebraic number α of degree $d \in \mathbb{N}$ is a root of a polynomial in $\mathbb{Q}[x]$ of degree d and not the root of any polynomial in $\mathbb{Q}[x]$ of degree less than d.

An algebraic number α of degree $d \in \mathbb{N}$ is a root of a polynomial in $\mathbb{Q}[x]$ of degree d and not the root of any polynomial in $\mathbb{Q}[x]$ of degree less than d. In other words, an algebraic number is the root of an irreducible polynomial of degree d over \mathbb{Q} .

An algebraic number α of degree $d \in \mathbb{N}$ is a root of a polynomial in $\mathbb{Q}[x]$ of degree d and not the root of any polynomial in $\mathbb{Q}[x]$ of degree less than d. In other words, an algebraic number is the root of an irreducible polynomial of degree d over \mathbb{Q} .

For example, $\sqrt{2}/3$ is an algebraic number, being a root of $9x^2 - 2$, but it is not an algebraic integer.

An algebraic number α of degree $d \in \mathbb{N}$ is a root of a polynomial in $\mathbb{Q}[x]$ of degree d and not the root of any polynomial in $\mathbb{Q}[x]$ of degree less than d. In other words, an algebraic number is the root of an irreducible polynomial of degree d over \mathbb{Q} .

For example, $\sqrt{2}/3$ is an algebraic number, being a root of $9x^2 - 2$, but it is not an algebraic integer.

Let D be a squarefree integer with |D| > 1. If 4|(D-1), then $(-1 \pm \sqrt{D})/2$ is an algebraic integer.

An algebraic number α of degree $d \in \mathbb{N}$ is a root of a polynomial in $\mathbb{Q}[x]$ of degree d and not the root of any polynomial in $\mathbb{Q}[x]$ of degree less than d. In other words, an algebraic number is the root of an irreducible polynomial of degree d over \mathbb{Q} .

For example, $\sqrt{2}/3$ is an algebraic number, being a root of $9x^2 - 2$, but it is not an algebraic integer.

Let D be a squarefree integer with |D| > 1. If 4|(D-1), then $(-1 \pm \sqrt{D})/2$ is an algebraic integer. It is a root of $x^2 + x + (1 - D)/4 = 0$.

An algebraic number α of degree $d \in \mathbb{N}$ is a root of a polynomial in $\mathbb{Q}[x]$ of degree d and not the root of any polynomial in $\mathbb{Q}[x]$ of degree less than d. In other words, an algebraic number is the root of an irreducible polynomial of degree d over \mathbb{Q} .

For example, $\sqrt{2}/3$ is an algebraic number, being a root of $9x^2 - 2$, but it is not an algebraic integer.

Let D be a squarefree integer with |D| > 1. If 4|(D-1), then $(-1 \pm \sqrt{D})/2$ is an algebraic integer. It is a root of $x^2 + x + (1 - D)/4 = 0$.

Let $\overline{\mathbb{Q}}$ denote the set of all algebraic numbers, and let $\overline{\mathbb{Z}}$ denote the set of all algebraic integers.

• • = • • = •

Review of algebraic number theory

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$\mathbb{F} = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n) \subset \mathbb{C}, \ \alpha_j \in \mathbb{Q} \text{ for } 1 \leq j \leq n.$$

イロト イヨト イヨト イヨト

æ

$$\mathbb{F} = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n) \subset \mathbb{C}, \ \alpha_j \in \overline{\mathbb{Q}} \text{ for } 1 \leq j \leq n.$$

If F is a simple extension, that is, if F = Q(α) for some α ∈ Q
of degree d, then F can be viewed as a vector space over Q
with basis {1, α, α²,..., α^{d-1}}.

$$\mathbb{F} = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n) \subset \mathbb{C}, \ \alpha_j \in \overline{\mathbb{Q}} \text{ for } 1 \leq j \leq n.$$

- If F is a simple extension, that is, if F = Q(α) for some α ∈ Q of degree d, then F can be viewed as a vector space over Q with basis {1, α, α²,..., α^{d-1}}.
- By the Primitive Element Theorem for number fields, any number field 𝔅 is a simple extension of 𝔅.

$$\mathbb{F} = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n) \subset \mathbb{C}, \ \alpha_j \in \overline{\mathbb{Q}} \text{ for } 1 \leq j \leq n.$$

- If F is a simple extension, that is, if F = Q(α) for some α ∈ Q of degree d, then F can be viewed as a vector space over Q with basis {1, α, α²,..., α^{d-1}}.
- By the Primitive Element Theorem for number fields, any number field F is a simple extension of Q. That is, any number field F is of the form Q(α) for some α ∈ Q.

$$\mathbb{F} = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n) \subset \mathbb{C}, \ \alpha_j \in \overline{\mathbb{Q}} \text{ for } 1 \leq j \leq n.$$

- If F is a simple extension, that is, if F = Q(α) for some α ∈ Q of degree d, then F can be viewed as a vector space over Q with basis {1, α, α²,..., α^{d-1}}.
- By the Primitive Element Theorem for number fields, any number field F is a simple extension of Q. That is, any number field F is of the form Q(α) for some α ∈ Q.
- An algebraic number α of degree d over a number field F is the root of an irreducible polynomial in F[x] of degree d.

$$\mathbb{F} = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n) \subset \mathbb{C}, \ \alpha_j \in \overline{\mathbb{Q}} \text{ for } 1 \leq j \leq n.$$

- If F is a simple extension, that is, if F = Q(α) for some α ∈ Q
 of degree d, then F can be viewed as a vector space over Q
 with basis {1, α, α²,..., α^{d-1}}.
- By the Primitive Element Theorem for number fields, any number field 𝔽 is a simple extension of ℚ. That is, any number field 𝔅 is of the form ℚ(α) for some α ∈ 𝔅.
- An algebraic number α of degree d over a number field F is the root of an irreducible polynomial in F[x] of degree d.
- In fact, an algebraic number of degree d over a number field
 F is the root of a unique, monic irreducible polynomial in F[x]
 of degree d, which we call the minimal polynomial of α over F
 and denote as m_{α,F}(x).

$$\mathbb{F} = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n) \subset \mathbb{C}, \ \alpha_j \in \overline{\mathbb{Q}} \text{ for } 1 \leq j \leq n.$$

- If F is a simple extension, that is, if F = Q(α) for some α ∈ Q
 of degree d, then F can be viewed as a vector space over Q
 with basis {1, α, α²,..., α^{d-1}}.
- By the Primitive Element Theorem for number fields, any number field 𝔽 is a simple extension of ℚ. That is, any number field 𝔅 is of the form ℚ(α) for some α ∈ 𝔅.
- An algebraic number α of degree d over a number field F is the root of an irreducible polynomial in F[x] of degree d.
- In fact, an algebraic number of degree d over a number field
 F is the root of a unique, monic irreducible polynomial in F[x]
 of degree d, which we call the minimal polynomial of α over F
 and denote as m_{α,F}(x).

More about algebraic integers

• $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.

More about algebraic integers

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field \mathbb{F} , $\mathbb{F} \cap \overline{\mathbb{Z}}$ is a ring in \mathbb{F} , and is called the ring of algebraic integers of \mathbb{F} .
- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field \mathbb{F} , $\mathbb{F} \cap \overline{\mathbb{Z}}$ is a ring in \mathbb{F} , and is called the ring of algebraic integers of \mathbb{F} . It is denoted as $\mathcal{O}_{\mathbb{F}}$.

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field \mathbb{F} , $\mathbb{F} \cap \overline{\mathbb{Z}}$ is a ring in \mathbb{F} , and is called the ring of algebraic integers of \mathbb{F} . It is denoted as $\mathcal{O}_{\mathbb{F}}$.

•
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}.$$

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field 𝔽, 𝔽 ∩ 𝗷 is a ring in 𝖳, and is called the ring of algebraic integers of 𝖳. It is denoted as 𝒪_𝔅.

•
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$
.

• For any number field \mathbb{F} , $\mathbb{Q} \cap \mathcal{O}_{\mathbb{F}} = \mathbb{Z}$.

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field 𝔽, 𝔽 ∩ 𝗷 is a ring in 𝖳, and is called the ring of algebraic integers of 𝖳. It is denoted as 𝒪_𝔅.
- $\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}.$
- For any number field \mathbb{F} , $\mathbb{Q} \cap \mathcal{O}_{\mathbb{F}} = \mathbb{Z}$.
- The quotient field of $\mathcal{O}_{\mathbb{F}}$ is \mathbb{F} .

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field 𝔽, 𝔽 ∩ 𝗷 is a ring in 𝔽, and is called the ring of algebraic integers of 𝔽. It is denoted as 𝒪_𝔽.

•
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$
.

- For any number field \mathbb{F} , $\mathbb{Q} \cap \mathcal{O}_{\mathbb{F}} = \mathbb{Z}$.
- The quotient field of $\mathcal{O}_{\mathbb{F}}$ is \mathbb{F} .
- $\bullet \ \mathcal{O}_{\mathbb{F}}$ is a Dedekind domain. That is,

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field 𝔽, 𝔽 ∩ 𝗷 is a ring in 𝔽, and is called the ring of algebraic integers of 𝔽. It is denoted as 𝒪_𝔽.

•
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}.$$

- For any number field \mathbb{F} , $\mathbb{Q} \cap \mathcal{O}_{\mathbb{F}} = \mathbb{Z}$.
- The quotient field of $\mathcal{O}_{\mathbb{F}}$ is \mathbb{F} .
- $\mathcal{O}_{\mathbb{F}}$ is a Dedekind domain. That is, $\mathcal{O}_{\mathbb{F}}$ is an integral domain such that

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field 𝔽, 𝔽 ∩ 𝗷 is a ring in 𝔽, and is called the ring of algebraic integers of 𝔽. It is denoted as 𝒪_𝔽.

•
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}.$$

- For any number field \mathbb{F} , $\mathbb{Q} \cap \mathcal{O}_{\mathbb{F}} = \mathbb{Z}$.
- The quotient field of $\mathcal{O}_{\mathbb{F}}$ is \mathbb{F} .
- $\mathcal{O}_{\mathbb{F}}$ is a Dedekind domain. That is, $\mathcal{O}_{\mathbb{F}}$ is an integral domain such that
 - every ideal of $\mathcal{O}_{\mathbb{F}}$ is finitely generated,

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field 𝔽, 𝔽 ∩ 𝗷 is a ring in 𝔽, and is called the ring of algebraic integers of 𝔽. It is denoted as 𝒪_𝔽.

•
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}.$$

- For any number field \mathbb{F} , $\mathbb{Q} \cap \mathcal{O}_{\mathbb{F}} = \mathbb{Z}$.
- The quotient field of $\mathcal{O}_{\mathbb{F}}$ is \mathbb{F} .
- $\mathcal{O}_{\mathbb{F}}$ is a Dedekind domain. That is, $\mathcal{O}_{\mathbb{F}}$ is an integral domain such that
 - every ideal of $\mathcal{O}_{\mathbb{F}}$ is finitely generated,
 - every nonzero prime ideal of $\mathcal{O}_{\mathbb{F}}$ is maximal,

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field 𝔽, 𝔽 ∩ 𝗷 is a ring in 𝔽, and is called the ring of algebraic integers of 𝔽. It is denoted as 𝒪_𝔽.

•
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}.$$

- For any number field \mathbb{F} , $\mathbb{Q} \cap \mathcal{O}_{\mathbb{F}} = \mathbb{Z}$.
- The quotient field of $\mathcal{O}_{\mathbb{F}}$ is \mathbb{F} .
- $\mathcal{O}_{\mathbb{F}}$ is a Dedekind domain. That is, $\mathcal{O}_{\mathbb{F}}$ is an integral domain such that
 - every ideal of $\mathcal{O}_{\mathbb{F}}$ is finitely generated,
 - \bullet every nonzero prime ideal of $\mathcal{O}_{\mathbb{F}}$ is maximal,
 - $\bullet\,$ and $\mathcal{O}_{\mathbb{F}}$ is integrally closed in $\mathbb{F}.$

- $\overline{\mathbb{Z}}$ is a subring of $\overline{\mathbb{Q}}$.
- For a number field 𝔽, 𝔽 ∩ 𝗷 is a ring in 𝔽, and is called the ring of algebraic integers of 𝔽. It is denoted as 𝒪_𝔽.

•
$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}.$$

- For any number field \mathbb{F} , $\mathbb{Q} \cap \mathcal{O}_{\mathbb{F}} = \mathbb{Z}$.
- The quotient field of $\mathcal{O}_{\mathbb{F}}$ is \mathbb{F} .
- $\mathcal{O}_{\mathbb{F}}$ is a Dedekind domain. That is, $\mathcal{O}_{\mathbb{F}}$ is an integral domain such that
 - $\bullet\,$ every ideal of $\mathcal{O}_{\mathbb{F}}$ is finitely generated,
 - \bullet every nonzero prime ideal of $\mathcal{O}_{\mathbb{F}}$ is maximal,
 - and O_F is integrally closed in F. That is, if α ∈ F is a root of a polynomial in O_F[x] of degree > 1, then α ∈ O_F.

Review of algebraic number theory

• Let $K = \mathbb{Q}(\theta)$ for some algebraic $\theta \in \overline{\mathbb{Q}}$. That is, there exists a minimal polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Q}[x]$ such that $f(\theta) = 0$.

- Let $K = \mathbb{Q}(\theta)$ for some algebraic $\theta \in \overline{\mathbb{Q}}$. That is, there exists a minimal polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Q}[x]$ such that $f(\theta) = 0$.
- Let σ : K → C be an embedding, that is, a function satisfying, for all a, b ∈ K,

- Let $K = \mathbb{Q}(\theta)$ for some algebraic $\theta \in \overline{\mathbb{Q}}$. That is, there exists a minimal polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Q}[x]$ such that $f(\theta) = 0$.
- Let $\sigma : K \to \mathbb{C}$ be an **embedding**, that is, a function satisfying, for all $a, b \in K$,

•
$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
,

•
$$\sigma(ab) = \sigma(a)\sigma(b)$$
,

• and
$$\sigma(r) = r$$
 for all $r \in \mathbb{Q}$.

- Let $K = \mathbb{Q}(\theta)$ for some algebraic $\theta \in \overline{\mathbb{Q}}$. That is, there exists a minimal polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Q}[x]$ such that $f(\theta) = 0$.
- Let $\sigma : K \to \mathbb{C}$ be an **embedding**, that is, a function satisfying, for all $a, b \in K$,

•
$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
,

•
$$\sigma(ab) = \sigma(a)\sigma(b)$$
,

• and
$$\sigma(r) = r$$
 for all $r \in \mathbb{Q}$.

Also, 0 = σ(f(θ)) = f(σ(θ)). That is, σ(θ) is a root of f for any embedding σ : K → C.

- Let $K = \mathbb{Q}(\theta)$ for some algebraic $\theta \in \overline{\mathbb{Q}}$. That is, there exists a minimal polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Q}[x]$ such that $f(\theta) = 0$.
- Let $\sigma : K \to \mathbb{C}$ be an **embedding**, that is, a function satisfying, for all $a, b \in K$,

•
$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
,

•
$$\sigma(ab) = \sigma(a)\sigma(b)$$
,

• and
$$\sigma(r) = r$$
 for all $r \in \mathbb{Q}$.

- Also, $0 = \sigma(f(\theta)) = f(\sigma(\theta))$. That is, $\sigma(\theta)$ is a root of f for any embedding $\sigma : K \to \mathbb{C}$.
- Thus, there are only *n* choices for $\sigma(\theta)$, namely the distinct roots $\theta^{(1)}$, $\theta^{(2)}$,..., $\theta^{(n)}$ of f(x). We denote each embedding as $\sigma^{(i)}$.

伺 ト イヨ ト イヨト

- Let $K = \mathbb{Q}(\theta)$ for some algebraic $\theta \in \overline{\mathbb{Q}}$. That is, there exists a minimal polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Q}[x]$ such that $f(\theta) = 0$.
- Let $\sigma : K \to \mathbb{C}$ be an **embedding**, that is, a function satisfying, for all $a, b \in K$,

•
$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
,

•
$$\sigma(ab) = \sigma(a)\sigma(b)$$
,

• and
$$\sigma(r) = r$$
 for all $r \in \mathbb{Q}$.

- Also, 0 = σ(f(θ)) = f(σ(θ)). That is, σ(θ) is a root of f for any embedding σ : K → C.
- Thus, there are only *n* choices for *σ*(*θ*), namely the distinct roots *θ*⁽¹⁾, *θ*⁽²⁾,...,*θ*⁽ⁿ⁾ of *f*(*x*). We denote each embedding as *σ*⁽ⁱ⁾. The fields *K*⁽ⁱ⁾ := Q(*θ*⁽ⁱ⁾) are called the conjugate fields of *K*.

- Let $K = \mathbb{Q}(\theta)$ for some algebraic $\theta \in \overline{\mathbb{Q}}$. That is, there exists a minimal polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Q}[x]$ such that $f(\theta) = 0$.
- Let $\sigma : K \to \mathbb{C}$ be an **embedding**, that is, a function satisfying, for all $a, b \in K$,

•
$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
,

•
$$\sigma(ab) = \sigma(a)\sigma(b)$$
,

• and
$$\sigma(r) = r$$
 for all $r \in \mathbb{Q}$.

- Also, 0 = σ(f(θ)) = f(σ(θ)). That is, σ(θ) is a root of f for any embedding σ : K → C.
- Thus, there are only *n* choices for *σ*(*θ*), namely the distinct roots *θ*⁽¹⁾, *θ*⁽²⁾,...,*θ*⁽ⁿ⁾ of *f*(*x*). We denote each embedding as *σ*⁽ⁱ⁾. The fields *K*⁽ⁱ⁾ := Q(*θ*⁽ⁱ⁾) are called the conjugate fields of *K*.

Review of algebraic number theory

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$\sigma\left(\sum_{i=0}^{n-1}b_{i}\theta^{i}\right)=\sum_{i=0}^{n-1}b_{i}\sigma\left(\theta\right)^{i}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$\sigma\left(\sum_{i=0}^{n-1}b_i\theta^i\right)=\sum_{i=0}^{n-1}b_i\sigma\left(\theta\right)^i.$$

If θ⁽ⁱ⁾ is real, we say that K⁽ⁱ⁾ is a real embedding of K.
 Otherwise, K⁽ⁱ⁾ is called a complex embedding of K.

$$\sigma\left(\sum_{i=0}^{n-1}b_{i}\theta^{i}\right)=\sum_{i=0}^{n-1}b_{i}\sigma\left(\theta\right)^{i}.$$

- If θ⁽ⁱ⁾ is real, we say that K⁽ⁱ⁾ is a real embedding of K.
 Otherwise, K⁽ⁱ⁾ is called a complex embedding of K.
- For example, consider $\mathbb{Q}(\sqrt{D})$. The embeddings are $\sigma(a + b\sqrt{D}) = a \pm b\sqrt{D}$.

$$\sigma\left(\sum_{i=0}^{n-1}b_{i}\theta^{i}\right)=\sum_{i=0}^{n-1}b_{i}\sigma\left(\theta\right)^{i}.$$

- If θ⁽ⁱ⁾ is real, we say that K⁽ⁱ⁾ is a real embedding of K.
 Otherwise, K⁽ⁱ⁾ is called a complex embedding of K.
- For example, consider $\mathbb{Q}(\sqrt{D})$. The embeddings are $\sigma(a + b\sqrt{D}) = a \pm b\sqrt{D}$. Also, the conjugate field of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Q}(\sqrt{D})$.

$$\sigma\left(\sum_{i=0}^{n-1}b_i\theta^i\right)=\sum_{i=0}^{n-1}b_i\sigma\left(\theta\right)^i.$$

- If θ⁽ⁱ⁾ is real, we say that K⁽ⁱ⁾ is a real embedding of K.
 Otherwise, K⁽ⁱ⁾ is called a complex embedding of K.
- For example, consider $\mathbb{Q}(\sqrt{D})$. The embeddings are $\sigma(a + b\sqrt{D}) = a \pm b\sqrt{D}$. Also, the conjugate field of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Q}(\sqrt{D})$.
- We call *K* a **Galois extension** of \mathbb{Q} if all the conjugate fields of *K* are identical to *K*.

$$\sigma\left(\sum_{i=0}^{n-1}b_i\theta^i\right)=\sum_{i=0}^{n-1}b_i\sigma\left(\theta\right)^i.$$

- If θ⁽ⁱ⁾ is real, we say that K⁽ⁱ⁾ is a real embedding of K.
 Otherwise, K⁽ⁱ⁾ is called a complex embedding of K.
- For example, consider $\mathbb{Q}(\sqrt{D})$. The embeddings are $\sigma(a + b\sqrt{D}) = a \pm b\sqrt{D}$. Also, the conjugate field of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Q}(\sqrt{D})$.
- We call K a Galois extension of Q if all the conjugate fields of K are identical to K. Thus, any quadratic extension of Q is a Galois extension.

$$\sigma\left(\sum_{i=0}^{n-1}b_i\theta^i\right)=\sum_{i=0}^{n-1}b_i\sigma\left(\theta\right)^i.$$

- If θ⁽ⁱ⁾ is real, we say that K⁽ⁱ⁾ is a real embedding of K.
 Otherwise, K⁽ⁱ⁾ is called a complex embedding of K.
- For example, consider $\mathbb{Q}(\sqrt{D})$. The embeddings are $\sigma(a + b\sqrt{D}) = a \pm b\sqrt{D}$. Also, the conjugate field of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Q}(\sqrt{D})$.
- We call K a Galois extension of Q if all the conjugate fields of K are identical to K. Thus, any quadratic extension of Q is a Galois extension. Exercise: Q(³√2) is not a Galois extension of Q.

$$\sigma\left(\sum_{i=0}^{n-1}b_i\theta^i\right)=\sum_{i=0}^{n-1}b_i\sigma\left(\theta\right)^i.$$

- If θ⁽ⁱ⁾ is real, we say that K⁽ⁱ⁾ is a real embedding of K.
 Otherwise, K⁽ⁱ⁾ is called a complex embedding of K.
- For example, consider $\mathbb{Q}(\sqrt{D})$. The embeddings are $\sigma(a + b\sqrt{D}) = a \pm b\sqrt{D}$. Also, the conjugate field of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Q}(\sqrt{D})$.
- We call K a Galois extension of Q if all the conjugate fields of K are identical to K. Thus, any quadratic extension of Q is a Galois extension. Exercise: Q(³√2) is not a Galois extension of Q.
- We can study the above notions for extensions K of an arbitrary number field F, and define conjugate fields relative to F accordingly.

Review of algebraic number theory

・ロト ・回ト ・ヨト ・ヨト

Let $[K : \mathbb{F}] = n$. We define Trace $_{K/\mathbb{F}}(\alpha)$ to be the sum of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha).$$

伺 ト イヨ ト イヨ ト

э

Let $[K : \mathbb{F}] = n$. We define Trace $_{K/\mathbb{F}}(\alpha)$ to be the sum of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha).$$

We define Norm $_{K/\mathbb{F}}(\alpha)$ to be the product of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \prod_{i=1}^n \sigma_i(\alpha).$$

• • = • • = •

Let $[K : \mathbb{F}] = n$. We define Trace $_{K/\mathbb{F}}(\alpha)$ to be the sum of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha).$$

We define Norm $_{K/\mathbb{F}}(\alpha)$ to be the product of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \prod_{i=1}^n \sigma_i(\alpha).$$

For example, Trace $_{Q(\sqrt{D})/\mathbb{Q}}(a+b\sqrt{D})=2a,$

Norm
$$_{Q(\sqrt{D})/\mathbb{Q}}(a+b\sqrt{D})=a^2-Db^2.$$

Let $[K : \mathbb{F}] = n$. We define Trace $_{K/\mathbb{F}}(\alpha)$ to be the sum of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha).$$

We define Norm $_{K/\mathbb{F}}(\alpha)$ to be the product of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha).$$

For example, Trace $_{Q(\sqrt{D})/\mathbb{Q}}(a+b\sqrt{D})=2a,$

Norm
$$_{Q(\sqrt{D})/\mathbb{Q}}(a+b\sqrt{D})=a^2-Db^2.$$

We often denote Trace $_{K/\mathbb{Q}}(\alpha)$ and Norm $_{K/\mathbb{Q}}(\alpha)$ as Trace (α) and Norm (α) .

Let $[K : \mathbb{F}] = n$. We define Trace $_{K/\mathbb{F}}(\alpha)$ to be the sum of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha).$$

We define Norm $_{K/\mathbb{F}}(\alpha)$ to be the product of the conjugates of α . That is,

Trace
$$_{K/\mathbb{F}}(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha).$$

For example, Trace $_{Q(\sqrt{D})/\mathbb{Q}}(a+b\sqrt{D})=2a,$

Norm
$$_{Q(\sqrt{D})/\mathbb{Q}}(a+b\sqrt{D})=a^2-Db^2.$$

We often denote Trace $_{K/\mathbb{Q}}(\alpha)$ and Norm $_{K/\mathbb{Q}}(\alpha)$ as Trace (α) and Norm (α) .

Structure of \mathcal{O}_K

Review of algebraic number theory

・ロト ・四ト ・ヨト ・ヨト

Structure of \mathcal{O}_K

If
$$K = Q(\sqrt{D})$$
, what is \mathcal{O}_K ?

・ロト ・四ト ・ヨト ・ヨト

Structure of \mathcal{O}_K

If
$$K = Q(\sqrt{D})$$
, what is \mathcal{O}_K ?

$$\mathcal{O}_{\mathcal{K}} = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{if } D \equiv 2,3 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & \text{if } D \equiv 1 \pmod{4}. \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト
If
$$K = Q(\sqrt{D})$$
, what is \mathcal{O}_K ?

$$\mathcal{O}_{\mathcal{K}} = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{if } D \equiv 2,3 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & \text{if } D \equiv 1 \pmod{4}. \end{cases}$$

More generally, if $[K : \mathbb{Q}] = n$, then there exist $\omega_1, \omega_2, \ldots, \omega_n \in \mathcal{O}_K$ such that

$$\mathcal{O}_{\mathcal{K}}=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2+\ldots\mathbb{Z}\omega_n.$$

伺 ト イヨ ト イヨ ト

э

If
$$K = Q(\sqrt{D})$$
, what is \mathcal{O}_K ?

$$\mathcal{O}_{\mathcal{K}} = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{if } D \equiv 2,3 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & \text{if } D \equiv 1 \pmod{4}. \end{cases}$$

More generally, if $[K : \mathbb{Q}] = n$, then there exist $\omega_1, \omega_2, \ldots, \omega_n \in \mathcal{O}_K$ such that

$$\mathcal{O}_{\mathcal{K}} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 + \dots \mathbb{Z}\omega_n.$$

That is, $\{\omega_1, \omega_2, \ldots, \omega_n\}$ forms an integral basis of

• • = • • = •

If
$$K = Q(\sqrt{D})$$
, what is \mathcal{O}_K ?

$$\mathcal{O}_{\mathcal{K}} = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{if } D \equiv 2,3 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & \text{if } D \equiv 1 \pmod{4}. \end{cases}$$

More generally, if $[K : \mathbb{Q}] = n$, then there exist $\omega_1, \omega_2, \ldots, \omega_n \in \mathcal{O}_K$ such that

$$\mathcal{O}_{\mathcal{K}}=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2+\ldots\mathbb{Z}\omega_n.$$

That is, $\{\omega_1, \omega_2, \ldots, \omega_n\}$ forms an integral basis of \mathcal{O}_K .

• • = • • = •

If
$$K = Q(\sqrt{D})$$
, what is \mathcal{O}_K ?

$$\mathcal{O}_{\mathcal{K}} = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{if } D \equiv 2,3 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & \text{if } D \equiv 1 \pmod{4}. \end{cases}$$

More generally, if $[K : \mathbb{Q}] = n$, then there exist $\omega_1, \omega_2, \ldots, \omega_n \in \mathcal{O}_K$ such that

$$\mathcal{O}_{\mathcal{K}} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 + \dots \mathbb{Z}\omega_n.$$

That is, $\{\omega_1, \omega_2, \ldots, \omega_n\}$ forms an integral basis of \mathcal{O}_K .

Let ζ denote a primitive *p*-th root of unity and $K = \mathbb{Q}(\zeta)$. Then, $1, \zeta, \dots, \zeta^{p-2}$ forms an integral basis of K.

何 ト イヨ ト イヨ ト

Review of algebraic number theory

æ

Ξ.⊁

→ < Ξ → <</p>

Let $[K : \mathbb{Q}] = n$ and suppose $\{\omega_1, \omega_2, \dots, \omega_n\}$ is an integral basis of \mathcal{O}_K .

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Let $[K : \mathbb{Q}] = n$ and suppose $\{\omega_1, \omega_2, \dots, \omega_n\}$ is an integral basis of \mathcal{O}_K . The discriminant of K, d_K is defined as

 $d_K := \det(\sigma_j(\omega_i))^2.$

• • = • • = •

Let $[K : \mathbb{Q}] = n$ and suppose $\{\omega_1, \omega_2, \dots, \omega_n\}$ is an integral basis of \mathcal{O}_K . The discriminant of K, d_K is defined as

 $d_K := \det(\sigma_j(\omega_i))^2.$

The discriminant is well-defined. That is, the discriminant is independent of the choice of integral basis of K.

Let $[K : \mathbb{Q}] = n$ and suppose $\{\omega_1, \omega_2, \dots, \omega_n\}$ is an integral basis of \mathcal{O}_K . The discriminant of K, d_K is defined as

$$d_{\mathcal{K}} := \det(\sigma_j(\omega_i))^2.$$

The discriminant is well-defined. That is, the discriminant is independent of the choice of integral basis of K. If $K = \mathbb{Q}(\sqrt{D})$ and $D \equiv 1 \pmod{4}$, consider the integral basis $\{1, \frac{1+\sqrt{D}}{2}\}$. Then,

$$d_{\mathcal{K}} = \left(\det egin{bmatrix} 1 & (1+\sqrt{D})/2 \ 1 & (1-\sqrt{D})/2 \end{bmatrix}
ight)^2 = D.$$

Let $[K : \mathbb{Q}] = n$ and suppose $\{\omega_1, \omega_2, \dots, \omega_n\}$ is an integral basis of \mathcal{O}_K . The discriminant of K, d_K is defined as

$$d_{\mathcal{K}} := \det(\sigma_j(\omega_i))^2.$$

The discriminant is well-defined. That is, the discriminant is independent of the choice of integral basis of K. If $K = \mathbb{Q}(\sqrt{D})$ and $D \equiv 1 \pmod{4}$, consider the integral basis $\{1, \frac{1+\sqrt{D}}{2}\}$. Then,

$$d_{\mathcal{K}} = \left(\det egin{bmatrix} 1 & (1+\sqrt{D})/2 \ 1 & (1-\sqrt{D})/2 \end{bmatrix}
ight)^2 = D.$$

Also, $d_{\mathcal{K}} = 4D$ if $D \not\equiv 1 \pmod{4}$.

Review of algebraic number theory

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• We can generalize the notion of a discriminant for arbitrary elements of *K*.

æ

(本部) (本語) (本語)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$$d_{\mathcal{K}/\mathbb{Q}}(a_1, a_2, \ldots, a_n) := \det(\sigma_j(a_i))^2.$$

→ < Ξ → <</p>

$$d_{\mathcal{K}/\mathbb{Q}}(a_1, a_2, \ldots, a_n) := \det(\sigma_j(a_i))^2.$$

• It can be shown that

$$d_{\mathcal{K}/\mathbb{Q}}(\mathsf{a}) := d_{\mathcal{K}/\mathbb{Q}}(1,\mathsf{a},\mathsf{a}^2,\ldots,\mathsf{a}^{n-1}) = \prod_{1\leq j < k \leq n} (\sigma_j(\mathsf{a}) - \sigma_k(\mathsf{a}))^2.$$

$$d_{\mathcal{K}/\mathbb{Q}}(a_1, a_2, \ldots, a_n) := \det(\sigma_j(a_i))^2.$$

• It can be shown that

$$d_{\mathcal{K}/\mathbb{Q}}(a) := d_{\mathcal{K}/\mathbb{Q}}(1, a, a^2, \dots, a^{n-1}) = \prod_{1 \leq j < k \leq n} (\sigma_j(a) - \sigma_k(a))^2.$$

• In particular, let $K = \mathbb{Q}(\zeta_m)$.

$$d_{\mathcal{K}/\mathbb{Q}}(a_1, a_2, \ldots, a_n) := \det(\sigma_j(a_i))^2.$$

It can be shown that

$$d_{\mathcal{K}/\mathbb{Q}}(a) := d_{\mathcal{K}/\mathbb{Q}}(1, a, a^2, \dots, a^{n-1}) = \prod_{1 \leq j < k \leq n} (\sigma_j(a) - \sigma_k(a))^2.$$

In particular, let K = Q(ζ_m). Then, {1, ζ_m,..., ζ_m^{φ(m)-1}} is an integral basis of O_K.

$$d_{K/\mathbb{Q}}(a_1, a_2, \ldots, a_n) := \det(\sigma_j(a_i))^2.$$

It can be shown that

$$d_{\mathcal{K}/\mathbb{Q}}(a) := d_{\mathcal{K}/\mathbb{Q}}(1, a, a^2, \dots, a^{n-1}) = \prod_{1 \leq j < k \leq n} (\sigma_j(a) - \sigma_k(a))^2.$$

In particular, let K = Q(ζ_m). Then, {1, ζ_m,..., ζ_m^{φ(m)-1}} is an integral basis of O_K. By applying the above formula,

$$d_{K} = \frac{(-1)^{\phi(m)/2} m^{\phi(m)}}{\prod_{p|m} p^{\phi(m)/(p-1)}}.$$

$$d_{\mathcal{K}/\mathbb{Q}}(a_1, a_2, \ldots, a_n) := \det(\sigma_j(a_i))^2.$$

• It can be shown that

$$d_{\mathcal{K}/\mathbb{Q}}(a) := d_{\mathcal{K}/\mathbb{Q}}(1, a, a^2, \dots, a^{n-1}) = \prod_{1 \leq j < k \leq n} (\sigma_j(a) - \sigma_k(a))^2.$$

In particular, let K = Q(ζ_m). Then, {1, ζ_m,..., ζ_m^{φ(m)-1}} is an integral basis of O_K. By applying the above formula,

$$d_{K} = rac{(-1)^{\phi(m)/2} m^{\phi(m)}}{\prod_{p \mid m} p^{\phi(m)/(p-1)}}.$$

 Let K be an algebraic number field. If d_{K/Q}(θ) is squarefree, then O_K = Z[θ].

$$d_{\mathcal{K}/\mathbb{Q}}(a_1, a_2, \ldots, a_n) := \det(\sigma_j(a_i))^2.$$

• It can be shown that

$$d_{\mathcal{K}/\mathbb{Q}}(a) := d_{\mathcal{K}/\mathbb{Q}}(1, a, a^2, \dots, a^{n-1}) = \prod_{1 \leq j < k \leq n} (\sigma_j(a) - \sigma_k(a))^2.$$

In particular, let K = Q(ζ_m). Then, {1, ζ_m,..., ζ_m^{φ(m)-1}} is an integral basis of O_K. By applying the above formula,

$$d_{K} = rac{(-1)^{\phi(m)/2} m^{\phi(m)}}{\prod_{p \mid m} p^{\phi(m)/(p-1)}}.$$

 Let K be an algebraic number field. If d_{K/Q}(θ) is squarefree, then O_K = Z[θ].

Ideals in $\mathcal{O}_{\mathcal{K}}$

Review of algebraic number theory

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

• So far, we have seen how $\mathcal{O}_{\mathcal{K}}$ can be seen as a generalization of $\mathbb{Z}.$

- So far, we have seen how $\mathcal{O}_{\mathcal{K}}$ can be seen as a generalization of $\mathbb{Z}.$
- To draw a meaningful generalization of the unique factorization of integers into prime powers in \mathbb{Z} , we have to treat ideals in \mathcal{O}_K and discuss the factorization of ideals into prime ideals of \mathcal{O}_K .

- So far, we have seen how $\mathcal{O}_{\mathcal{K}}$ can be seen as a generalization of $\mathbb{Z}.$
- To draw a meaningful generalization of the unique factorization of integers into prime powers in \mathbb{Z} , we have to treat ideals in \mathcal{O}_K and discuss the factorization of ideals into prime ideals of \mathcal{O}_K .
- We recall the following fundamental facts:
 - Any ideal in $\mathcal{O}_{\mathcal{K}}$ has an integral basis.

- So far, we have seen how \mathcal{O}_K can be seen as a generalization of \mathbb{Z} .
- To draw a meaningful generalization of the unique factorization of integers into prime powers in \mathbb{Z} , we have to treat ideals in \mathcal{O}_K and discuss the factorization of ideals into prime ideals of \mathcal{O}_K .
- We recall the following fundamental facts:
 - Any ideal in \mathcal{O}_K has an integral basis.
 - Any nonzero ideal \mathfrak{a} in $\mathcal{O}_{\mathcal{K}}$ has finite index $|\mathcal{O}_{\mathcal{K}}/\mathfrak{a}|$ in $\mathcal{O}_{\mathcal{K}}$.

- So far, we have seen how \mathcal{O}_K can be seen as a generalization of \mathbb{Z} .
- To draw a meaningful generalization of the unique factorization of integers into prime powers in \mathbb{Z} , we have to treat ideals in \mathcal{O}_K and discuss the factorization of ideals into prime ideals of \mathcal{O}_K .
- We recall the following fundamental facts:
 - Any ideal in \mathcal{O}_K has an integral basis.
 - Any nonzero ideal a in O_K has finite index |O_K/a| in O_K. We define the norm of a nonzero ideal in O_K to be its index |O_K/a| and denote it as N(a).

- So far, we have seen how \mathcal{O}_K can be seen as a generalization of \mathbb{Z} .
- To draw a meaningful generalization of the unique factorization of integers into prime powers in \mathbb{Z} , we have to treat ideals in \mathcal{O}_K and discuss the factorization of ideals into prime ideals of \mathcal{O}_K .
- We recall the following fundamental facts:
 - Any ideal in \mathcal{O}_K has an integral basis.
 - Any nonzero ideal a in O_K has finite index |O_K/a| in O_K. We define the norm of a nonzero ideal in O_K to be its index |O_K/a| and denote it as N(a).
- If $\alpha \in \mathcal{O}_K$, then $N(\langle \alpha \rangle) = |N(\alpha)|$.

Prime ideals in $\mathcal{O}_{\mathcal{K}}$

Review of algebraic number theory

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

• Exercise: For any nonzero ideal \mathfrak{a} in $\mathcal{O}_{K},\ \mathfrak{a}\cap\mathbb{Z}$ must contain a nonzero integer.

• • = • • = •

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime.

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1.

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1. This contradicts the nontriviality of p.

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1. This contradicts the nontriviality of p. Thus, p can contain exactly one rational prime p.

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1. This contradicts the nontriviality of p. Thus, p can contain exactly one rational prime p. We say that p lies below p.

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1. This contradicts the nontriviality of p. Thus, p can contain exactly one rational prime p. We say that p lies below p.
- In this case, $\langle p \rangle = \mathfrak{pq}$ for an integral ideal \mathfrak{q} of $\mathcal{O}_{\mathcal{K}}$.
- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1. This contradicts the nontriviality of p. Thus, p can contain exactly one rational prime p. We say that p lies below p.
- In this case, $\langle p \rangle = \mathfrak{pq}$ for an integral ideal q of $\mathcal{O}_{\mathcal{K}}$. Thus, $N(\mathfrak{p})$ must divide $N(\langle p \rangle) = |N(p)|$.

伺 ト イヨ ト イヨト

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1. This contradicts the nontriviality of p. Thus, p can contain exactly one rational prime p. We say that p lies below p.
- In this case, $\langle p \rangle = \mathfrak{pq}$ for an integral ideal \mathfrak{q} of \mathcal{O}_K . Thus, $N(\mathfrak{p})$ must divide $N(\langle p \rangle) = |N(p)|$. As $p^{(i)} = p$ for each *i*, $|N(p)| = p^{[K:\mathbb{Q}]}$.

伺 ト イヨト イヨト

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1. This contradicts the nontriviality of p. Thus, p can contain exactly one rational prime p. We say that p lies below p.
- In this case, $\langle p \rangle = \mathfrak{pq}$ for an integral ideal \mathfrak{q} of $\mathcal{O}_{\mathcal{K}}$. Thus, $N(\mathfrak{p})$ must divide $N(\langle p \rangle) = |N(p)|$. As $p^{(i)} = p$ for each i, $|N(p)| = p^{[\mathcal{K}:\mathbb{Q}]}$. Thus, $N(\mathfrak{p}) = p^f$ for some $1 \le f \le [\mathcal{K}:\mathbb{Q}]$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Exercise: For any nonzero ideal a in O_K, a ∩ Z must contain a nonzero integer.
- By the definition of a prime ideal p, if ab ∈ p, then either a ∈ p or b ∈ p.
- Thus, p must contain some rational prime. But, if p contains two rational primes p and q, then it would contain their greatest common divisor 1. This contradicts the nontriviality of p. Thus, p can contain exactly one rational prime p. We say that p lies below p.
- In this case, $\langle p \rangle = \mathfrak{pq}$ for an integral ideal q of $\mathcal{O}_{\mathcal{K}}$. Thus, $N(\mathfrak{p})$ must divide $N(\langle p \rangle) = |N(p)|$. As $p^{(i)} = p$ for each *i*, $|N(p)| = p^{[\mathcal{K}:\mathbb{Q}]}$. Thus, $N(\mathfrak{p}) = p^f$ for some $1 \le f \le [\mathcal{K}:\mathbb{Q}]$.
- f is called the **inertial degree** of \mathfrak{p} in $\mathcal{O}_{\mathcal{K}}$.

伺 ト イヨ ト イヨ ト

Every proper nonzero ideal \mathfrak{a} in \mathcal{O}_K is uniquely representable as a product of prime ideals.

Every proper nonzero ideal \mathfrak{a} in \mathcal{O}_K is uniquely representable as a product of prime ideals. That is,

$$\mathfrak{a} = \mathfrak{p}_1^{a_1} \mathfrak{p}_2^{a_2} \dots \mathfrak{p}_l^{a_l},$$

where \mathfrak{p}_l 's are the distinct prime ideals of \mathcal{O}_K containing \mathfrak{a} , and $a_l \in \mathbb{N}$. This factorization is unique up to the order of the factors.

Every proper nonzero ideal \mathfrak{a} in \mathcal{O}_K is uniquely representable as a product of prime ideals. That is,

$$\mathfrak{a} = \mathfrak{p}_1^{\mathfrak{a}_1} \mathfrak{p}_2^{\mathfrak{a}_2} \dots \mathfrak{p}_l^{\mathfrak{a}_l},$$

where \mathfrak{p}_l 's are the distinct prime ideals of \mathcal{O}_K containing \mathfrak{a} , and $a_l \in \mathbb{N}$. This factorization is unique up to the order of the factors.

Let $[K : \mathbb{Q}] = n$. Suppose, for a rational prime p,

$$\langle p \rangle = \mathfrak{p}_1^{\mathbf{e}_1} \mathfrak{p}_2^{\mathbf{e}_2} \dots \mathfrak{p}_l^{\mathbf{e}_l}.$$

Every proper nonzero ideal \mathfrak{a} in \mathcal{O}_K is uniquely representable as a product of prime ideals. That is,

$$\mathfrak{a} = \mathfrak{p}_1^{a_1} \mathfrak{p}_2^{a_2} \dots \mathfrak{p}_l^{a_l},$$

where \mathfrak{p}_l 's are the distinct prime ideals of \mathcal{O}_K containing \mathfrak{a} , and $a_l \in \mathbb{N}$. This factorization is unique up to the order of the factors.

Let $[K : \mathbb{Q}] = n$. Suppose, for a rational prime p,

$$\langle \boldsymbol{p} \rangle = \mathfrak{p}_1^{\mathbf{e}_1} \mathfrak{p}_2^{\mathbf{e}_2} \dots \mathfrak{p}_l^{\mathbf{e}_l}.$$

Suppose f_i is the inertial degree of p_i .

Every proper nonzero ideal \mathfrak{a} in \mathcal{O}_K is uniquely representable as a product of prime ideals. That is,

$$\mathfrak{a} = \mathfrak{p}_1^{\mathfrak{a}_1} \mathfrak{p}_2^{\mathfrak{a}_2} \dots \mathfrak{p}_l^{\mathfrak{a}_l},$$

where \mathfrak{p}_l 's are the distinct prime ideals of \mathcal{O}_K containing \mathfrak{a} , and $a_l \in \mathbb{N}$. This factorization is unique up to the order of the factors.

Let $[K : \mathbb{Q}] = n$. Suppose, for a rational prime p,

$$\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_l^{e_l}.$$

Suppose f_i is the inertial degree of \mathfrak{p}_i . Then, $\sum_{i=1}^{l} e_i f_i = n$.

Every proper nonzero ideal \mathfrak{a} in \mathcal{O}_K is uniquely representable as a product of prime ideals. That is,

$$\mathfrak{a} = \mathfrak{p}_1^{\mathfrak{a}_1} \mathfrak{p}_2^{\mathfrak{a}_2} \dots \mathfrak{p}_l^{\mathfrak{a}_l},$$

where \mathfrak{p}_l 's are the distinct prime ideals of \mathcal{O}_K containing \mathfrak{a} , and $a_l \in \mathbb{N}$. This factorization is unique up to the order of the factors.

Let $[K : \mathbb{Q}] = n$. Suppose, for a rational prime p,

$$\langle p \rangle = \mathfrak{p}_1^{\mathbf{e}_1} \mathfrak{p}_2^{\mathbf{e}_2} \dots \mathfrak{p}_l^{\mathbf{e}_l}.$$

Suppose f_i is the inertial degree of \mathfrak{p}_i . Then, $\sum_{i=1}^{l} e_i f_i = n$. Note that e_i is called the **ramification index of** \mathfrak{p}_i in K (that is, $\mathfrak{p}_i^{e_i} | \langle p \rangle$, and $\mathfrak{p}_i^{e_i+1} \nmid \langle p \rangle$).

Every proper nonzero ideal \mathfrak{a} in \mathcal{O}_K is uniquely representable as a product of prime ideals. That is,

$$\mathfrak{a} = \mathfrak{p}_1^{a_1} \mathfrak{p}_2^{a_2} \dots \mathfrak{p}_l^{a_l},$$

where \mathfrak{p}_l 's are the distinct prime ideals of \mathcal{O}_K containing \mathfrak{a} , and $a_l \in \mathbb{N}$. This factorization is unique up to the order of the factors.

Let $[K : \mathbb{Q}] = n$. Suppose, for a rational prime p,

$$\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_l^{e_l}.$$

Suppose f_i is the inertial degree of \mathfrak{p}_i . Then, $\sum_{i=1}^{l} e_i f_i = n$. Note that e_i is called the **ramification index of** \mathfrak{p}_i in K (that is, $\mathfrak{p}_i^{e_i} | \langle p \rangle$, and $\mathfrak{p}_i^{e_i+1} \nmid \langle p \rangle$). Also, I is called the **decomposition number of** p in K and it can be shown that $I \leq n$.

Ramification

Review of algebraic number theory

< ロ > < 部 > < き > < き > <</p>

æ

Let $[K : \mathbb{Q}] = n$, and let p be a rational prime. Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_l$ be the prime ideals in \mathcal{O}_K lying above p. That is,

→ < Ξ →</p>

Let $[K : \mathbb{Q}] = n$, and let p be a rational prime. Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_l$ be the prime ideals in \mathcal{O}_K lying above p. That is,

$$\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_l^{e_l}.$$

→ < Ξ →</p>

Let $[K : \mathbb{Q}] = n$, and let p be a rational prime. Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_l$ be the prime ideals in \mathcal{O}_K lying above p. That is,

$$\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_l^{e_l}.$$

If $e_i > 1$ for some $1 \le i \le I$, then p is said to ramify in K. If $e_i = 1$ for all i, then p is said to be unramified in K.

Let $[K : \mathbb{Q}] = n$, and let p be a rational prime. Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_l$ be the prime ideals in \mathcal{O}_K lying above p. That is,

$$\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_l^{e_l}.$$

If $e_i > 1$ for some $1 \le i \le l$, then p is said to ramify in K. If $e_i = 1$ for all i, then p is said to be unramified in K.

Theorem (Dedekind)

A rational prime p ramifies in K if and only if p|d(K).

Factoring primes in a quadratic field

Review of algebraic number theory

æ

Factoring primes in a quadratic field

Theorem

Let $K = \mathbb{Q}(\sqrt{D})$, and let $p \in \mathbb{Z}$ be a prime.

Review of algebraic number theory

Factoring primes in a quadratic field

Theorem

Let ${\sf K}={\Bbb Q}(\sqrt{D})$, and let ${\sf p}\in{\Bbb Z}$ be a prime. Then,

• $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if p > 2, (D/p) = 1. Here, $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.

Let $K = \mathbb{Q}(\sqrt{D})$, and let $p \in \mathbb{Z}$ be a prime. Then,

$$@ \langle p \rangle = \mathfrak{p} \text{ if } p > 2, \text{ and } (D/p) = -1. \text{ Here, } N(\mathfrak{p}) = p^2.$$

Let $K = \mathbb{Q}(\sqrt{D})$, and let $p \in \mathbb{Z}$ be a prime. Then,

2)
$$\langle p
angle = \mathfrak{p}$$
 if $p > 2$, and $(D/p) = -1$. Here, $N(\mathfrak{p}) = p^2$.

3
$$\langle p
angle = \mathfrak{p}^2$$
 if $p > 2$, and $p | D$. Here, $N(\mathfrak{p}) = p$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let $K = \mathbb{Q}(\sqrt{D})$, and let $p \in \mathbb{Z}$ be a prime. Then, (a) $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if p > 2, (D/p) = 1. Here, $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$. (c) $\langle p \rangle = \mathfrak{p}$ if p > 2, and (D/p) = -1. Here, $N(\mathfrak{p}) = p^2$. (c) $\langle p \rangle = \mathfrak{p}^2$ if p > 2, and p|D. Here, $N(\mathfrak{p}) = p$. (c) $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if p = 2 and $D \equiv 1 \pmod{8}$. Here, $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.

Let
$$K = \mathbb{Q}(\sqrt{D})$$
, and let $p \in \mathbb{Z}$ be a prime. Then,
(a) $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if $p > 2$, $(D/p) = 1$. Here, $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.
(c) $\langle p \rangle = \mathfrak{p}$ if $p > 2$, and $(D/p) = -1$. Here, $N(\mathfrak{p}) = p^2$.
(c) $\langle p \rangle = \mathfrak{p}^2$ if $p > 2$, and $p|D$. Here, $N(\mathfrak{p}) = p$.
(c) $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if $p = 2$ and $D \equiv 1 \pmod{8}$. Here,
 $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.
(c) $\langle p \rangle = \mathfrak{p}$ if $p = 2$ and $D \equiv 5 \pmod{8}$. Here, $N(\mathfrak{p}) = p^2$.

→ Ξ →

Let
$$K = \mathbb{Q}(\sqrt{D})$$
, and let $p \in \mathbb{Z}$ be a prime. Then,
(a) $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if $p > 2$, $(D/p) = 1$. Here, $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.
(c) $\langle p \rangle = \mathfrak{p}$ if $p > 2$, and $(D/p) = -1$. Here, $N(\mathfrak{p}) = p^2$.
(c) $\langle p \rangle = \mathfrak{p}^2$ if $p > 2$, and $p|D$. Here, $N(\mathfrak{p}) = p$.
(c) $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if $p = 2$ and $D \equiv 1 \pmod{8}$. Here,
 $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.
(c) $\langle p \rangle = \mathfrak{p}$ if $p = 2$ and $D \equiv 5 \pmod{8}$. Here, $N(\mathfrak{p}) = p^2$.
(c) $\langle p \rangle = \mathfrak{p}^2$ if $p = 2$ and $D \equiv 2, 3 \pmod{4}$. Here, $N(\mathfrak{p}) = p$.

A ≥ ▶

æ

⊒ ▶

Let
$$K = \mathbb{Q}(\sqrt{D})$$
, and let $p \in \mathbb{Z}$ be a prime. Then,
(a) $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if $p > 2$, $(D/p) = 1$. Here, $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.
(c) $\langle p \rangle = \mathfrak{p}$ if $p > 2$, and $(D/p) = -1$. Here, $N(\mathfrak{p}) = p^2$.
(c) $\langle p \rangle = \mathfrak{p}^2$ if $p > 2$, and $p | D$. Here, $N(\mathfrak{p}) = p$.
(c) $\langle p \rangle = \mathfrak{p}_1 \mathfrak{p}_2$ if $p = 2$ and $D \equiv 1 \pmod{8}$. Here,
 $N(\mathfrak{p}_1) = N(\mathfrak{p}_2) = p$.
(c) $\langle p \rangle = \mathfrak{p}$ if $p = 2$ and $D \equiv 5 \pmod{8}$. Here, $N(\mathfrak{p}) = p^2$.
(c) $\langle p \rangle = \mathfrak{p}^2$ if $p = 2$ and $D \equiv 2, 3 \pmod{4}$. Here, $N(\mathfrak{p}) = p$.

In Cases 1 and 4, we say that p splits in K. In Cases 2 and 5, we say that p is inert in K. In Cases 3 and 6, we say that p ramifies in K.

Review of algebraic number theory

э

 An algebraic number field K of degree n is said to be monogenic if there exists θ ∈ O_K such that

$$\mathcal{O}_{K} = \mathbb{Z} + \mathbb{Z}\theta + \cdots + \mathbb{Z}\theta^{n-1}$$

 An algebraic number field K of degree n is said to be monogenic if there exists θ ∈ O_K such that

$$\mathcal{O}_{\mathcal{K}} = \mathbb{Z} + \mathbb{Z}\theta + \dots + \mathbb{Z}\theta^{n-1}$$

• Let $f(x) \in \mathbb{Z}[x]$ be an irreducible polynomial such that $f(\theta) = 0$.

 An algebraic number field K of degree n is said to be monogenic if there exists θ ∈ O_K such that

$$\mathcal{O}_{\mathcal{K}} = \mathbb{Z} + \mathbb{Z}\theta + \dots + \mathbb{Z}\theta^{n-1}$$

- Let $f(x) \in \mathbb{Z}[x]$ be an irreducible polynomial such that $f(\theta) = 0$.
- Let p be a rational prime and let g₁(x), g₂(x), ..., g_l(x) be distinct monic irreducible polynomials in Z_p[x] such that

$$f(x) \equiv g_1(x)^{e_1}g_2(x)^{e_2}\dots g_l(x)^{e_l} \pmod{p}.$$

 An algebraic number field K of degree n is said to be monogenic if there exists θ ∈ O_K such that

$$\mathcal{O}_{\mathcal{K}} = \mathbb{Z} + \mathbb{Z}\theta + \dots + \mathbb{Z}\theta^{n-1}$$

- Let $f(x) \in \mathbb{Z}[x]$ be an irreducible polynomial such that $f(\theta) = 0$.
- Let p be a rational prime and let g₁(x), g₂(x),..., g_l(x) be distinct monic irreducible polynomials in Z_p[x] such that

$$f(x) \equiv g_1(x)^{e_1}g_2(x)^{e_2}\dots g_l(x)^{e_l} \pmod{p}.$$

• For each *i*, let $f_i(x) \in \mathbb{Z}[x]$ such that $f_i(x) \equiv g_i(x) \pmod{p}$, and define $\mathfrak{p}_i = \langle p, f_i(\theta) \rangle$.

 An algebraic number field K of degree n is said to be monogenic if there exists θ ∈ O_K such that

$$\mathcal{O}_{\mathcal{K}} = \mathbb{Z} + \mathbb{Z}\theta + \dots + \mathbb{Z}\theta^{n-1}$$

- Let $f(x) \in \mathbb{Z}[x]$ be an irreducible polynomial such that $f(\theta) = 0$.
- Let p be a rational prime and let g₁(x), g₂(x), ..., g_l(x) be distinct monic irreducible polynomials in Z_p[x] such that

$$f(x) \equiv g_1(x)^{e_1}g_2(x)^{e_2}\dots g_l(x)^{e_l} \pmod{p}.$$

- For each *i*, let $f_i(x) \in \mathbb{Z}[x]$ such that $f_i(x) \equiv g_i(x) \pmod{p}$, and define $\mathfrak{p}_i = \langle p, f_i(\theta) \rangle$.
- Then, $\langle p \rangle = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \dots \mathfrak{p}_l^{e_l}$.

Review of algebraic number theory

イロト イ団ト イヨト イヨト

æ

• If K/\mathbb{F} is an extension of number fields (that is, $[K : \mathbb{F}]$ and $[\mathbb{F} : \mathbb{Q}]$ are finite), we call K a relative extension of \mathbb{F} . If $\mathbb{F} = \mathbb{Q}$, we say that K is an absolute extension.

• • = • • = •

- If K/\mathbb{F} is an extension of number fields (that is, $[K : \mathbb{F}]$ and $[\mathbb{F} : \mathbb{Q}]$ are finite), we call K a relative extension of \mathbb{F} . If $\mathbb{F} = \mathbb{Q}$, we say that K is an absolute extension.
- We can generalize the notions that we learnt in previous slides and ask how a prime ideal p in O_F factors in O_K.

- If K/\mathbb{F} is an extension of number fields (that is, $[K : \mathbb{F}]$ and $[\mathbb{F} : \mathbb{Q}]$ are finite), we call K a relative extension of \mathbb{F} . If $\mathbb{F} = \mathbb{Q}$, we say that K is an absolute extension.
- We can generalize the notions that we learnt in previous slides and ask how a prime ideal p in O_F factors in O_K.
- Let 𝔅 be a prime ideal in 𝒪_K. There exists exactly one prime ideal 𝔅 of 𝒪_𝔅 lying below 𝔅, that is,

- If K/\mathbb{F} is an extension of number fields (that is, $[K : \mathbb{F}]$ and $[\mathbb{F} : \mathbb{Q}]$ are finite), we call K a relative extension of \mathbb{F} . If $\mathbb{F} = \mathbb{Q}$, we say that K is an absolute extension.
- We can generalize the notions that we learnt in previous slides and ask how a prime ideal \mathfrak{p} in $\mathcal{O}_{\mathbb{F}}$ factors in $\mathcal{O}_{\mathcal{K}}$.
- Let 𝔅 be a prime ideal in 𝒪_K. There exists exactly one prime ideal 𝔅 of 𝒪_𝔅 lying below 𝔅, that is, 𝔅 can contain exactly one prime ideal 𝔅 of 𝔅.

/□ ▶ ▲ 글 ▶ ▲ 글
Factoring primes in K/\mathbb{F}

- If K/\mathbb{F} is an extension of number fields (that is, $[K : \mathbb{F}]$ and $[\mathbb{F} : \mathbb{Q}]$ are finite), we call K a relative extension of \mathbb{F} . If $\mathbb{F} = \mathbb{Q}$, we say that K is an absolute extension.
- We can generalize the notions that we learnt in previous slides and ask how a prime ideal p in O_F factors in O_K.
- Let 𝔅 be a prime ideal in 𝒪_K. There exists exactly one prime ideal 𝔅 of 𝒪 lying below 𝔅, that is, 𝔅 can contain exactly one prime ideal 𝔅 of 𝔅.
- The inertial degree of \mathfrak{P}_i in \mathcal{O}_K is defined as

$$f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) := [\mathcal{O}_{\mathcal{K}}/\mathfrak{P}_i : \mathcal{O}_{\mathbb{F}}/\mathfrak{p}].$$

/□ ▶ ▲ 글 ▶ ▲ 글

Factoring primes in K/\mathbb{F}

- If K/\mathbb{F} is an extension of number fields (that is, $[K : \mathbb{F}]$ and $[\mathbb{F} : \mathbb{Q}]$ are finite), we call K a relative extension of \mathbb{F} . If $\mathbb{F} = \mathbb{Q}$, we say that K is an absolute extension.
- We can generalize the notions that we learnt in previous slides and ask how a prime ideal p in O_ℝ factors in O_K.
- Let 𝔅 be a prime ideal in 𝒪_K. There exists exactly one prime ideal 𝔅 of 𝒪_𝔅 lying below 𝔅, that is, 𝔅 can contain exactly one prime ideal 𝔅 of 𝔅.
- The inertial degree of \mathfrak{P}_i in \mathcal{O}_K is defined as

$$f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) := [\mathcal{O}_{\mathcal{K}}/\mathfrak{P}_i : \mathcal{O}_{\mathbb{F}}/\mathfrak{p}].$$

The fields O_K/𝔅_i and O_F/𝔅 are called the residue fields at 𝔅_i and 𝔅 respectively.

Factoring primes in K/\mathbb{F}

- If K/\mathbb{F} is an extension of number fields (that is, $[K : \mathbb{F}]$ and $[\mathbb{F} : \mathbb{Q}]$ are finite), we call K a relative extension of \mathbb{F} . If $\mathbb{F} = \mathbb{Q}$, we say that K is an absolute extension.
- We can generalize the notions that we learnt in previous slides and ask how a prime ideal \mathfrak{p} in $\mathcal{O}_{\mathbb{F}}$ factors in $\mathcal{O}_{\mathcal{K}}$.
- Let 𝔅 be a prime ideal in 𝒪_K. There exists exactly one prime ideal 𝔅 of 𝒪_𝔅 lying below 𝔅, that is, 𝔅 can contain exactly one prime ideal 𝔅 of 𝔅.
- The inertial degree of \mathfrak{P}_i in \mathcal{O}_K is defined as

$$f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) := [\mathcal{O}_{\mathcal{K}}/\mathfrak{P}_i : \mathcal{O}_{\mathbb{F}}/\mathfrak{p}].$$

- The fields O_K/𝔅_i and O_𝔽/𝔅 are called the residue fields at 𝔅_i and 𝔅 respectively.
- Thus, the inertial degree f_{K/𝔅}(𝔅_i) is the degree of the extension of these finite fields.

$$\mathfrak{p}\mathcal{O}_{\mathcal{K}}=\prod_{i=1}^{l}\mathfrak{P}_{j}^{\boldsymbol{e}_{i}},\,\boldsymbol{e}_{i}\in\mathbb{N},$$

where \mathfrak{P}_i are distinct prime ideals in \mathcal{O}_K .

æ

* ヨト * ヨト -

$$\mathfrak{p}\mathcal{O}_{\mathcal{K}}=\prod_{i=1}^{l}\mathfrak{P}_{j}^{\boldsymbol{e}_{i}},\,\boldsymbol{e}_{i}\in\mathbb{N},$$

where \mathfrak{P}_i are distinct prime ideals in \mathcal{O}_K .

The number e_i is called the ramification index of \$\mathcal{P}_i\$ in \$\mathcal{O}_K\$, and is denoted as \$e_{K/\mathbb{F}}(\mathcal{P}_i)\$.

$$\mathfrak{p}\mathcal{O}_{\mathcal{K}}=\prod_{i=1}^{l}\mathfrak{P}_{j}^{\boldsymbol{e}_{i}},\,\boldsymbol{e}_{i}\in\mathbb{N},$$

where \mathfrak{P}_i are distinct prime ideals in \mathcal{O}_K .

- The number e_i is called the ramification index of 𝔅_i in 𝒪_K, and is denoted as e_{K/𝔅}(𝔅_i).
- \mathfrak{p} is said to ramify in K if $e_{K/\mathbb{F}}(\mathfrak{P}_i) > 1$ for some *i*.

$$\mathfrak{p}\mathcal{O}_{\mathcal{K}}=\prod_{i=1}^{l}\mathfrak{P}_{j}^{\boldsymbol{e}_{i}},\,\boldsymbol{e}_{i}\in\mathbb{N},$$

where \mathfrak{P}_i are distinct prime ideals in \mathcal{O}_K .

- The number e_i is called the ramification index of 𝔅_i in 𝒪_K, and is denoted as e_{K/𝔅}(𝔅_i).
- p is said to ramify in K if e_{K/𝔅}(𝔅_i) > 1 for some i.
 Otherwise, p is said to be unramified in K.

$$\mathfrak{p}\mathcal{O}_{\mathcal{K}}=\prod_{i=1}^{l}\mathfrak{P}_{j}^{\boldsymbol{e}_{i}},\,\boldsymbol{e}_{i}\in\mathbb{N},$$

where \mathfrak{P}_i are distinct prime ideals in $\mathcal{O}_{\mathcal{K}}$.

- The number e_i is called the ramification index of 𝔅_i in 𝒪_K, and is denoted as e_{K/𝔅}(𝔅_i).
- p is said to ramify in K if e_{K/𝔅}(𝔅_i) > 1 for some i. Otherwise, p is said to be unramified in K.
- $I = I_{K/\mathbb{F}}(\mathfrak{p})$ is said to be the decomposition number of \mathfrak{p} in \mathcal{O}_K .

$$\mathfrak{p}\mathcal{O}_{\mathcal{K}}=\prod_{i=1}^{l}\mathfrak{P}_{j}^{\boldsymbol{e}_{i}},\,\boldsymbol{e}_{i}\in\mathbb{N},$$

where \mathfrak{P}_i are distinct prime ideals in $\mathcal{O}_{\mathcal{K}}$.

- The number e_i is called the ramification index of 𝔅_i in 𝒪_K, and is denoted as e_{K/𝔅}(𝔅_i).
- p is said to ramify in K if e_{K/𝔅}(𝔅_i) > 1 for some i. Otherwise, p is said to be unramified in K.
- $I = I_{K/\mathbb{F}}(\mathfrak{p})$ is said to be the decomposition number of \mathfrak{p} in \mathcal{O}_K .

 Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝔅_𝔅 such that 𝔅𝔅_𝔅 = ∏^I_{i=1}𝔅^𝔅_i, 𝔅_i ∈ ℕ, where 𝔅_i are distinct prime ideals in 𝔅_𝔅.

- Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝔅_𝔅 such that 𝔅𝔅_𝔅 = ∏^I_{i=1}𝔅^𝔅_i, 𝔅_i ∈ 𝔅, where 𝔅_i are distinct prime ideals in 𝔅_𝔅.
- Then $\sum_{i=1}^{l} e_{K/\mathbb{F}}(\mathfrak{P}_i) f_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}].$

- Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝒪𝔅 such that 𝔅𝒪𝐾 = ∏^I_{i=1}𝔅^{ei}_i, e_i ∈ 𝔅, where 𝔅_i are distinct prime ideals in 𝒪_𝔅.
- Then $\sum_{i=1}^{l} e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = [\mathcal{K} : \mathbb{F}].$
- Then $\mathfrak p$ is said to be completely ramified or totally ramified in $\mathcal O_{\mathcal K}$ whenever

$$e_i := e_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$

for some $1 \leq i \leq I$.

- Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝒪𝔅 such that 𝔅𝒪𝐾 = ∏^I_{i=1}𝔅^{ei}_i, e_i ∈ 𝔅, where 𝔅_i are distinct prime ideals in 𝒪_𝔅.
- Then $\sum_{i=1}^{l} e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = [\mathcal{K} : \mathbb{F}].$
- Then $\mathfrak p$ is said to be completely ramified or totally ramified in $\mathcal O_{\mathcal K}$ whenever

$$e_i := e_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$

for some $1 \leq i \leq l$. In this case, l = 1 and $f_{K/\mathbb{F}}(\mathfrak{P}_i) = 1$.

- Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝒪𝔅 such that 𝔅𝒪𝐾 = ∏^I_{i=1}𝔅^{ei}_i, e_i ∈ 𝔅, where 𝔅_i are distinct prime ideals in 𝒪_𝔅.
- Then $\sum_{i=1}^{l} e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = [\mathcal{K} : \mathbb{F}].$
- Then $\mathfrak p$ is said to be completely ramified or totally ramified in $\mathcal O_{\mathcal K}$ whenever

$$e_i := e_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$

for some $1 \leq i \leq l$. In this case, l = 1 and $f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = 1$.

We say that p is said to split completely in O_K if
 I = *I*_{K/𝔅}(p) = [K : 𝔅].

- Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝒪𝔅 such that 𝔅𝒪𝐾 = ∏^I_{i=1}𝔅^{ei}_i, e_i ∈ 𝔅, where 𝔅_i are distinct prime ideals in 𝒪_𝔅.
- Then $\sum_{i=1}^{l} e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = [\mathcal{K} : \mathbb{F}].$
- Then $\mathfrak p$ is said to be completely ramified or totally ramified in $\mathcal O_{\mathcal K}$ whenever

$$e_i := e_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$

for some $1 \leq i \leq l$. In this case, l = 1 and $f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = 1$.

We say that p is said to split completely in O_K if
 I = I_{K/𝔅}(p) = [K : 𝔅]. In this case, e_{K/𝔅}(𝔅_i) = f_{K/𝔅}(𝔅_i) = 1

 for each 1 ≤ i ≤ I.

- Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝒪𝔅 such that 𝔅𝒪𝐾 = ∏^I_{i=1}𝔅^{ei}_i, e_i ∈ 𝔅, where 𝔅_i are distinct prime ideals in 𝒪_𝔅.
- Then $\sum_{i=1}^{l} e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = [\mathcal{K} : \mathbb{F}].$
- Then $\mathfrak p$ is said to be completely ramified or totally ramified in $\mathcal O_{\mathcal K}$ whenever

$$e_i := e_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$

for some $1 \leq i \leq l$. In this case, l = 1 and $f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = 1$.

We say that p is said to split completely in O_K if
 I = I_{K/𝔅}(p) = [K : 𝔅]. In this case, e_{K/𝔅}(𝔅_i) = f_{K/𝔅}(𝔅_i) = 1

 for each 1 ≤ i ≤ I.

• If
$$f_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$
 for some *i*, then $l_{K/\mathbb{F}}(\mathfrak{p}) = 1 = e_{K/\mathbb{F}}(\mathfrak{P}_i)$.

- Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝒪𝔅 such that 𝔅𝒪𝐾 = ∏^I_{i=1}𝔅^{ei}_i, e_i ∈ 𝔅, where 𝔅_i are distinct prime ideals in 𝒪_𝔅.
- Then $\sum_{i=1}^{l} e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = [\mathcal{K} : \mathbb{F}].$
- Then $\mathfrak p$ is said to be completely ramified or totally ramified in $\mathcal O_{\mathcal K}$ whenever

$$e_i := e_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$

for some $1 \leq i \leq l$. In this case, l = 1 and $f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = 1$.

We say that p is said to split completely in O_K if
 I = I_{K/𝔅}(p) = [K : 𝔅]. In this case, e_{K/𝔅}(𝔅_i) = f_{K/𝔅}(𝔅_i) = 1

 for each 1 ≤ i ≤ I.

• If
$$f_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$
 for some *i*, then
 $l_{K/\mathbb{F}}(\mathfrak{p}) = 1 = e_{K/\mathbb{F}}(\mathfrak{P}_i)$. That is, $\mathfrak{p} = \mathfrak{P}_i$.

- Suppose K/𝔅 is a finite extension of number fields, and let 𝔅 be a prime ideal in 𝒪𝔅 such that 𝔅𝒪𝐾 = ∏^I_{i=1}𝔅^{ei}_i, e_i ∈ 𝔅, where 𝔅_i are distinct prime ideals in 𝒪_𝔅.
- Then $\sum_{i=1}^{l} e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = [\mathcal{K} : \mathbb{F}].$
- Then p is said to be completely ramified or totally ramified in O_K whenever

$$e_i := e_{K/\mathbb{F}}(\mathfrak{P}_i) = [K : \mathbb{F}]$$

for some $1 \leq i \leq l$. In this case, l = 1 and $f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = 1$.

- We say that p is said to split completely in O_K if
 I = I_{K/𝔅}(p) = [K : 𝔅]. In this case, e_{K/𝔅}(𝔅_i) = f_{K/𝔅}(𝔅_i) = 1

 for each 1 ≤ i ≤ I.
- If f_{K/𝔅}(𝔅_i) = [K : 𝔅] for some i, then
 I_{K/𝔅}(𝔅) = 1 = e_{K/𝔅}(𝔅_i). That is, 𝔅 = 𝔅_i. In this case, we say that 𝔅 is inert in 𝒪_K.

Galois extensions, ramification and inertia

Review of algebraic number theory

æ

Let K/\mathbb{F} be a Galois extension of number fields, that is, all the \mathbb{F} -conjugate fields of K are identical. Let \mathfrak{p} be a prime ideal in $\mathcal{O}_{\mathbb{F}}$ such that $\mathfrak{p}\mathcal{O}_{K} = \prod_{i=1}^{l} \mathfrak{P}_{i}^{e_{i}}, e_{i} \in \mathbb{N}$, where \mathfrak{P}_{i} are distinct prime ideals in \mathcal{O}_{K} , with $e_{i} = e_{K/\mathbb{F}}(\mathfrak{P}_{i})$, $f_{i} = f_{K/\mathbb{F}}(\mathfrak{P}_{i})$ and $l = l_{K/\mathbb{F}}(\mathfrak{p})$.

Let K/\mathbb{F} be a Galois extension of number fields, that is, all the \mathbb{F} -conjugate fields of K are identical. Let \mathfrak{p} be a prime ideal in $\mathcal{O}_{\mathbb{F}}$ such that $\mathfrak{p}\mathcal{O}_{K} = \prod_{i=1}^{l} \mathfrak{P}_{i}^{e_{i}}, e_{i} \in \mathbb{N}$, where \mathfrak{P}_{i} are distinct prime ideals in \mathcal{O}_{K} , with $e_{i} = e_{K/\mathbb{F}}(\mathfrak{P}_{i})$, $f_{i} = f_{K/\mathbb{F}}(\mathfrak{P}_{i})$ and $l = l_{K/\mathbb{F}}(\mathfrak{p})$. Then,

$$e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_j), \, f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_j) \, \, \text{for all} \, 1 \leq i,j \leq l.$$

Let K/\mathbb{F} be a Galois extension of number fields, that is, all the \mathbb{F} -conjugate fields of K are identical. Let \mathfrak{p} be a prime ideal in $\mathcal{O}_{\mathbb{F}}$ such that $\mathfrak{p}\mathcal{O}_{K} = \prod_{i=1}^{l} \mathfrak{P}_{i}^{e_{i}}$, $e_{i} \in \mathbb{N}$, where \mathfrak{P}_{i} are distinct prime ideals in \mathcal{O}_{K} , with $e_{i} = e_{K/\mathbb{F}}(\mathfrak{P}_{i})$, $f_{i} = f_{K/\mathbb{F}}(\mathfrak{P}_{i})$ and $l = l_{K/\mathbb{F}}(\mathfrak{p})$. Then,

$$e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_j), \, f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_j) \, \, \textit{for all} \, 1 \leq i,j \leq l.$$

Since the above values are equal, we may respectively denote them as $e_{K/\mathbb{F}}(\mathfrak{p})$ and $f_{K/\mathbb{F}}(\mathfrak{p})$.

Let K/\mathbb{F} be a Galois extension of number fields, that is, all the \mathbb{F} -conjugate fields of K are identical. Let \mathfrak{p} be a prime ideal in $\mathcal{O}_{\mathbb{F}}$ such that $\mathfrak{p}\mathcal{O}_{K} = \prod_{i=1}^{l} \mathfrak{P}_{i}^{e_{i}}, e_{i} \in \mathbb{N}$, where \mathfrak{P}_{i} are distinct prime ideals in \mathcal{O}_{K} , with $e_{i} = e_{K/\mathbb{F}}(\mathfrak{P}_{i})$, $f_{i} = f_{K/\mathbb{F}}(\mathfrak{P}_{i})$ and $l = l_{K/\mathbb{F}}(\mathfrak{p})$. Then,

$$e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = e_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_j), \, f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_i) = f_{\mathcal{K}/\mathbb{F}}(\mathfrak{P}_j) \, \, \text{for all} \, 1 \leq i,j \leq l.$$

Since the above values are equal, we may respectively denote them as $e_{K/\mathbb{F}}(\mathfrak{p})$ and $f_{K/\mathbb{F}}(\mathfrak{p})$. Thus,

$$e_{K/\mathbb{F}}(\mathfrak{p})f_{K/\mathbb{F}}(\mathfrak{p})I_{K/\mathbb{F}}(\mathfrak{p}) = [K:\mathbb{F}].$$

Review of algebraic number theory

æ

 The set of all 𝔽-embeddings of K forms a group called the Galois group of K over 𝔽 and denoted Gal(K/𝔼).

• • • • • • •

- The set of all 𝔽-embeddings of K forms a group called the Galois group of K over 𝔽 and denoted Gal(K/𝔼).
- Suppose K is a Galois extension of \mathbb{F} . Then, for any $\sigma \in \text{Gal}(K/\mathbb{F}), \sigma : K \to K \text{ and } \sigma(\mathbb{F}) = \mathbb{F}$.

- The set of all 𝔽-embeddings of K forms a group called the Galois group of K over 𝔽 and denoted Gal(K/𝔼).
- Suppose K is a Galois extension of F. Then, for any σ ∈ Gal(K/F), σ : K → K and σ(F) = F. In fact, F is the fixed field of Gal(K/F).

• • • • • • •

- The set of all 𝔽-embeddings of K forms a group called the Galois group of K over 𝔽 and denoted Gal(K/𝔼).
- Suppose K is a Galois extension of F. Then, for any σ ∈ Gal(K/F), σ : K → K and σ(F) = F. In fact, F is the fixed field of Gal(K/F).
- Let p be a fixed prime ideal in O_𝔽. Then, Gal(K/𝔽) transitively permutes the prime ideals of O_𝐾 lying above p.

- The set of all 𝔽-embeddings of K forms a group called the Galois group of K over 𝔽 and denoted Gal(K/𝔼).
- Suppose K is a Galois extension of F. Then, for any σ ∈ Gal(K/F), σ : K → K and σ(F) = F. In fact, F is the fixed field of Gal(K/F).
- Let p be a fixed prime ideal in O_F. Then, Gal(K/F) transitively permutes the prime ideals of O_K lying above p.
- That is, let

$$\mathfrak{p}\mathcal{O}_{\mathcal{K}}=\prod_{i=1}^{l}\mathfrak{P}_{i}^{e_{i}}.$$

/□ ▶ ◀ ⋽ ▶ ◀

- The set of all 𝔽-embeddings of K forms a group called the Galois group of K over 𝔽 and denoted Gal(K/𝔼).
- Suppose K is a Galois extension of 𝔽. Then, for any σ ∈ Gal(K/𝔼), σ : K → K and σ(𝔅) = 𝗜. In fact, 𝔅 is the fixed field of Gal(K/𝔅).
- Let p be a fixed prime ideal in O_ℝ. Then, Gal(K/𝑘) transitively permutes the prime ideals of O_K lying above p.
- That is, let

$$\mathfrak{p}\mathcal{O}_{\mathcal{K}}=\prod_{i=1}^{l}\mathfrak{P}_{i}^{e_{i}}.$$

Then, for each $1 \leq i, j \leq l$, $\sigma(\mathfrak{P}_i) = \mathfrak{P}_j$ for some $\sigma \in \mathsf{Gal}(K/\mathbb{F})$.

For a prime ideal \$\P\$ of \$\mathcal{O}_K\$, the decomposition group of \$\P\$ in \$K\$ is defined as

$$D_{\mathfrak{P}}(K/\mathbb{F}) := \{ \sigma \in \mathsf{Gal}(K/\mathbb{F}) : \ \sigma(\mathfrak{P}) = \mathfrak{P} \}.$$

-

∃ >

For a prime ideal \$\P\$ of \$\mathcal{O}_K\$, the decomposition group of \$\P\$ in \$K\$ is defined as

$$D_{\mathfrak{P}}(K/\mathbb{F}) := \{ \sigma \in \mathsf{Gal}(K/\mathbb{F}) : \ \sigma(\mathfrak{P}) = \mathfrak{P} \}.$$

• For any
$$ho\in {\sf Gal}({\cal K}/{\mathbb F}),$$

$$\rho^{-1} D_{\mathfrak{P}}(K/\mathbb{F}) \rho = D_{\rho(\mathfrak{P})}(K/\mathbb{F}).$$

Review of algebraic number theory

æ

For a prime ideal \$\varphi\$ of \$\mathcal{O}_K\$, the decomposition group of \$\varphi\$ in \$K\$ is defined as

$$D_{\mathfrak{P}}(K/\mathbb{F}) := \{ \sigma \in \mathsf{Gal}(K/\mathbb{F}) : \ \sigma(\mathfrak{P}) = \mathfrak{P} \}.$$

• For any
$$ho\in {\sf Gal}({\cal K}/{\mathbb F}),$$

$$\rho^{-1}D_{\mathfrak{P}}(K/\mathbb{F})
ho = D_{\rho(\mathfrak{P})}(K/\mathbb{F}).$$

If 𝔅 lies over a prime 𝔅 in 𝒪, then
 |D_𝔅(𝐾/𝔅)| = e_{𝐾/𝔅}(𝔅)f_{𝐾/𝔅}(𝔅).

• • = • • = •

3

• For a prime ideal \mathfrak{P} of \mathcal{O}_K , the **inertia group of** \mathfrak{P} **in** K is defined as

 $\mathcal{T}_{\mathfrak{P}}(K/\mathbb{F}) := \{ \sigma \in \mathsf{Gal}(K/\mathbb{F}) : \ \sigma(\alpha) - \alpha \in \mathfrak{P} \text{ for all } \alpha \in \mathcal{O}_K \}.$

同下 イヨト イヨト ニヨ

• For a prime ideal \mathfrak{P} of \mathcal{O}_K , the **inertia group of** \mathfrak{P} **in** K is defined as

$$\mathcal{T}_{\mathfrak{P}}(\mathcal{K}/\mathbb{F}) := \{ \sigma \in \mathsf{Gal}(\mathcal{K}/\mathbb{F}) : \ \sigma(\alpha) - \alpha \in \mathfrak{P} \text{ for all } \alpha \in \mathcal{O}_{\mathcal{K}} \}.$$

• For any
$$\rho \in \operatorname{Gal}(K/\mathbb{F})$$
,

$$ho^{-1}\mathcal{T}_{\mathfrak{P}}(K/\mathbb{F})
ho=\mathcal{T}_{
ho(\mathfrak{P})}(K/\mathbb{F}).$$

A B F A B F

æ

• For a prime ideal \mathfrak{P} of \mathcal{O}_K , the **inertia group of** \mathfrak{P} **in** K is defined as

$$\mathcal{T}_{\mathfrak{P}}(\mathcal{K}/\mathbb{F}) := \{ \sigma \in \mathsf{Gal}(\mathcal{K}/\mathbb{F}) : \, \sigma(\alpha) - \alpha \in \mathfrak{P} \text{ for all } \alpha \in \mathcal{O}_{\mathcal{K}} \}.$$

• For any
$$\rho \in \operatorname{Gal}(K/\mathbb{F})$$
,

$$ho^{-1}\mathcal{T}_{\mathfrak{P}}(K/\mathbb{F})
ho=\mathcal{T}_{
ho(\mathfrak{P})}(K/\mathbb{F}).$$

\bullet If $\mathfrak P$ lies over a prime $\mathfrak p$ in $\mathcal O_{\mathbb F},$ then

$$|\operatorname{\mathsf{Gal}}(K/\mathbb{F}):\mathcal{T}_{\mathfrak{P}}(K/\mathbb{F})|=\mathit{I}_{K/\mathbb{F}}(\mathfrak{p})\mathit{f}_{K/\mathbb{F}}(\mathfrak{p}).$$
• For a prime ideal \mathfrak{P} of \mathcal{O}_K , the **inertia group of** \mathfrak{P} **in** K is defined as

$$\mathcal{T}_{\mathfrak{P}}(\mathcal{K}/\mathbb{F}) := \{ \sigma \in \mathsf{Gal}(\mathcal{K}/\mathbb{F}) : \, \sigma(\alpha) - \alpha \in \mathfrak{P} \text{ for all } \alpha \in \mathcal{O}_{\mathcal{K}} \}.$$

• For any
$$\rho \in \operatorname{Gal}(K/\mathbb{F})$$
,

$$ho^{-1}\mathcal{T}_{\mathfrak{P}}(K/\mathbb{F})
ho=\mathcal{T}_{
ho(\mathfrak{P})}(K/\mathbb{F}).$$

\bullet If $\mathfrak P$ lies over a prime $\mathfrak p$ in $\mathcal O_{\mathbb F},$ then

$$|\operatorname{\mathsf{Gal}}(K/\mathbb{F}):\mathcal{T}_{\mathfrak{P}}(K/\mathbb{F})|=\mathit{I}_{K/\mathbb{F}}(\mathfrak{p})\mathit{f}_{K/\mathbb{F}}(\mathfrak{p}).$$

- "Problems in algebraic number theory" by Jody Esmonde and M. Ram Murty (Springer GTM)
- Caracteria and its Applications).
 Caracteria and its Applications
- "Introductory algebraic number theory" by Şaban Alaca and Kenneth S. Williams (Cambridge University Press)